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Abstract: For non-linear systems (NLSs), the state estimation problem is an essential and important
problem. This paper deals with the nonlinear state estimation problems in nonlinear and non-
Gaussian systems. Recently, the Bayesian filter designer based on the Bayesian principle has been
widely applied to the state estimation problem in NLSs. However, we assume that the state estimation
models are nonlinear and non-Gaussian, applying traditional, typical nonlinear filtering methods,
and there is no precise result for the system state estimation problem. Therefore, the larger the
estimation error, the lower the estimation accuracy. To perfect the imperfections, a projection filtering
method (PFM) based on the Bayesian estimation approach is applied to estimate the state. First,
this paper constructs its projection symmetric interval to select the basis function. Second, the prior
probability density of NLSs can be projected into the basis function space, and the prior probability
density solution can be solved by using the Fokker–Planck Equation (FPE). According to the Bayes
formula, the proposed estimator utilizes the basis function in projected space to iteratively calculate
the posterior probability density; thus, it avoids calculating the partial differential equation. By
taking two illustrative examples, it is also compared with the traditional UKF and PF algorithm, and
the numerical experiment results show the feasibility and effectiveness of the novel nonlinear state
estimation filter algorithm.

Keywords: projection filter method; non-linear systems; state estimation; Fokker–Planck equation

1. Introduction

In recent years, the state estimation problems of the dynamic system have become
very important in various applications of nonlinear systems (NLSs), such as underwater
navigation positioning, mechanical equipment fault diagnosis, signal processing, space
target orbit prediction, target tracking, etc. [1–3].

The earliest applied state estimation method is the Kalman filter method. The Kalman
Filter (KF) in [4] is a state filter estimator based on the minimum mean square error (MMSE).
The KF method is only suitable for the state estimation model in linear and Gaussian
systems. However, the state estimation problems of many actual physical systems are
nonlinear and non-Gaussian models. If KF is used to solve the state estimation problem
in NLSs, the estimation error will be divergent, the estimation accuracy will be low, and
the estimation result will not be convergent. In order to overcome these problems, many
scholars have studied many sub-optimal estimators and evaluated the Extended Kalman
Filter (EKF) in navigation in the literature [5]. The basic principle is to linearize the
nonlinear system and use KF to solve the linear system. The final result is that when the
linearization error becomes larger, the estimation accuracy is low. EKF is only effective
for nonlinear systems that are approximately linear in the update interval, so it is difficult
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to apply to many physical systems. Subsequently, the Unscented Kalman Filter (UKF)
in the literature [6] shows that the UKF method assumes that the system noise conforms
to the Gaussian distribution and does not require the system to be approximately linear.
For nonlinear systems, the performance of the UKF method is better than that of EKF.
Although UKF has achieved good results in many navigation application systems [7–9], the
UKF method should satisfy three conditions: (1) State estimation models of the nonlinear
systems should be given in detail. (2) The deviation of the reference state trajectory must
small. (3) The conditional Probability Density Function (PDF) should satisfy the Gaussian
distribution. Otherwise, the performance of UKF will become unstable. Therefore, this is
not suitable for general methods of state estimation problems.

There is another popular Bayesian estimation algorithm based on the Particle Filter
method (PF) in NLSs [10], also known as a complex technique based on the sequential
Monte Carlo (SMC) method, which was initiated by Gordon and Salmond et al. in 1993 [11].
This method is a non-parametric sequential Monte-Carlo analog recursive filtering algo-
rithm based on the Bayesian estimate principle. The basic principle of PF is that it can
approximate the posterior probability density of the state estimation system by applying a
random sampled particle with different weights; according to the Bayesian principle, it
can update the posterior probability density by introducing observation values. In the past
two decades, many scholars have conducted a lot of studies to improve the performance
of PF. They have successively proposed that auxiliary particle filters in [12], unscented
particle filters in [13] and Gaussian particle filters in [14] can effectively improve particle
importance resampling and particle degeneracy phenomena. In [15], particle filtering could
effectively improve estimation accuracy and computational efficiency. PF can deal with
a set of nonlinear, non-Gaussian state estimation problems. However, it still has some
shortcomings, such as computational complexity and sample degradation.

In the past ten years, many scholars have widely proposed Bayesian estimators in
the state estimation problems of a dynamic system [16–19]. An adaptive Kalman filter
estimator in [20] was proposed to solve state estimation problems. Theoretically speaking,
a state estimation model in NLSs can be denoted by Fokker–Planck Equations (FPEs) and
the Bayesian estimation equation. While the former is a partial differential equation and
can show how to use the PDF of the nonlinear system to update the state, the latter can use
new measure data to update the measurement information [21].

In [22], a projection filter method has been proposed, which can only solve the problem
of low-dimensional state estimation. To fill this gap, the Projection Filter Method (PFM)
is given in this paper and is a classic method for solving the Fokker–Planck equation
(FPE). PFM assumes that the numerical solution of FPE can be represented by a set of
basis functions in a projection space. Inspired by [23,24], an accurate probability solution is
obtained by a set of orthogonal basis functions. In fact, compared with PF or other classic
filter methods (such as UKF and EKF), PFM has more advantages than others, such as
computational speed and convergence.

This paper is organized as follows. In Section 2, a state estimation model in NLSs is
given, and the probability solution of the state estimation problem is defined. In Section 3,
the PFM program is divided into two parts to solve the state estimation problems: status
update and measurement update. Section 3 also introduces how to select the basis function
based on the projected symmetric interval. Then, illustrative examples and their simulation
results are given in Section 4. In Section 5, the conclusions of this paper are analyzed
in detail.

2. Background and Problem Formulation
2.1. State Estimation Model in NLSs

Actually, in most non-linear systems (NLSs), given the distribution of initial state x0,
the state equations of most physical systems will develop with continuous time t, and the
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measurement equations can only be performed periodically at discrete time tk. Assume
that the n-dimensional state estimation model can be denoted as

dxt = f (xt, t)dt + gdβt (1)

zk = h(xk, tk) + vk (2)

where xt ∈ Rn denotes the n-dimensional system state vector, f (xt, t) : Rn ×R→ Rn de-
notes the state transfer matrix, zk ∈ Rm is the measurement vector, h(xk, tk) : Rn ×R→ Rm

is the measurement matrix and g : Rn ×R→ Rn×d denotes the diffusion coefficient ma-
trix. βt denotes a d-dimensional standard Brownian motion vector, and vk denotes a
m-dimensional measured noise vector. Based on this, we have the following:

E{βt} = 0, E
{

βtβt
T} = Q(t)

E{vk} = 0, E
{

vkvk
T} = Rk

E
{

vkβt
T} = 0

(3)

where Rk and Q(t) denote the covariance matrices of the Brownian motion process and
measured noise vector.

2.2. Probability Solution of State Estimation Problem

According to the Bayesian filter estimation principle [17], the state estimation model
needs to estimate the system state. Suppose that the posterior probability density distribu-
tion p(x, tk+1|zk+1) of some dynamics system satisfies

p(x, tk+1|zk+1) =
p(zk+1|x)p

(
x, t−k+1

∣∣∣zk

)
∫

Ω p(zk+1|x)p
(

x, t−k+1

∣∣∣zk

)
dx

(4)

where the likelihood probability density p(zk+1|x) is defined as

p(zk+1|x) =
1√

(2π)m|Rk+1|
exp
{
−1

2
(zk+1 − h(xk, tk+1))

TR−1
k+1(zk+1 − h(xk, tk+1))

}
(5)

where h(xk, tk+1) denotes the measurement matrix in (2) and represents the measure-
ment vector in state space, and Rk is expressed as the covariance matrix in Equation (3).
p
(

x, t−k+1

∣∣∣zk

)
is prior probability density, and the prior probability density of the nonlinear

system will satisfy the Fokker–Planck Equation (FPE) [21]:

L(p) =
.
p =

1
2

n

∑
r,s = 1

∂2(gQ(t)gT · p
)

∂xr∂xs
−

n

∑
r = 1

∂( f (xt, t) · p)
∂xr

(6)

where probability density function (PDF) p = p(x, t|zt) is expressed as the probability
solution of FPE. Assume that the initial probability distribution is p(x0, t0|z0) = p0.

3. Nonlinear Filter Estimator Design-Based Projection Filter Method

The Projection Filter Method (PFM) is a state estimation method that approximates the
PDF of the state based on projection symmetric interval and basis function. To construct a
set of finite-dimensional orthogonal basis functions in the projection space, the state can
be projected into the basis function space, and the PFM uses the FPE to obtain the PDF
of the state in the projection space. The problem of solving Partial Differential Equations
(PDEs) (such as FPE) is transformed into a problem of solving linear ordinary differential
equations. In this part, the numerical solution is simplified to avoid calculating PDEs.
PFM is a useful numerical calculation method for solving a state estimation problem. The
flowchart of a filter estimator design (PFM) is shown in Figure 1.
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Figure 1. Flowchart of the estimator based on PFM.

Research manuscripts reporting large datasets that are deposited in a publicly available
database should specify where the data have been deposited and provide the relevant
accession numbers. If the accession numbers have not yet been obtained at the time of
submission, please state that they will be provided during the review. They must be
provided prior to publication.

Interventionary studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code.

3.1. Status Update

Suppose n-dimension state vector x = (x1, · · · , xn), the PDF in NLSs can be denoted
as p(x, t). For a fixed time t ≥ 0, assume that the PDF in NLSs can be expressed by an
infinite sum of basis functions in the projection space

p(x, t) =
∞

∑
i = 0

mi(t)φi(x) (7)

where φi(x) denotes the orthogonal basis function in the projection subspace,
mi(t) = 〈p(x, t), φi(x)〉 denotes the coefficients of p(x, t) in (1), and, 〈φ〉 denotes the
inner product, so 〈η, φ〉 =

∫
Ω η(x)φ(x)dx, Ω ⊂ Rn.

Equality L2 is in the sense of the norm, and VN = span{φi}N−1
0 ⊂ V denotes a

complete set of basis functions for L2. p(x, t) could be expressed as the following form:

p̃(x, t) =
N−1

∑
i = 0

mi(t)φi(x) (8)
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where unknown coefficients mi(t) satisfy mi(t) = 〈p(x, t), φi(x)〉. These basis functions
φi(x) should satisfy the following orthogonality properties:

[M]q+1,i+1 =
〈
φi, φq

〉
=

{
0 i 6= q
1 i = q

(9)

where i, q = 0, 1, 2, · · · , N − 1.
So, M can be given as M = EN×N .
Assume that a(t) = [m0(t) m1(t) · · ·mN−1(t)]

T and Φ(x) = [φ0(x) φ1(x) · · ·φN−1(x)]
T.

p(x, t) in (7) will be denoted as p(x, t) = m(t)TΦ(x).
In function space L2(Rn), basic functions such as φi(x) are known. To solve the

coefficients matrix m(t), the approximate PDF solution can be solved.
Having substituted Formula (8) into Formula (6), we can obtain

∂
N−1
∑

i = 0
miφi

∂t
=

N−1

∑
i = 0

mi

{
1
2

n

∑
r,s = 1

∂2(gQ(t)gT · φi
)

∂xr∂xs

}
−

N−1

∑
i = 0

mi

{
n

∑
r = 1

∂( f (x, t) · φi)

∂xr

}
(10)

Having projected Equation (10) onto the space VN = span
{

φq
}N−1

0 , we can obtain

∂
N−1
∑

i = 0

〈
miφi, φq

〉
∂t

=
N−1

∑
i = 0

mi

{
1
2

n

∑
r,s = 1

〈
∂2(gQ(t)gT · φi

)
∂xr∂xs

, φq

〉}
−

N−1

∑
i = 0

mi

{
n

∑
r = 1

〈
∂( f (x, t) · φi)

∂xr
, φq

〉}
(11)

If Q, f and g are independent of time t, Equation (10) can be rewritten as

N−1

∑
i = 0

.
mi ·

〈
φi, φq

〉
=

N−1

∑
i = 0

mi

{
1
2

n

∑
r,s = 1

〈
∂2(gQ(t)gT · φi

)
∂xr∂xs

, φq

〉}
−

N−1

∑
i = 0

mi

{
n

∑
r = 1

〈
∂( f (x, t) · φi)

∂xr
, φq

〉}
(12)

Equation (12) denotes a linear ordinary differential equation that may be written in
matrix notation by defining

gQgT = B (13)

[M]q,i =
〈
φi−1, φq−1

〉
=

{
1 i = q
0 i 6= q

(14)

We have

[A]q+1,i+1 =

〈{
1
2

n

∑
r,s = 1

B∂2(φi)

∂xr∂xs
−

n

∑
r = 1

∂( f (x, t) · φi)

∂xr

}
, φq

〉
(15)

where i, q = 0, 1, · · ·N − 1, [A]qi is the element of matrix A in Equation (15).
With these definitions M = EN×N , and Equation (12) can be rewritten as

M
.

m(t) = Am(t) (16)

Due to M = EN×N , Equation (16) can be rewritten as

.
m(t) = Am(t) (17)

According to initial density function p0 = p(x0, t0|z0), at time t = t0, the initial
coefficients a(t0) can be obtained as

〈
p0, φj

〉
=

〈
N−1

∑
i = 0

mi(t0)φi, φj

〉
=

N−1

∑
i = 0

mi(t0) ·
〈
φi, φj

〉
(18)

s = [〈p0, φ0〉 · · · 〈p0, φN−1〉]T (19)
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m(t0) = M−1s = s (20)

Having substituted Equation (20) into Equation (17), we have

m(t) = exp
{∫ t

t0

Adτ

}
s (21)

If it is independent of time in [tk, tk+1), Equation (11) has the following simple solution:

m(t) = exp(A(t− tk))m(tk), t ∈ [tk, tk+1) (22)

A priori coefficients can be obtained:

m−(tk+1) = exp(A(tk+1 − tk))m(tk) (23)

where a(tk) are the posterior coefficients at time tk.
A priori probability density is given as

p̃
(

x, t−k+1

∣∣∣zk+1

)
=

N−1

∑
i = 0

mi
−(tk+1)φi = m−(tk+1)

TΦ(x) (24)

3.2. Measurement Update

Due to the Bayesian formula (Equation (6), the posterior PDF can be expressed as

p(x, tk+1|zk+1) =
∞

∑
i = 0

mi(tk+1)φi (25)

We approximate p(x, tk+1|zk+1) by truncating the sum

p̃(x, tk+1|zk+1) =
N−1

∑
i = 0

mi(tk+1)φi (26)

Notice that the parameters mi(tk+1) are unknown. The accurate propagation of the
PDF requires the solution of new parameters mi(tk+1).

Having projected the posterior PDF in Equation (26) onto the projection space
VN = span

{
φq
}N−1

0 , we can obtain

〈
p̃(x, tk+1|zk+1), φq

〉
=

N−1
∑

i = 0

{
mi(tk+1)

〈
φi, φq

〉}
=

〈
p( zk+1|x)

N−1
∑

i = 0
mi(t−k+1)φi ,φq

〉
∫

Ω p( zk+1|x)
N−1
∑

i = 0
mi(t−k+1)φidx

=

N−1
∑

i = 0
{mi(t−k+1)〈p( zk+1|x)φi ,φq〉}

N−1
∑

i = 0
{mi(t−k+1)〈p( zk+1|x),φ∗i 〉}

(27)

where q = 0, 1, · · ·N − 1.
The parameters of the posterior probability density are given by

m(tk+1) =
Fk+1m

(
t−k+1

)
KT

k+1m
(

t−k+1

) (28)

where {
[Fk+1]qi =

〈
p(zk+1|x)φi, φq

〉
[Kk+1]i =

〈
p(zk+1|x), φ∗i

〉 (29)
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By substituting Equation (29) into Equation (28), the posterior PDF is given by

p̃(x, tk+1|zk+1) =
N−1

∑
i = 0

mi(tk+1)φi (30)

According to the posterior PDF p̃(x, tk+1|zk+1) in Equation (30), the conditional mean
Ẽ(x, tk+1|zk+1) = Ẽk+1 and the variance C̃(x, tk+1|zk+1) = C̃k+1 are given by the follow-
ing equations:

Ẽ(x, tk+1|zk+1) =
∫

Ω
η p̃(η, tk+1|zk+1)dη ≈

N−1

∑
i = 0

mi(tk+1)
∫

Ω
φiηdη (31)

C̃(x, tk+1|zk+1) =
∫

Ω

(
η − Ẽ(x, tk+1|zk+1)

)2
p̃(η, tk+1|zk+1)dη

≈
N−1
∑

i = 0
mi(tk+1)

∫
Ω φi

(
η − Ẽ(x, tk+1|zk+1)

)2
dη

(32)

3.3. Selecting Basis Function Based on Projection Symmetric Interval

Steps of PFM-PSI (Projection Filter Method based on Projection Symmetric Interval)
in the n-dimensional system can be obtained as:

(1) In n-dimensional state space, according to
~
Ek+1 and

~
Ck+1 in Equation (32), a

symmetric interval [b, c] is given by{
b = −

(
x
∣∣x = Ek

)
− 10Ck

c =
(
x
∣∣x = Ek

)
+ 10Ck

(33)

Assume that the coordinate series xi are given by

xi = i
ci − bi

K
+ bi, i = 0, 1, · · · , K (34)

where K is the interval number and is given by a positive integer.
Assume that the orthogonal complex exponential basis functions in [25,26] are given by

φq(x) = 1√
cq−bq

exp
{

j2πq x−bq
cq−bq

}
φq
∗(x) = 1√

cq−bq
exp
{
−j2πq x−bq

cq−bq

} (35)

where q = 0, 1, · · ·N − 1.
We have M = EN×N, and projection space can be expressed as VN = span

{
φq
}N−1

0 ⊂ V.
The posterior coefficients m(tk) at time tk are given by

m(tk) = [a0(tk)a1(tk) · · · aN−1(tk)]
T (36)

The optimum value of the number N of basis functions can be obtained by the ini-
tial state.

(2) Calculate prior coefficients m
(

t−k+1

)
at time tk+1.

By calculating the posterior probability density p(x, tk) at time tk, the prior coefficients
m
(

t−k+1

)
at time tk+1 can be obtained as

〈
p(x, tk), φq

〉
≈

N−1

∑
i = 0

ai(tk)
〈
φi, φq

〉
(37)

m(tk) = s (38)
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Due to the property of the probability density
∫

Ω p̃(x)dx = 1, we have

∫ c
b p̃(x)dx =

∫ c
b real

(
N−1
∑

i = 0
aiφi

)
dx =

N−1
∑

i = 0
real

(∫ c
b aiφidx

)
=
√

c− b∑ IFFT1(real(m)) = 1
(39)

We can obtain

m(tk) = m(tk)/
[√

c− b∑ IFFT1(real(m(tk)))
]

(40)

Projecting FPE onto the subspace VN , we have

[A]qi =

〈{
1
2

∂2(gQgT·φi)
∂x2 − ∂( f ·φi)

∂x

}
, φq

〉
=
√

c−b
K2

[
FFT

(
1
2

∂2(gQgT·φi)
∂x2 − ∂( f ·φi)

∂x

)]
q

(41)

where g and K are the constant matrix, we have

[A]qi =
√

c−b
K

[
FFT

((
1
2 gQgT ∂2φi

∂x2 −
∂( f ·φi)

∂x

)∣∣∣
x = xn

)]
q

=
√

c−b
K

[
FFT

(
− 1

2 gQgT
(

2πi
c−b

)2
φi −

∂ f
∂x φi + f · j 2πi

c−b φi

∣∣∣∣
x = xn

)]
q

(42)

the prior coefficients in Equation (23) can be obtained as

m
(

t−k+1

)
= exp(A(tk+1 − tk))m(tk) (43)

By exploiting prior coefficients, normalization processing is carried out as

m
(

t−k+1

)
= m

(
t−k+1

)
/

[
√

c− b
K−1

∑
i = 0

IFFT1

(
real

(
m
(

t−k+1

)))]
(44)

(3) Calculate posterior coefficients m(tk+1).

[Fk+1]qi =
〈

p(zk+1|x)φi, φq
〉
=

√
c− b
K

[FFT1( p(zk+1|x)φi|x = xn)]q (45)

[Ek+1]i = 〈p(zk+1|x), φ∗i 〉 =

√
c− b
K

[IFFT1( p(zk+1|x)|x = xn)]i (46)

where i, q = 0, 1, · · ·N − 1. In matrix notation,

m(tk+1) =
Fk+1m

(
t−k+1

)
ET

k+1m
(

t−k+1

) (47)

Due to coefficients m(tk+1) in Equation (47), normalization processing is carried out as

m(tk+1) = m(tk+1)/

[
√

c− b
K−1

∑
i = 0

IFFT1(real(m(tk+1)))

]
(48)

(4) Calculating conditional mean
~
Ek+1 and variance

~
Ck+1, posterior probability density

function can be formulated as

p̃(x, tk+1|zk+1) =
N−1

∑
i = 0

mi(tk+1)φi (49)
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According to the posterior PDF, the state estimate mean Ẽk+1 can be evaluated as

~
Ek+1 =

∫ c
b η p̃(η, tk+1|zk+1)dη =

∫ c
b ηreal

(
N−1
∑

i = 0
ai(tk+1)φi

)
dη

= real
(

N−1
∑

i = 0
mi(tk+1)

∫ c
b ηφidη

)
= real

(
ΨT ·m(tk+1)

) (50)

where Ψ =
√

c−b
K IFFT1(xn).

The state estimate variance
~
Ck+1 can be given as

~
Ck+1 =

∫ c
b (η − x̂)2 p̃(η, tk+1|zk+1)dη

= real
(

N−1
∑

i = 0
mi(tk+1)

∫ c
b
(
η − Ê(x|zk+1)

)2
φidη

)
= real

(
ΓT ·m(tk+1)

) (51)

where Γ =
√

c−b
K IFFT1((xn− x̂) · (xn− x̂)).

(5) Approximation of mean and variance are used to calculate a priori coefficients at
time tk+2.

4. Illustrative Examples and Simulations
4.1. Example 1

For the first example, the state estimation model will be given by the following
dynamic system with the real solution in [27,28]:

ut = uxx − x2u + (sin(t) + cos(t) + 3x)e−
x2
2 (52)

u(x, t) = (sin(t) + x)e−
x2
2 (53)

It is easy to obtain that u(x, t) = (sin(t) + x)e−
x2
2 is the exact solution of Equation (52).

The initial state is u(0, 0) = 0.
Here, using PFM-PSI (Projection Filter Method based on Projection Symmetric Inter-

val), the interval of time is chosen as 1 s. The performance output of PFM-PSI is shown in
Figures 2–4. The posterior PDFs are plotted. The normalized density functions are plotted
every other 0.1 s. The results of both real solution and PFM–PSI have been plotted in
Figure 2. Having compared the estimated PDF and the true PDF of the state in Figure 3, we
give the estimated error and root mean square (RMS) of PFM in Figures 3 and 4. Obviously,
for a nonlinear system, PFM–PSI has the effectiveness of the new state estimator algorithm.

Figure 2. Simulation results based on PFM–PSI and real solution.
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Figure 3. Estimated error based on PFM–PSI.

Figure 4. Estimated RMS based on PFM–PSI.

4.2. Example 2: State Estimation Model in Underwater Navigation

In this section, a nonlinear system in underwater navigation is given by Refer-
ences [29,30], which is described as follows:

State vector: X(t) =
[
x(t) y(t) vx(t) vy(t)

]T .

Control vector: u(t) =
[

ψ(t) a(t)
]T.

Measurement vector: z(t) =
[

vx(t) vy(t) hr(t) + h(t)
]T .

Underwater navigation state estimation model:

.
X(t) = f (x(t), u(t), w(t)) =


vx(t)cos(ψ(t))− vy(t)sin(ψ(t))
vy(t)cos(ψ(t)) + vx(t)sin(ψ(t))

a(t)cos(ψ(t))
a(t)sin(ψ(t))

+


wx
wy
wvx

wvy

 (54)

zk = h(X(tk)) + ek =

 vx(k)
vy(k)

hd(x(tk), y(tk))

+

 evx

evy

eh

 (55)

where e =
(

evx , evy , eh

)T
, w =

(
wx, wy, wvx , wvy

)T
are, respectively, described as the

measurement noise of the measurement equation and the process noise of the state equation.
Zero mean white noise and the covariance matrix are, respectively, Q and R. hd(x(t), y(t))
is expressed as a non-linear function.

Having set the initial state x0 = [2000 m; 18,000 m; 0.5 m/s; 0 m/s], the filter sampling
time interval is ∆T = 1s, the running time is 5000 s, the number of particles in the particle
filter is 1000, and the number of orthogonal complex exponential basis functions is 10.

For the three non-linear filtering methods of UKF, PF and PFM-PSI (Projection Filter
Method based on Projection Symmetric Interval), the terrain navigation in the experiment is
displayed by using the interpolation method in Reference [25] to solve the terrain function.
The state estimation results based on UKF, PF and PFM-PSI are shown in Figures 5–17.
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Figure 5. True trajectory viewed.

Figure 6. Control vector with noise in one simulation.

Figure 7. Measured terrain profile.
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Figure 8. Estimated trajectories based on UKF, PF and PFM-PSI without terrain navigation.

Figure 9. Estimated trajectories based on UKF, PF and PFM–PSI with interpolated terrain navigation.

Figure 10. Estimated mean of x based on UKF, PF and PFM–PSI.
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Figure 11. Estimated mean of y based on UKF, PF and PFM–PSI.

Figure 12. Estimated mean of Vx based on UKF, PF and PFM-PSI.

Figure 13. Estimated mean of Vy based on UKF, PF and PFM–PSI.
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Figure 14. Estimated error of position based on UKF, PF and PFM–PSI.

Figure 15. Estimated error of velocity based on UKF, PF and PFM–PSI.

Figure 16. Estimated standard deviation based on UKF, PF and PFM–PSI.
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Figure 17. Estimated standard deviation of position with interpolated terrain navigation.

The real points in the experiment are generated by random numbers, and the results
obtained from each simulation will be different. Therefore, the estimation accuracy of the
verification algorithm is obtained by the statistical root mean square error (RMSE), which
is defined as:

R =
1

ST

ST

∑
i = 1

√√√√√ times
∑

k = 1
(Sk −Yk)

2

times
(56)

where R represents RMSE and Yk represents the estimated location information. the number
of simulation experiments is ST = 100, the simulation results are shown in Figures 18–21.

Figure 18. Position RMSE of three methods 100 times without terrain navigation.
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Figure 19. Velocity RMSE of three methods 100 times without terrain navigation.

Figure 20. RMSE of position based on UKF, PF and PFM–PSI with interpolated terrain navigation.

Figure 21. RMSE of speed based on UKF, PF and PFM–PSI with interpolated terrain navigation.
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In Figure 5, the true trajectory of a target can be viewed. The control vector with noise
and the measured terrain profile are plotted in Figures 6 and 7. Figures 8–17 show the
estimated trajectories, estimated mean and estimated standard deviation of state based on
UKF, PF and PFM-PSI. We will give the performance output of PFM-PSI. Having compared
the true state trajectory, estimated means and estimated standard deviation executed by
UKF, PF and PFM-PSI, PFM-PSI is better than the other algorithms. These numerical
experiment results show that the effectiveness of PFM-PSI is confirmed. Compare the true
state trajectory and the conditional means of the trajectories executed by UKF, PF and
PFM-PSI. Obviously, for a nonlinear system, the numerical experiment results show the
feasibility and effectiveness of the novel nonlinear state estimation filter algorithm based
on PFM.

The position RMSE and velocity RMSE of state can be plotted without terrain naviga-
tion in Figures 18 and 19, and they can be plotted with interpolated terrain navigation in
Figures 20 and 21. Comparing position RMSE and velocity RMSE between terrain-free navi-
gation and interpolation terrain navigation, the estimation accuracy of the three algorithms
with interpolation terrain navigation is better. Compared with UKF and PF, PFM-PSI is
significantly better than others, and the three algorithms are better with interpolated terrain
navigation. In short, the estimation accuracy of PFM-PSI is obviously better than UKF
and PF.

It can be seen from Figures 5–21 that the PFM-PSI has better performance to obtain
state estimation information in NLSs, so the PFM-PSI can estimate the PDF of state in
the nonlinear non-gaussian systems. These all explain that PFM-PSI can improve the
state estimation accuracy in Figures 5–17. Although the PFM-PSI estimation accuracy
is better, it does not quickly converge to the true state information in the NLSs, which
also shows that the estimation accuracy of the PF is slightly lower than the PFM-PSI. In
addition, Figures 6–18 show that PFM-PSI needs to iteratively estimate state information
with discrete time. This is consistent with the theoretical analysis in Section 3.

As to the efficiency, the CPU time for the PFM-PSI algorithm is 25.257 s for Times = 5000 s.
Thus, for each time step, it only costs 0.005 s, and the calculation speed is much faster than
the update time of 1 s. The CPU time for the PF algorithm is 31.100 s for Times = 5000 s. The
CPU time for the UKF algorithm is 65.6224 s for Times = 5000 s. Obviously, the calculation
speed of PFM-PSI is faster than that of PF and UKF.

Table 1 shows the mean RMSE 100 times in filtering simulations of the state estimation
model. The PFM has a lower RMSE than the UKF and PF in Table 1. Having compared
interpolated terrain navigation and terrain-free navigation, PFM-PSI performance is better
with terrain navigation. Compared with the UKF and PF, obviously, the performance of
PFM-PSI is better than PF and UKF shown in Table 1.

Table 1. Mean RMSE 100 times in filtering simulations of state estimation model.

Title 1 Title 2 Title 3 Title 4 Title 4

UKF without terrain navigation
UKF with interpolated terrain navigation

42.7971 48.6431 0.0482 0.0475
24.3878 23.2341 0.0486 0.0484

PF without terrain navigation
PF with interpolated terrain navigation

42.7971 48.6431 0.0482 0.0475
13.9931 13.9590 0.0460 0.0454

PFM-PSI without terrain navigation
PFM-PSI with interpolated terrain navigation

23.6374 23.0574 0.0483 0.0479
13.8521 14.3815 0.0460 0.0451

5. Conclusions

The effectiveness of a PFM-based projection symmetric interval in the state estimation
approach to NLSs has been demonstrated in this paper. The main principle of the filter
estimator is to apply a set of basis functions to iteratively calculate parameters of the prior
PDF and posterior PDF based on the Fokker–Planck equation method and the Bayesian
equation. In addition, a detailed theoretical derivation process is given in this paper,
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which mainly includes two parts: a status update and a measurement update. By taking
two simple examples, we find that the PFM filter estimation performance is better than
the UKF and PF methods. It can be applied to deal with output data from sensors with
complex nonlinear systems, especially to solve the problem of high-dimensional state
estimation. Compared with UKF and PF, the performance of PFM is significantly improved,
the calculation speed is slightly faster, and the calculation complexity is lower. Although
PFM gives a highly accurate approximate solution at each time step, to choose a scaling
factor is not easy for arbitrary functions. We expect to find more robust ways to obtain
the approximate solution for offline data. These problems will be further resolved in our
future work.
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