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Abstract: This paper aims to prove fixed point results for cyclic compatible contraction and Hardy–
Rogers cyclic contraction in symmetric spaces. Our results generalize the results of Kumari and
Panthi (2016) proved for cyclic compatible contraction and modified Hardy–Rogers cyclic contraction
in the generating space of a b-quasi metric family and b-dislocated metric family. After that, as an
application, we prove a fixed point result in symmetric pre-probabilistic metric spaces (PPM-spaces).
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1. Introduction

Metric spaces are characterized by the applicability of several conventions. Wilson [1]
has observed and introduced two such applicable conventions i.e., semi-metric spaces
and symmetric spaces. For the first time during 1922 in the area of fixed point theory,
Banach brought out the concept of contraction mapping and it was later called the Banach
Contraction Principle. Further, during the course of time, many authors like Ciric [2],
Reich [3], Kannan [4], etc., have extended and made this principle more widespread
in mathematics.

Later in 2003, this Banach Contraction Principle was further generalized by Kirk et al. [5]
with the use of cyclic contraction and by Karpagam and Agrawal [6] with the use of
the concept cyclic orbital contraction and examined for the existence of fixed points for
such maps.

In 2016, Kumari and Panthi [7,8] introduced new versions of Hardy–Rogers type
cyclic contraction (known as modified Hardy–Rogers cyclic contraction) and the concept of
cyclic compatible contraction and proved fixed point theorems for these contractions in
b-dislocated metric family and in the generating space of a b-quasi metric family respec-
tively. In 1976, Cicchese affirmed the first fixed point theorem for contraction mapping
in semi-metric spaces. Further, for this class of spaces, fixed point results were attained
by Jachymski et al. [9], Hicks and Rhoades [10], Aamri and Moutawakil [11], and the
references cited therein.

In this paper, we prove coincidence and fixed point theorems for cyclic compatible
contraction and Hardy–Rogers cyclic orbital contraction in symmetric spaces. Our results
generalize the results of Kumari and Panthi [7,8] proved for cyclic compatible contraction
and modified Hardy–Rogers cyclic contraction in the generating space of a b-quasi metric
family and b-dislocated metric family. Additionally, we derive a fixed point result in
symmetric pre-probabilistic metric spaces (PPM-spaces).
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2. Preliminaries and Definitions

Definition 1 ([12]). A symmetric space is a pair (U , d) consisting of a non-empty set U and a
non-negative real valued function d defined on U × U such that the following conditions hold for
all µ, ν ∈ U ,

(i) d(µ, ν) = 0 if and only if µ = ν,
(ii) d(µ, ν) = d(ν, µ).

The open ball having centre µ ∈ U and radius r > 0 is outlined by

B(U , r) = {ν ∈ U : d(µ, ν) < r}.

Several properties in symmetric spaces are analogous to the properties in metric spaces
but not all, due to the absence of the triangle inequality.

A sequence {µn} ⊆ U is forenamed as d-Cauchy sequence if for given ε > 0, there is
N ∈ N such that d(µm, µn) < ε for all m, n ≥ N.

In every symmetric space (U , d), one may bring up the topology t(d) by defining
the family of closed sets as follows: a set A ⊆ U is closed if and only if for each µ ∈
X, d(µ, A) = 0 implies µ ∈ A where d(µ,A) = inf{d(µ, a) : a ∈ A}.

Let d be a symmetric space on a set U and for ε > 0 and any µ ∈ U , let B(µ, ε) = {ν ∈
U : d(µ, ν) < ε}. A topology t(d) on U is given by G ∈ t(d) if for each µ ∈ G, B(µ, ε) ⊆ U
for some ε > 0. If for each µ ∈ U and any ε > 0, B(µ, ε) is a neighbourhood of µ in the
topology t(d) then a symmetric space d is a semi-metric. A sequence is d-Cauchy if it
entertains the usual metric condition.

Definition 2 ([13]). Let (U , d) be a symmetric space.

(i) (U , d) is S-complete if for every d-Cauchy sequence {µn}, there exists an element µ in U with
limn→∞ d(µn, µ) = 0;

(ii) (U , d) is d-Cauchy complete if for every d-Cauchy sequence {µn}, there exists an element µ
in U with limn→∞ µn = x with respect to t(d);

(iii) f : U → U is d-continuous if limn→∞ d(µn, µ) = 0 implies limn→∞ d( f µn, f µ) = 0;
(iv) f : U → U is t(d)-continuous if limn→∞ µn = µ with respect to t(d) implies limn→∞ f µn =

f µ with respect to t(d).

If d is a semi-metric on U , then limn→∞ d(µn, µ) = 0 is identical to limn→∞ µn = µ
with respect to t(d), d-continuity of f is identical to t(d) continuity of f , S-completeness of
(U , d) is identical to d-cauchy completeness of (U , d).

The conditions mentioned below can be used as partial replacements for the triangle
inequality’s absence in the symmetric space (U , d) :

(W) limn→∞ d(µn, νn) = 0 and limn→∞ d(νn, ξn) = 0 =⇒ limn→∞ d(µn, ξn) = 0;

(W3) limn→∞ d(µn, µ) = 0 and limn→∞ d(µn, ν) = 0 =⇒ µ = ν;

(MT) there exists s ≥ 1 such that for any µ, ν, ξ ∈ U , d(µ, ξ) ≤ s(d(µ, ν) + d(ν, ξ)).

The property W3 was induced by Wilson [1], W by Mihet [14], and MT by Czerwik [15].

Definition 3. Let f be any self mapping defined on a non-empty set U then µ ∈ U is said to be a
fixed point of f if f µ = µ.

Definition 4 ([7]). Let P and Q be non-empty subsets of a set U . A map A : P ∪Q→ P ∪Q is
said to be a cyclic map if AP ⊆ Q and AQ ⊆ P.

In the following, since P and Q will be always considered as closed sets and (U , d)
a S-complete (d-Cauchy complete) symmetric (semi-metric) space, then, without loss of
generality, we can suppose U = P ∪ Q. Indeed, closed subsets of S-complete (d-Cauchy
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complete) symmetric (semi-metric) spaces define S-complete (d-Cauchy complete) sym-
metric (semi-metric) subspaces.

Definition 5 ([8]). Let (U , d) be a S-complete symmetric space and T, S be two mappings. Then T
and S are said to be weakly compatible if they commute at their coincidence point µ ∈ U , that is,
Tµ = Sµ implies TSµ = STµ.

3. Main Results

In this section, we prove some fixed point theorems in the relation of a symmet-
ric space.

Definition 6. Let U = P ∪Q be a symmetric space. Suppose A,B : U → U are cyclic mappings
such that AU ⊆ BU and there exists κ ∈ (0, 1) such that

d(A2nµ,Aν) ≤ κd(A2n−1µ,Bν) (1)

for any µ, ν ∈ P and n ∈ N. Then A and B are forenamed as cyclic compatible contraction.

Theorem 1. Let d be a bounded symmetric (semi-metric) having property W and (U , d) is S-
complete (d-Cauchy complete). Presume that P and Q are non-empty closed sets and contained in
U . Suppose A,B : P ∪Q→ P ∪Q is a cyclic compatible contraction and BU is closed, BU ⊆ U.
Then, A and B have a point of coincidence in P ∩Q. In addition, weakly compatibility of mappings
A and B will give exactly one common fixed point in P ∩Q.

Proof. Let µ0 ∈ P be an arbitrary point. Since AU ⊆ BU , we may define γ0 ∈ U such that
Aµ0 = Bγ0 and µ1 = Bγ0 where µ1 ∈ U . Hence we can outline the sequence {µn} and
{γn} in U by

Aµn = Bγn,Bγn = µn+1 (2)

for n ∈ N∪ {0}. Then {µ2n} ∈ P and {µ2n+1} ∈ Q for any n ∈ N∪ {0}. Here,

Anµ0 = An−1Bγ0 = An−1µ1 = · · · = Aµn.

d(µ2n, µ2n+1) = d(Bγ2n−1,Bγ2n)

= d(Aµ2n−1,Aµ2n)

= d(Aµ2n,Aµ2n−1)

= d(A2nµ0,Aµ2n−1)

≤ κd(A2n−1µ0,Bµ2n−1)

= κd(Bγ2n−1,Bµ2n−1)

= κd(µ2n, µ2n−1).

Similarly

d(µ2n+1, µ2n+2) = d(Bγ2n,Bγ2n+1)

= d(Aµ2n,Aµ2n+1)

= d(A2nµ0,Aµ2n+1)

≤ κd(A2n−1µ0,Bµ2n+1)

= κd(Bγ2n−1,Bµ2n+1)

= κd(µ2n, µ2n+1).

Inductively, for every n ∈ N, we get

d(µn, µn+1) ≤ κnd(µ0, µ1). (3)
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Since κ ∈ (0, 1) therefore κn → 0 as n→ ∞ and hence limn→∞ d(µn, µn+1) = 0.
By W, we have limn→∞ d(µn, µn+p) = 0, therefore {µn} is a d-Cauchy sequence in

the S-complete symmetric space U . Then, there exists subsequences {B2nγ0} ∈ P and
{B2n−1γ0} ∈ Q such that both converge to some β in U . Since P and Q are closed in U ,
therefore β ∈ P ∩Q.

Due to the closeness of BU , there is ν ∈ U such that

Bν = β. (4)

From the above argument, property W and (4), there exists sequences {A2n−1µ0} in P and
{A2n−2µ0} in Q such that both converge to β.

Consider
d(A2n−1µ0,Aν) ≤ κd(A2n−2µ0,Bν).

By letting n→ ∞,
d(β,Aν) ≤ κd(β,Bν).

This returns d(β,Aν) = 0. Thus
β = Aν. (5)

From (4) and (5), we have Aν = Bν = β. Thus ν is a point of coincidence for A and B.
From the weak compatibility, we get

Aβ = Bβ. (6)

Consider,

d(Bβ, β) = lim
n→∞

d(Aβ,A2n−1µ0)

≤ κ lim
n→∞

d(A2n−2µ0,Bβ)

= κd(β,Bβ)

This implies (1− κ)d(β,Bβ) ≤ 0. Therefore, d(β,Bβ) = 0.
Thus β = Bβ.
From (6), we get Aβ = Bβ = β. Hence β is a common fixed point of A and B.
Concerning uniqueness, let β1 and β2 be two common fixed points of A and B.
Consider,

d(β1, β2) = lim
n→∞

d(A2n−1µ0,Aβ2)

≤ κ lim
n→∞

d(A2n−2µ0,Bβ2)

= κd(β1,Bβ2)

= κd(β1, β2)

This implies (1− κ)d(β1, β2) ≤ 0.
Since 0 < κ < 1, therefore β1 = β2.
This finalizes the proof.

Theorem 2. Let d be a bounded symmetric (semi-metric) having property W and (U , d) is S-
complete (d-Cauchy complete). Presume that P and Q are closed sets and contained in U . Suppose
A,B : P ∪Q→ P ∪Q are cyclic mappings such that range of A contained in the range of B and
BU is closed, BU ⊆ U where A,B ⊆ U are non-empty and closed. Suppose for any µ, ν ∈ P,
n ∈ N and κ ∈ (0, 1) there exists

ω = ω(µ, ν, n) ∈ {d(Bµ,Bν), d(An−1µ,Bµ), d(An−1ν,Bν),
d(An−1µ,Bν) + d(An−1ν,Bµ)

2
}
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such that d(Bnµ,Bν) ≤ κω for n ∈ N and ν ∈ P. Then, A and B have a point of coincidence in
P ∩Q. In addition, weakly compatibility of mappings A and B will give exactly one common fixed
point in P ∩Q.

Proof. Let µ0 ∈ P be an arbitrary point. Since AU ⊆ BU , we may define γ0 ∈ U such that
Aµ0 = Bγ0 and µ1 = Bγ0 where µ1 ∈ U . Hence we can outline the sequence {µn} and
{γn} in U by

Aµn = Bγn,Bγn = µn+1 (7)

for n ∈ N∪ {0}. Then {µ2n} ∈ P and {µ2n+1} ∈ Q for any n ∈ N∪ {0}.
Here,

Anµ0 = An−1Bγ0 = An−1µ1 = · · · = Aµn.

Consider

d(µ2, µ1) = d(Bγ1,Bγ0)

= d(Aµ1,Aµ0)

≤ κω

where

ω ∈ {d(Bµ1,Bµ0), d(A0µ1,Bµ1), d(A0µ0,Bµ0),
d(A0µ1,Bµ0) + d(A0µ0,Bµ1)

2
}

= {d(µ1, µ0), d(µ1, µ1), d(µ0, µ0),
d(µ1, µ0) + d(µ0, µ1)

2
}

= {d(µ1, µ0), 0}

Therefore,
d(µ2, µ1) ≤ κd(µ1, µ0).

Similarly,

d(µ3, µ2) = d(Bγ2,Bγ1)

= d(Aµ2,Aµ1)

≤ κω,

where

ω ∈ {d(Bµ2,Bµ1), d(A0µ2,Bµ2), d(A0µ1,Bµ1),
d(A0µ2,Bµ1) + d(A0µ1,Bµ2)

2
}

= {d(µ2, µ1), d(µ2, µ2), d(µ1, µ1), d(µ2, µ1)}
= {d(µ2, µ1), 0}

thus

d(µ3, µ2) ≤ κd(µ2, µ1)

≤ κ2d(µ1, µ0)

hence ∀ n ∈ N, by using induction, we get

d(µn+1, µn) ≤ κnd(µ1, µ0).

Since κ ∈ (0, 1) therefore κn → 0 as n→ ∞ and hence limn→∞ d(µn+1, µn) = 0.
By W, we have limn→∞ d(µn, µn+p) = 0, therefore {µn} is a d-Cauchy sequence in

the S-complete symmetric space U . Then, there exists subsequences {B2nγ0} ∈ P and
{B2n−1γ0} ∈ Q such that both converge to some β in U . Since P and Q are closed in U ,
therefore β ∈ P ∩Q.
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Since BU is closed, there is ν ∈ U such that

Bν = β. (8)

From the above argument, property W and Equation (8), there exists sequences
{A2n−1µ0} in P and {A2n−2µ0} in Q such that both converge to β.

Consider

d(Aν, β) = d(B2ν,Bν)

≤ κd(Bν,B0ν)

= κd(ν, ν) = 0,

i.e, d(Aν,Bν) = 0 implies that
Aν = Bν. (9)

Thus from (8) and (9), we get Aν = Bν = β. Thus ν is a point of coincidence for A
and B.

From the weak compatibility, we get

Aβ = Bβ. (10)

Consider

d(Aβ, β) = d(B2β,Bβ)

≤ κd(Bβ, β)

= κd(Aβ, β).

This implies (1− κ)d(Aβ, β) ≤ 0.
Therefore, d(Aβ, β) = 0 since (1− κ) ≥ 0.
Thus

β = Aβ. (11)

From (10) and (11), Aβ = Bβ = β.
Concerning uniqueness, let β1 and β2 be two common fixed points of A and B.
Consider,

d(β1, β2) = d(Aβ1,Aβ2)

= d(B2β1,Bβ2)

≤ κd(Bβ1, β2)

= κd(β1, β2).

This implies (1− κ)d(β1, β2) ≤ 0.
Since 0 < κ < 1, therefore β1 = β2.
This finalizes the proof.

Now, before defining the modified Hardy–Rogers cyclic contraction, we recall the
property MT.

(MT) there exists s ≥ 1 such that for any µ, ν, ξ ∈ U , d(µ, ξ) ≤ s(d(µ, ν) + d(ν, ξ)).

Definition 7. Let (U , d) be a S-complete symmetric space having property MT and let P and Q
be non-empty closed subsets of U . A cyclic map A : P ∪ Q → P ∪ Q is forenamed as modified
Hardy–Rogers cyclic contraction if we have d(Aµ,Aν) ≤ αd(µ, ν) + βd(µ,Aν) + κd(ν,Aµ) +

δd(ν,Aν) + η
d(ν,Aν)[1+d(µ,Aµ)]

1+d(µ,ν) + λ
d(ν,Aν)+d(ν,Aµ)

1+d(ν,Aν)d(ν,Aµ)
+ ρ

d(µ,Aµ)[1+d(ν,Aµ)]
1+d(µ,ν)+d(ν,Aν)

, ∀ µ, ν ∈ U where

α, β, κ, δ, η, λ, ρ ≥ 0 with sα + (s2 + s)β + 2s2κ + δ + η + λ + sρ < 1 and s ≥ 1.
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Theorem 3. Let d be a bounded symmetric (semi-metric) having properties W3, W, MT and (U , d)
is S-complete (d-Cauchy complete). Presume that P and Q be non-empty closed sets and contained
in U . Suppose A : P ∪Q→ P ∪Q is a d-continuous modified Hardy–Rogers cyclic contraction.
Then A has exactly one fixed point in P ∩Q.

Proof. Let µ be an arbitrary point in U . Outline a sequence {µn} as µn+1 = Aµn ∀ n ∈ N.

d(Aµ,A2µ) = d(Aµ,A(Aµ))

≤ αd(µ,Aµ) + βd(µ,A2µ) + κd(Aµ,Aµ) + δd(Aµ,A2µ)

+η
d(Aµ,A2µ[1 + d(µ,Aµ)])

1 + d(µ,Aµ)
+ λ

d(Aµ,A2µ) + d(Aµ,Aµ)

1 + d(Aµ,A2µ)d(Aµ,Aµ)

+ρ
d(µ,Aµ)[1 + d(Aµ,Aµ)]

1 + d(µ,Aµ) + d(Aµ,A2µ)

= αd(µ,Aµ) + sβ[d(µ,Aµ) + d(Aµ,A2µ)] + 2sκd(µ,Aµ)

+δd(Aµ,A2µ) + ηd(Aµ,A2µ) + λd(Aµ,A2µ) + ρd(µ,Aµ),

which implies

(1− sβ− δ− η − λ)d(Aµ,A2µ) ≤ (α + sβ + 2sκ + ρ)d(µ,Aµ).

Clearly,
d(Aµ,A2µ) ≤ kd(µ,Aµ).

where k = α+sβ+2sκ+ρ
1−sβ−δ−η−λ < 1.

Similarly,

d(A2µ,A3µ) ≤ kd(Aµ,A2µ)

≤ k2d(µ,Aµ).

In general, we get
d(Anµ,An+1µ) ≤ knd(µ,Aµ).

Since k ∈ (0, 1) therefore kn → 0 as n→ ∞ and hence limn→∞ d(Anµ,An+1µ) = 0 .
By W, we have limn→∞ d(Anµ,An+pµ) = 0 for n ∈ N and p ≥ 1, therefore {Anµ}

is a d-Cauchy sequence in the S-complete symmetric space U . Since (U , d) is S-complete,
therefore there exist ξ ∈ U with limn→∞ d(Anµ, ξ) = 0. Then, there exists subsequences
{A2nµ} ∈ P and {A2n−1µ} ∈ Q such that both converge to ξ in U . Since P and Q are
closed in U , therefore ξ ∈ P ∩Q. This gives P ∩Q 6= φ.

Now, we will show that Aξ = ξ.
Since A is d-continuous therefore limn→∞ d(An+1µ,Aξ) = 0. Now we get that

d(Aξ, ξ) = 0 because (U , d) satisfies W3.
Thus Aξ = ξ. Hence ξ is a fixed point of A.
Finally, to attain the uniqueness of the fixed point, let ξ1 and ξ2 be two fixed points

of A.
Then we have

d(ξ1, ξ2) = d(Aξ1,Aξ2)

≤ αd(ξ1, ξ2) + βd(ξ1,Aξ2) + κd(ξ2,Aξ1) + δd(ξ2,Aξ2)

+η
d(ξ2,Aξ2)[1 + d(ξ1,Aξ1)])

1 + d(ξ1,Aξ2)
+ λ

d(ξ2,Aξ2) + d(ξ2,Aξ1)

1 + d(ξ2,Aξ2)d(ξ2,Aξ1)

+ρ
d(ξ1,Aξ1)[1 + d(ξ2,Aξ1)]

1 + d(ξ1, ξ2) + d(ξ2,Aξ2)

= (α + β + κ)d(ξ1, ξ2) + λd(ξ2, ξ1)
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which implies
d(ξ1, ξ2) ≤ (α + β + κ + λ)d(ξ1, ξ2),

and this implies
d(ξ1, ξ2)(1− (α + β + κ + λ)) ≤ 0.

Thus d(ξ1, ξ2) = 0, hence ξ1 = ξ2.
This finalizes the proof.

Definition 8. Let (U , d) be a S-complete symmetric space having property MT and let P and Q be
non-empty closed subsets of U . A cyclic map A : P ∪Q→ P ∪Q is forenamed as Hardy–Rogers
cyclic orbital contraction if there is µ ∈ P and θ ∈ (0, 1

1+3s+3s2 ) such that for any ν ∈ U and
n ∈ N it holds

d(A2nµ,Aν) ≤ θ[d(A2n−1µ,A2nµ) + d(ν,Aν) + d(A2n−1µ, Aν) + d(ν,A2nµ) + d(A2n−1µ, ν)].

Theorem 4. Let (U , d) be a S-complete symmetric space having property W, W3, MT, P and
Q be closed non-empty sets contained in U . Suppose A : P ∪ Q → P ∪ Q is a d-continuous
Hardy–Rogers cyclic orbital contraction. Then, A has exactly one fixed point ξ in P ∩Q.

Proof. Let µ be an arbitrary point in P. SinceA is a Hardy–Rogers cyclic orbital contraction,

d(A2µ,Aµ) ≤ θ[d(Aµ,A2µ) + d(µ,Aµ) + d(Aµ,Aµ) + d(µ,A2µ) + d(Aµ, µ)]

≤ θ[d(Aµ,A2µ) + d(µ,Aµ) + s(d(Aµ, µ) + d(µ,Aµ))

+s(d(µ,Aµ) + d(Aµ,A2µ)) + d(Aµ, µ)]

= [θ + (2s + s)θ + θ]d(µ,Aµ) + (θ + sθ)d(Aµ,A2µ)

which implies

d(A2µ,Aµ) ≤ θ(2 + 3s)
1− θ(1 + s)

d(µ,Aµ).

Similarly,

d(A3µ,A2µ) ≤ θ[d(A2µ,A3µ) + d(Aµ,A2µ) + d(A2µ,A2µ) + d(Aµ,A3µ) + d(A2µ,Aµ)]

≤ θd(A2µ,A3µ) + θd(A2µ,Aµ) + θ[s(d(A2µ,Aµ) + d(Aµ,A2µ)]

+θs[d(Aµ,A2µ) + d(A2µ,A3µ)] + θd(A2µ,Aµ)

= (θ + 2sθ + θs + θ)d(A2µ,Aµ) + (θ + sθ)d(A3µ,A2µ)

which gives

d(A3µ,A2µ) ≤ θ(2 + 3s)
1− θ(1 + s)

d(A2µ,Aµ)

That is,

d(A3µ,A2µ) ≤ kd(A2µ,Aµ)

≤ k2d(Aµ, µ)

where k = θ(2+3s)
1−θ(1+s) .

By continuing the same process, we get

d(An+1µ,Anµ) ≤ knd(Aµ, µ).

Since k ∈ (0, 1) therefore kn → 0 as n→ ∞ and hence limn→∞ d(An+1µ,Anµ) = 0 .
By W, we have limn→∞ d(Anµ,An+pµ) = 0 for n ∈ N, and p ≥ 1, therefore {Anµ}

is a d-Cauchy sequence in the S-complete symmetric space U . Since (U , d) is S-complete,
therefore sequence {Anµ} converges to some ξ ∈ U i.e., limn→∞ d(Anµ, ξ) = 0. Then,
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there exist subsequences {A2nµ} ∈ P and {A2n−1µ} ∈ Q such that both converge to ξ in
U . Since P and Q are closed in U , therefore ξ ∈ P ∩Q. This gives P ∩Q 6= φ.

Now, we will prove that Aξ = ξ.
Since A is d-continuous therefore limn→∞ d(An+1µ,Aξ) = 0. Now we get that

d(Aξ, ξ) = 0 because (U , d) satisfies W3.
Thus Aξ = ξ. Hence ξ is a fixed point of A.
Finally, to attain the uniqueness of the fixed point, let ξ1 and ξ2 be two fixed points

of A.
Then we have

d(ξ1, ξ2) = d(Aξ1,Aξ2)

≤ αd(ξ1, ξ2) + βd(ξ1,Aξ2) + κd(ξ2,Aξ1) + δd(ξ2,Aξ2)

+η
d(ξ2,Aξ2)[1 + d(ξ1,Aξ1)])

1 + d(ξ1,Aξ2)
+ λ

d(ξ2,Aξ2) + d(ξ2,Aξ1)

1 + d(ξ2,Aξ2)d(ξ2,Aξ1)

+µ
d(ξ1,Aξ1)[1 + d(ξ2,Aξ1)]

1 + d(ξ1, ξ2) + d(ξ2,Aξ2)

= (α + β + κ)d(ξ1, ξ2) + λd(ξ2, ξ1)

which implies
d(ξ1, ξ2) ≤ (α + β + κ + λ)d(ξ1, ξ2),

and this implies
d(ξ1, ξ2)(1− (α + β + κ + λ)) ≤ 0.

Thus d(ξ1, ξ2) = 0, hence ξ1 = ξ2.
This finalizes the proof.

4. Applications
Fixed Point Result in PPM-Spaces

We now take into consideration the applications to probabilistic spaces. The definitions
mentioned below appeared in Hicks and Rhoades [10].

A real valued function f defined on the set of real numbers is a distribution function
if it is non-decreasing, left continuous with inf f = 0 and sup f = 1. H denotes the
distribution function defined by H(t) = 0 for t ≤ 0, and H(t) = 1 for t > 0.

Definition 9. Let U be a non-empty set and F a function on U × U such that F(µ, ν) = Fµ,ν is a
distribution function. Consider the following conditions:

(i) Fµ,ν(0) = 0 for all µ, ν in U ;
(ii) Fµ,ν = H if and only if µ = ν;
(iii) Fµ,ν = Fν,µ;
(iv) If Fµ,ν(ε) = 1 and Fν,ξ(δ) = 1, then Fµ,ξ(ε + δ) = 1.

An F satisfying (i) and (ii) is called a pre-probabilistic metric structure (PPM-structure)
on U and the pair (U , F) is called a PPM-space. An F satisfying (iii) is forenamed as symmetric.
A symmetric PPM-structure F satisfying (iv) is a probabilistic metric structure (PM-structure)
and the pair (U , F) is a probabilistic metric space(PM-space).

Let (U , F) be a PPM-space. For ε, λ > 0, and µ ∈ U , let

Nµ(ε, λ) = {ν ∈ U : Fµ,ν(ε) > 1− λ}.

A topology t(F) on U is defined as follows: G ∈ t(F) if for every µ in G, there is an ε > 0
such that Nµ(ε, ε) ⊂ G. Nµ(ε, ε) may not be a t(F) neighbourhood of µ. If it is , then t(F) is said
to be topological.

Let (U , F) be a symmetric PPM-space. A sequence {µn} is a fundamental sequence if
limn,m→∞ Fµn ,µm(t) = 1 ∀ t > 0. If for every fundamental sequence {µn}, there is an element
µ ∈ U such that limn,m→∞ Fµn ,µ(t) = 1 ∀ t > 0, then the space is complete.
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Let (U , F) be a symmetric PPM-space. Set

d(µ, ν) =

{
0, if y ∈ Nµ(ε, ε) for all ε > 0
sup{ε : y /∈ Nµ(ε, ε), ε > 0}, otherwise.

(12)

Here d is a bounded symmetric for U .
Now, we state a lemma proven by Hicks and Rhoades [10].

Lemma 1. Let (U , F) be a symmetric PPM-space. Define d as in Equation (12). Then

(1) d(µ, ν) < t if and only if Fµ,ν(t) > 1− t;
(2) d is a compatible symmetric space for t(F);
(3) Fµn ,µ(t)→ 1 for all t > 0 if and only if d(µn, µ)→ 0;
(4) (U , F) is complete if and only if (U , d) is S-complete;
(5) t(F) is topological if and only if d is a semi-metric.

In the above lemma, it was shown that Fµn ,µ(t) → 1 ∀ t > 0 iff d(µn, µ) → 0. Thus,
the conditions W, W3 outlined earlier are equivalent to the under-mentioned conditions
respectively:

(PW) Fµn ,νn(t)→ 1 and Fνn ,ξn(t)→ 1 for all t > 0 imply Fµn ,ξn(t)→ 1
(PW3) Fµn ,µ(t)→ 1 and Fµn ,ν(t)→ 1 for all t > 0 imply µ = ν.

Theorem 5. Let (U , F) be a complete symmetric PPM-space that satisfies the properties (PW), (PW3)
and let P and Q be non-empty closed subsets of U . Suppose A, B : P ∪ Q → P ∪ Q are cyclic
mappings such that AU ⊆ BU and for κ ∈ (0, 1),

FA2n−1µ,Bν(t) > 1− t =⇒ FA2nµ,Aν(κt) > 1− κt (13)

∀ µ, ν ∈ U, n ∈ N, t > 0 and BU is closed, BU ⊆ U . Then, A and B have a point of coincidence
in P ∩Q. Additionally, weakly compatibility of mappings A and B will give exactly one common
fixed point in P ∩Q.

Proof. Let d be as defined in Lemma 1. Now d is a bounded compatible symmetric for t(F).
Lemma 1 also gives (U , d) is S-complete and d(µ, ν) < t if Fµ,ν(t) > 1− t. Presume that A
and B are such that Equation (13) holds. Let ε > 0 be given, and set t = d(A2n−1µ, Bν) + ε.
Then t = d(A2n−1µ, Bν) < t gives FA2n−1µ,Bν(t) > 1− t and (13) yields FA2nµ,Aν(κt) >

1− κt. Hence d(A2nµ, Aν) < κt = κd(A2n−1µ, Bν) + κε. Due to arbitrary ε, d(A2nµ, Aν) ≤
κd(A2n−1µ, Bν). We noted above that the fact that F satisfies (PW) and (PW3) is equivalent
to the fact that d satisfies (W) and (W3). We now put on Theorem 1. Hence the result
holds.
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