
symmetryS S

Article

A Multi-Start Algorithm for Solving the Capacitated Vehicle
Routing Problem with Two-Dimensional Loading Constraints

Leandro Pinto Fava 1 , João Carlos Furtado 1,* , Gilson Augusto Helfer 2 , Jorge Luis Victória Barbosa 2 ,
Marko Beko 3,4 , Sérgio Duarte Correia 4,5 and Valderi Reis Quietinho Leithardt 4,5

����������
�������

Citation: Fava, L.P.; Furtado, J.C.;

Helfer, G.A.; Barbosa, J.L.V.; Beko, M.;

Correia, S.D.; Leithardt, V.R.Q.

A Multi-Start Algorithm for Solving

the Capacitated Vehicle Routing

Problem with Two-Dimensional

Loading Constraints. Symmetry 2021,

13, 1697. https://doi.org/10.3390/

sym13091697

Academic Editor:

José Carlos R. Alcantud

Received: 21 August 2021

Accepted: 10 September 2021

Published: 14 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Industrial Systems and Processes Graduate Program, University of Santa Cruz do Sul,
Av. Independencia 2293, Santa Cruz do Sul 96815-900, RS, Brazil; leandro@unisc.br

2 Applied Computing Graduate Program, University of Vale do Rio dos Sinos, Av. Unisinos 950,
São Leopoldo 93022-750, RS, Brazil; ghelfer@unisc.br (G.A.H.); jbarbosa@unisinos.br (J.L.V.B.)

3 Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
marko.beko@tecnico.ulisboa.pt

4 COPELABS, University Lusófona—ULHT, 1749-024 Lisbon, Portugal; scorreia@ipportalegre.pt (S.D.C.);
valderi@ipportalegre.pt (V.R.Q.L.)

5 VALORIZA—Research Centre for Endogenous Resource Valorization, Polytechnic Institute of Portalegre,
7300-555 Portalegre, Portugal

* Correspondence: jcarlosf@unisc.br; Tel.: +55-51-98441-4343

Abstract: This work presents a multistart algorithm for solving the capacitated vehicle routing prob-
lem with 2D loading constraints (2L-CVRP) allowing for the rotation of goods. Research dedicated
to graph theory and symmetry considered the vehicle routing problem as a classical application.
This problem has complex aspects that stimulate the use of advanced algorithms and symmetry
in graphs. The use of graph modeling of the 2L-CVRP problem by undirected graph allowed the
high performance of the algorithm. The developed algorithm is based on metaheuristics, such as
the Constructive Genetic Algorithm (CGA) to construct promising initial solutions; a Tabu Search
(TS) to improve the initial solutions on the routing problem, and a Large Neighborhood Search (LNS)
for the loading subproblem. Although each one of these algorithms allowed to solve parts of the
2L-CVRP, the combination of these three algorithms to solve this problem was unprecedented in
the scientific literature. In our approach, a parallel mechanism for checking the loading feasibility
of routes was implemented using multithreading programming to improve the performance. Ad-
ditionally, memory structures such as hash-tables were implemented to save time by storing and
querying previously evaluated results for the loading feasibility of routes. For benchmarks, tests
were done on well-known instances available in the literature. The results proved that the framework
matched or outperformed most of the previous approaches. As the main contribution, this work
brings higher quality solutions for large-size instances of the pure CVRP. This paper involves themes
related to the symmetry journal, mainly complex algorithms, graphs, search strategies, complexity,
graph modeling, and genetic algorithms. In addition, the paper especially focuses on topic-related
aspects of special interest to the community involved in symmetry studies, such as graph algorithms
and graph theory.

Keywords: routing; 2L-CVRP; loading; multithreading; rotation; tabu search; graph theory

1. Introduction

The vehicle routing problem (VRP) is a class of computational optimization problem
that involves designing delivery routes and lower logistic cost collection to satisfy the
demands of a set of customers or a group of geographically dispersed cities [1,2]. The VRP
generalizes the traveling salesman problem (TSP) [3]. Although the TSP is an old problem
whose origin is not well known, many studies on it are still carried out, as is the case
with [4]. The VRP is addressed in studies dedicated to graph theory and algorithms [5]
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and, especially, several research works related to different problems involving vehicles and
routes were published considering symmetry aspects [6–10]. As global trade expanded and
led to a significant growth in the demand for transport, the resolution of VRPs, introduced
by Dantzig and Ramser [11], became increasingly essential for enterprises looking to
efficiently manage their transport and coordinate their supply chain. The purpose of
addressing this problem is to minimize transport costs, typically by reducing the total
distance driven and the number of vehicles used.

The VRP was studied for years and, due to computational advances, several con-
straints were added to the problem. For example, when the weight of the cargo is con-
sidered because of the capacity of each vehicle in a fleet, we have a variant of the VRP
called the capacitated vehicle routing problem (CVRP). In another example, Vidal et al. in
2013 presented a hybrid genetic search with advanced diversity control for a large class of
time-constrained VRP [12].

Another combinatorial problem that was addressed for a long time is the 2D bin pack-
ing problem (2BPP). In 2BPP, we need to allocate without overlapping several rectangular
items into a minimum number of rectangular bins, and the edges of the items must be
parallel to the bins [13].

The 2BPP and CVRP are considered when the customer demands a set of items that are
represented by 2D, rectangular forms. In this case, we have the 2L-CVRP. Also, solving the
BPPs was crucial to improving the logistics of moving, storing, and transporting products.
For this reason, the purpose of addressing CVRP and BPP is to minimize logistics costs by
maximizing the area or the volume of items packed within a transport vehicle.

The problem introduced in this study belongs to this class of integrated vehicle
routing and loading problems. This study examines logistics activities with the following
key characteristics: vehicles with a limited capacity based on a depot point that serves
geographically dispersed customers who demand a heterogeneous product. The products
transported are 2D items that are considered nonstackable. Thus, effective 2D arrangements
for loading the transported items into vehicles must be identified.

This paper presents a metaheuristic approach for solving the CVRP with 2D loading
constraints (2L-CVRP). The use of graph modeling of the 2L-CVRP problem by undirected
graph allowed the high performance of the algorithm. The proposal considers a com-
bination of three techniques. For the CVRP we used a Constructive Genetic Algorithm
(CGA) approach, which is a successful technique for solving related problems. We applied
a Tabu Search (TS) approach to improve effectiveness. For the 2BPP, we used a Large
Neighborhood Search (LNS)-based algorithm to determine the 2D loading feasibility when
the rotation of goods is permitted.

Neither the CVRP nor the 2L-CVRP was previously studied with a CGA approach,
although they were reviewed with a TS or with another genetic algorithm approach.
The main premise of this work is that it is both possible and advantageous to employ new
optimization methods to model and solve the VRP and the 2BPP.

The contributions of this paper may be summarized as follows: (a) the construction
of a new metaheuristic CGA improved by the TS for the routing problem in conjunction
with the LNS for the 2D packing problem which allows for rotation; (b) as far as we know,
there are only four previous works that considered allowing for the rotation of items in
the 2L-CVRP. This paper can contribute significant results by (c) exploring the parallelism
when processing the vehicle loading phase by using multithreading in a multicore system,
and also through (d) collecting the best results in the literature.

This work approaches several themes of interest for symmetry journal, such as com-
plex algorithms, graphs, search strategies, complexity, graph modeling, and genetic algo-
rithms; especially, this work explores graph algorithms and graph theory by applying these
themes in the vehicle routing problem.

The paper is organized as follows. Section 2 introduces a literature review about the
VRP, focusing mainly on the CVRP and the 2L-CVRP. Section 3 describes the problems
and introduces the necessary notation. Section 4 presents our proposed framework: the
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CGA-TS approach for the CVRP, and the LNS for the 2L-CVRP. Section 5 presents the
results of the testing and a comparison with other approaches found in the literature, as
well as a statistical validation for the comparison. Finally, Section 6 shows conclusions
based on the study and suggestions for future works.

2. Literature Review

In the field of the VRP, we can find a combination of the CVRP with 2D loading
constraints, which is denoted as the 2L-CVRP. The first work on the 2L-CVRP was presented
by Iori et al. [14]. They proposed an exact method based on the branch-and-cut algorithm
to minimize the routing costs, and a nested branch-and-bound algorithm to solve the
2D sequential oriented loading subproblem (2|SO|L). Later, Gendreau et al. presented
an approach using a metaheuristic to solve the 2L-CVRP [15]. They proposed a solution
based on the tabu search algorithm. They applied heuristics, lower bounds, and a branch-
and-bound algorithm for the loading feasibility checks, considering both sequential- and
unrestricted-oriented loading, 2|SO|L and 2|UO|L, respectively.

Fuellerer et al. [16] developed a metaheuristic approach based on ant colony optimiza-
tion to solve the routing problem combined with heuristics for the loading subproblem.
For the first time, the results allowed for the rotation of goods by 90° (nonoriented) when
considering the 2L-CVRP. Thus, two new variants of loading constraints were studied
considering the nonoriented version with sequential and unrestricted loading, 2|SR|L and
2|UR|L, respectively. Zachariadis et al. [17] proposed a metaheuristic algorithm based on
the combination of the tabu search with a guided local search and a collection of packing
heuristics for the loading subproblem. Strodl et al. [18] developed a solution for the routing
problem using a variable neighborhood search and an exact branch-and-bound algorithm
for the loading. A simulated annealing algorithm with a collection of packing heuristics
to solve the 2L-CVRP was presented by Leung et al. in 2010 [19]. Later, Leung et al. [20]
in 2011 also proposed an approach based on the tabu search combined with an extended
guided local search and a collection of packing heuristics. Duhamel et al. [21] presented
a study with greedy randomized adaptive search and evolutionary local search algo-
rithms. Zachariadis et al. [22] presented a work with an algorithm referred to as Promise
Routing-Memory Packing (PRMP) to solve 2|UO|L and 2|SO|L versions of the 2L-CVRP.
Dominguez et al. [23] published a paper with a multistart biased randomized algorithm
(MS-BR) to solve the 2L-CVRP with two unrestricted loading configurations (2|UO|L and
2|UR|L). This was the second paper proposed in the literature to solve the 2D loading
constraint allowing for the rotation of items. Wei et al. proposed a variable neighborhood
search algorithm combined with a skyline heuristic to solve 2|UO|L and 2|SO|L versions
of the 2L-CVRP [24]. Recently, Wei et al. [25] proposed a simulated annealing algorithm
with an open space based heuristic to check the loading feasibility, which outperformed
all the previous approaches on 2|SO|L, 2|UO|L, 2|SR|L, and 2|UR|L. Related to the
previous 2L-CVRP work cited, the open space based heuristic for the 2D strip packing
problem was presented also by Wei et al. [26].

Many other constraints related to the real-world problems of the logistics industry
were studied with the 2L-CVRP. Zachariadis et al. [27] proposed an algorithm based on an
extended version of their previous approach [22] to solve the 2L-CVRP with simultaneous
pickups and deliveries. They also considered the results for the 2|UR|L version and
obtained good results. In this paper, their algorithm is referred to as the xPRMP. Pinto et al.
presented a study using variable neighborhood search algorithms to solve the 2L-CVRP
with mixed linehauls and backhauls [28].

The CVRP with 3D loading constraints (3L-CVRP) is a related problem that was
studied extensively in recent years. The 3L-CVRP was studied by many authors who
proposed metaheuristics like a tabu search [29], a guided tabu search [30], the ant colony
algorithm [31], and a GRASPxELS [32]. Bortfeldt [33] presented a hybrid algorithm for
the 3L-CVRP. Koch, Bortfeldt, and Wäscher [34] presented a hybrid algorithm to solve the
3L-CVRP with backhauls and time windows. Recently, Bortfeldt and Yi [35] proposed a
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hybrid algorithm to solve the split delivery VRP (SDVRP) with the 3L-CVRP. We can cite
some surveys on this subject area from Iori and Martello [36] and from Polaris et al. [37].

Finally, we can cite some other TSP- and VRP-related studies, such as the orienteering
problem presented for the first time in [38,39], who proposed a memetic approach to solve
it. The green vehicle routing problem (GVRP) is an emerging research field, and a recent
systematic literature review on this field can be seen in [40].

3. Problem Description

Zachariadis et al. [17] describe the 2L-CVRP as follows. Let G = (V, E) be an undi-
rected graph, where V = {0, . . . , n} is the vertices set, in which vertex 0 represents the single
depot and the other n vertices correspond to the customers, and E = {(i0, j0), . . . , (in, jn) :
i, j ∈ V, i 6= j } is the set of edges. Each edge (i, j) ∈ E has an associated cost cij that
corresponds to the cost for the transport from i to j.

There are v identical vehicles, each with a weight capacity equal to Q and a rectangular
loading surface of width W and length L (related (x, y) coordinates). Let A = W× L denote
the loading area. The demand of customer i (i = 1, . . . , n) consists a set of mi items, denoted
as ITi, of total weight qi: item Iik ∈ ITi (k = 1, . . . , mi) has width wik and length lik. Let
ai = ∑mi

k=1 wiklik denotes the total area of the items demanded by customer i.
The objective of the 2L-CVRP is to determine the minimum cost set of routes that

satisfy the following constraints: (a) the quantity of generated routes does not exceed the
number of available vehicles; (b) all routes must start and end at the central depot; (c) each
customer i can be visited only once; (d) each customer i must be served by only one vehicle;
(e) the total weight of items demanded for a route does not exceed Q, and (f) all loading
must be nonstackable by the set of customers covered by a route into the WL loading
surface of the vehicles.

Usually, a practical constraint can be imposed, considering the convenience of unload-
ing: each time a customer i is visited, all items Iik must be unloaded so that no items of
other customers are moved, when k represents the items of a particular customer. This
version is called sequential loading (also referred to as LIFO), and it can be denoted as
2|SO|L when the rotation of items is not allowed. Figure 1 depicts an example of the
2|SO|L 2L-CVRP. The version of loading without the LIFO constraint is called unrestricted.
According to Fuellerer et al. [16], four combinations can be listed as follows: 2|UO|L:
unrestricted, oriented loading; 2|UR|L: unrestricted, rotation allowed loading; 2|SO|L:
sequential, oriented loading; and 2|SR|L: sequential, rotation allowed loading.

Figure 1. Example of 2|SO|L 2L-CVRP.

The following describes the employed solution approach to solve the 2|UR|L 2L-
CVRP. Firstly, the routing component is determined in a multistart approach. It consists of
a constructive procedure to generate an initial solution. It then continues to search to find a
trajectory in the search space that is the core of the optimization method to produce a final
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solution. This master routing algorithm utilizes a loading feasibility method that generates
feasible loading patterns.

4. The Multistart CGA-TS-LNS Algorithm

The proposed algorithm to solve the 2|UR|L version of the 2L-CVRP in this work
makes use of the combination of heuristics derived from the genetic algorithm (GA) [41],
the tabu search (TS) [42], and the Large Neighborhood Search (LNS) [43].

The CGA-TS-LNS algorithm was developed with a multistart approach, wherein each
global iteration a new initial solution is generated from a small sequence of iterations of the
CGA-based subalgorithm Immediately after the initial solution, the TS-based subalgorithm
is used intensively to improve the solutions for the CVRP. The last phase of each global
iteration, the constraints for the loading subproblem, are evaluated by applying the LNS
heuristic-based subalgorithm for packing the items in the routes of the best solution found
by the TS. At the end of each loop, the algorithm records the feasible and unfeasible
routes in terms of loading in two hashtables, respectively. Thus, with these records it
avoids generating solutions with unfeasible routes found in previous loops. It also avoids
reprocessing routes already evaluated as feasible that are found again in the current
best solution. The three-step process is repeated until a time limit is reached or if no
feasible global solution is found. Figure 2 shows a macro flow of the proposed algorithm.
The details of each subalgorithm are explained in the Sections 4.2.2, 4.3 and 4.4.2.

Figure 2. Macro flow of CGA-TS-LNS algorithm.

4.1. The Algorithm Initialization

It is necessary to define parameters when beginning the execution of the algorithm.
Some of them are fixed with previously established values and others are calculated
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from the data of the tested instances, as detailed below. The parameters are linked to
the strategies and to the techniques used in the developed method. The improvement
strategies used in the routing phase and the initial parameters of the algorithm are detailed
in the following.

4.1.1. Improvement Strategies and their Parameters

To intensify and diversify the local search in the tabu search algorithm, two strate-
gies were employed to obtain better results to solve the routing problem. The first is a
list of better solutions, called elite solutions, which is built during the execution of the
algorithm [44,45].

The list of elite solutions serves to make random choices, with a certain degree of
probability. At certain times during the execution of the TS, one of the best solutions found
until that point becomes the current solution. In this way, the generation of new neighbors
is promoted through an elite solution. This intensifies the search in regions that can be
considered promising. Elite solutions can also be evaluated for loading feasibility in the
final stage of the algorithm, but only if the best solution found in the current global iteration
is not feasible. The size of the list of elite solutions is identified by the sizeEL parameter.

The second strategy for improving the routing problem deals with a dynamic variation
in the number of neighbors generated from the current solution. The numNeighbors variable
is calculated at the beginning of the algorithm’s execution, right after obtaining customer
data. Stochastically, during the iterations of the TS, this variable can have its value changed
within a range of values close to the value initially calculated. This strategy is pseudocoded
at line 15 of Algorithm 2 in Section 4.3.

A simple strategy to facilitate loading is applied during the routing phase. The first
global iteration of the algorithm considers 100% of the vehicle’s loading surface area.
After each global iteration, with a 50% probability, the vehicle area considered for loading
can be reduced by 0.05%; note that the minimum limit is 93%. The variable used to
control this restriction is called percAreaVehicle. This strategy, applied during the steps of
generating the initial solution and during the routing phase, tends to facilitate the feasibility
of loading in the last stage of each global iteration of the algorithm.

All percentages used in the strategies described above were chosen after an amount of
tests and observations, that is, the best results were found using these values.

4.1.2. Other Control Parameters

The maxGen parameter indicates the maximum number of generations, that is, the max-
imum iterations to be performed by the genetic algorithm to build the initial solution
(input data—Algorithm 1). The size of the tabu list is fixed and is identified as sizeTL.
The maxNoImproveCnt parameter signals the TS algorithm when it is time to try one
of the strategies (intensification/diversification) previously mentioned in Section 4.1.1.
The maxNoImproveCnt2End parameter establishes one of the exit conditions for the TS dur-
ing the routing phase, indicating the maximum number of consecutive iterations without
improvement to end the TS and start the next phase. MaxLNSTime, on the other hand,
indicates the maximum time, in seconds, for executing the LNS algorithm in the feasibility
assessment phase of loading the routes of the best solutions. Finally, maxGTime defines the
maximum time, in seconds, for the execution of the main algorithm in the search for the
best solution.

4.2. Solution Structures and the Initial Solution

The initial solution is generated from a variant of the genetic algorithm, called the
constructive genetic algorithm (CGA) proposed by [46]. Some researchers already used
genetic algorithms to generate an initial population of solutions, such as [47], who used the
GA and Push-Forward Insertion Heuristic (PFIH) [48] for this purpose. We decided to use
the CGA due to its constructive nature and because we did not find its use in the VRP in
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the literature. Before detailing the construction of the initial solution, Section 4.2.1 shows,
in detail, the structures used to represent and manipulate the solutions.

4.2.1. Solution Structures

A matrix structure allowed to represent and manipulate the solutions in the memory
during the execution of the algorithm. This matrix structure focused on the improvement
of performance, mainly in stage two of the algorithm where the tabu search is performed.
Figure 3 shows a sample of the solution matrix (S) for the instance 0902 from [15]. In this
instance, 8 vehicles are available, and their trips are represented in rows 1 to 8 of the
matrix S. The first column, identified by 0, represents the trip id in rows 1 to 8, and the
first row (row id = 0) is the row of the summarized data of the solution. In the first row
of S, there are 25 customers to be visited, as shown in column 1. Column 2 represents the
total cost of the solution. Column 3 shows that each vehicle has 48 unit of measurement
capacity, and column 4 shows that the surface area for loading is 800. As row 0 represents
the summarized data of the solution, columns 5 to cmax(cmax = 80) are marked as empty,
i.e., with value −1.

Figure 3. A sample of solution data matrix.

Considering this example, rows 1 to 8 have the trip data. These rows contain columns
1 to 4, which have the summarized data of each trip, representing the number of customers,
the trip cost, the total weight, and the total area, respectively. For the trips, the customers’
IDs are stored in columns 5 to cmax of the S matrix, and the order in which they are stored
represents the sequence of visits to the customers. Note, the depot is excluded, which is by
default the start- and end-point in this study.

4.2.2. Generating the Initial Solution Using Constructive Genetic Algorithm

The CGA is efficient in finding optimal or near-optimal solutions when employed in
a variety of problems. Some researchers already used CGA in their works and obtained
excellent results. Among them we can mention [49,50]. One of the main differences of the
CGA, when compared to that of a classical genetic algorithm, is its fitness process [46].

To construct the initial solution according to the 2L-CVRP definition, the CGA’s
principles must be employed. This clustering problem in graphs is stated as the search for
partitions on the vertex set V in a predefined number of clusters normally indicated by the
quantity of available vehicles. A general overview of the CGA framework is provided by
the pseudocode in the Algorithm 1.

The size of the initial population P0 is defined as parameter initPSize and currGen
counts the number of generations (line 1 and 2 of Algorithm 1). To define the P0 of
individuals, all the arcs (i, j) comprised by the set of edges have their associated costs ci,j,
and are sorted by the increasing value of cost ci,j to be electable as the new routes (one for
each available vehicle) (i.e., the initial edge of clusters that in some way attract the other
edges which participate in the representation). Figure 4 shows an example of the ranking
matrix of Euclidean distances between the customers.
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Algorithm 1 Constructive genetic algorithm (CGA)
Input: maxGen //maximum number of generations (max iterarions)
Output: initial solution
1: let currGen = 0; //initialize the current generation number
2: define initPSize;
3: Generate an initial population P0 with size initPSize;
4: Evaluate the population P0;
5: while currGen < maxGen do
6: Select P; //P is the population of routes
7: Recombination P;
8: Evaluate P;
9: Evaluate the loading feasibility of P in terms of weight and area;

10: let currGen = currGen +1;
11: end while
12: return the best feasible solution found;

Figure 4. Example of ranking of Euclidian distance between customers.

Using the ranking of distances, the closest customers are combined to form the initial
population P0 (line 3 of Algorithm 1) (Figure 5).

Figure 5. Initial population of CGA framework.

This initial population creates new generations through an iterative process of eval-
uation until convergence criteria are met to reach an optimal solution. For each p ∈ P0,



Symmetry 2021, 13, 1697 9 of 29

the fitness is calculated based on the distance between the customers. Equation (1) calcu-
lates the fitness (line 4 of Algorithm 1).

Fitness = ∑ distance in the route
number of customers

(1)

From that point, until the stop condition is reached and a valid solution is found,
the steps of selection, recombination (crossover operation), and evaluation are performed.
This ensures that other customers are selected successively to be inserted into the routes, re-
specting the genetic operators necessary to maintain the adaptation characteristics acquired
by previous generations.

The selections (line 6 of Algorithm 1) are performed according to the number of
vehicles, which establishes the number of routes. Figure 6 shows the selection process of
the CGA framework. Recombination is performed for each route, inserting the closest
customers outside of the route. Figure 7 shows the recombination process of the CGA
algorithm (line 7 of Algorithm 1). Then, the population is evaluated once again using the
fitness Equation (1) (line 8 of Algorithm 1).

Figure 6. Select population of CGA framework.

Figure 7. Recombine population of CGA algorithm.

Since the feasibility of a solution is determined mainly by the load constraints of the
problem, the proposed constructive algorithm checks the items of all the customers in each
route that can be loaded into the vehicle when considering loading constraints, such as
the maximum load surface and the maximum vehicle weight (line 9 of Algorithm 1). This
strategy managed to successfully construct feasible initial solutions for all of the CVRP
instances (Figure 8).
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Figure 8. Initial solution of CGA algorithm.

The stop condition is triggered at a predefined number of generations. The population
increases after the initial generations, continues growing until reaching an upper limit, and
decreases for higher values of the evolution parameter. The structure corresponding to the
best problem solution must be kept in the process.

Figure 9 depicts an example of the CGA framework steps, where the filled rectangle
represents the central depot (vertex 0), the empty circles correspond to the customers,
the arrows represent the routes (i, j), the dashed circles represent the vertices selected
for insertion, and the dotted arrows show possible insertion edges. The vehicle loading
constraint check is integrated into the insertion process.

Figure 9. Initial solution construction through CGA framework edge/vertex insertion process.

4.3. Tabu Search Algorithm for Routing Problem

The TS is a well-known metaheuristic that is widely used to solve combinatorial
analysis problems. The TS method stands out for being reasonably easy implement and
for producing very satisfactory results. Several researchers [15,17,33,51–54] successfully
used this technique, either alone or combined with another method to solve some variant
of the VRP.

According to Glover [42], the TS consists of a local search in the neighborhood of the
current solution that was generated from movements carried out from that solution. To es-
cape from local optima, some movements are considered prohibited. These movements
are recorded in the memory. The structure that stores these movements is a finite-sized list
called the tabu list. These movements are prohibited from being carried out until they cease
to exist in the list. This takes place as iterations occur and the list is updated. The process
is done iteratively; with each iteration, the best neighbor must be selected to become the
current solution and generate a new neighborhood. This is true even if that neighbor is
worse than the best solution found until that point. The process is repeated until a stop
condition is reached.
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In this work, the CGA and TS heuristics are applied to find better solutions to the
CVRP. Algorithm 2 shows TabuSearch method that starts right after the CGA builds an
initial solution for the CVRP. The initial solution becomes the first current solution of the
tabu search and the best local solution as well.

Algorithm 2 Tabu search algorithm for CVRP
Input: initialSolution
Output: bestSolution

1: //Global variables maxNoImproveCnt, maxNoImproveCnt2End, sizeTL, sizeEL
2: //numNeighbors, maxLNSTime, and maxGTime are set at the beginning of the algorithm
3: currSolution = initialSolution;
4: bestSolution = initialSolution;
5: noImproveCnt = 0;
6: noImproveCnt2End = 0;
7: numCandidates = numNeighbors;
8: maxTime = maxGTime – maxLNSTime;
9: Define arrays tabuList[sizeTL] and eliteList[sizeEL];

10: while noImproveCnt2End < maxNoImproveCnt2End and currTime < maxTime do
11: Put currSolution in tabuList[], considering FIFO method when tabuList[] is full;
12: if noImproveCnt >= maxNoImproveCnt then
13: noImproveCnt = 0;
14: With a probability of 40% set currSolution = bestSolution, or with a probability

of 30% set currSolution = one of the eliteList[] randomly or with a probability of 30%
stay the same;

15: With a probability of 25% set r = random number between -n and +n, where
n=(numNeighbors/2) and set numCandidates = numNeighbors + r or with a probability
of 75% stay the same;

16: end if
17: Select a neighborhood structure NS randomly;
18: Generate candidateList[numCandidates] from currSolution using NS;
19: //Each candidate in candidateList[] must be feasible in terms of area and weight
20: //For loading feasibility, hash tables irHT and frHT are checked
21: //Each candidate in candidateList[] must not be in the tabuList[]
22: currSolution = best candidate of candidateList[];
23: if cost(currSolution) < cost(bestSolution) then . function cost() gets the total

distance of all routes in a solution structure
24: bestSolution = currSolution;
25: noImproveCnt = 0;
26: noImproveCnt2End = 0;
27: else
28: Increase noImproveCnt and noImproveCnt2End by 1;
29: end if
30: if eliteList[] has empty entry or cost(currSolution) < worst cost(eliteList[]) then
31: Put currSolution into the eliteList[] at empty entry or replace the worst entry;
32: end if
33: end while

A tabu list (tabuList) and a list of elite solutions (eliteList) are initialized to their
predefined sizes at the beginning of the algorithm, as described in Section 4.1.1. The tabuList
keeps the last solutions found to temporarily prohibit them from becoming the current
solution. The eliteList stores the latest sizeEL best solutions found.

The eliteList has two purposes. The first is to provide, at certain times, the return of
one of the best solutions previously registered as the next current solution. This purpose
serves to intensify the search in promising regions of the search space [55]. The second
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purpose is for the best solutions found in the routing problem (CVRP) to be evaluated for
loading feasibility (2L-CVRP) in the next stage of the framework. This is only carried out if
the local best solution is not feasible.

A local search cycle is initiated until the stop condition is true. The main condition for
stopping the tabu search is when a maximum consecutive number of iterations without
improvement is achieved (noImproveCnt2End > maxNoImproveCnt2End). Another stop
condition is if the maximum global time minus the time for load evaluation is reached
(currTime > maxGTime˘−maxLNSTime).

At the beginning of each iteration, the current solution is placed on the tabu list.
As the tabu list has a predefined size (sizeTL), when it is filled, the new entries follow a
first in, first out method (FIFO). From the current solution, a neighborhood is generated
by following a pattern of neighborhood structures as detailed in Section 4.3.1. The size of
the neighborhood is initially defined by the numNeighbors variable. After the generation
of the neighborhood, a local search is carried out to find the best candidate solution to
become the next current solution. As already mentioned, in this choice, the neighborhood
solutions cannot be on the tabuList and must have feasible routes in terms of weight and
area. The best neighborhood solution is then selected and becomes the new current solution
for the next iteration, even if it is worse than the most recent current solution.

To speed up the loading evaluation process, two hash table structures (HT) are
used to store routes that were already evaluated in stage 3 of the algorithm by the LNS.
Toffolo et al. [56], Zachariadis et al. [27], Leung et al. [19] and Wei et al. [25] used similar
strategies. One structure registers the feasible routes ( f rHT) already evaluated and the
other registers the infeasible routes (irHT). During the selection of the best neighbor in
the tabu search, the HT structures are consulted to previously check the feasibility or
unfeasibility of the solutions found.

4.3.1. Neighborhood Structures

Like Wei et al. [25], we used four types of neighborhood structures in our study
as shown in Figure 10. When selecting one of the four types of structures, changes in
the current solution can be applied to a single route or a pair of routes. The selection
of the route or the pair of routes to apply the movements from a structure is random.
Section 4.3.2 provides more details on how structures are used to generate neighbors for
the current solution.

The first type of structure is customer relocation. In this type of movement, a customer
is relocated to another position within the same route or is relocated to another route
(Figure 10a). These movements are known as intra–shift and inter–shift, respectively, in
Wei et al. [26]. The second type is a customer exchange (Figure 10b), where there is an
exchange of positions between two customers on the same route or the exchange of two
customers between two different routes within the solution intra–swap and inter–swap
according to Wei et al. [26]). The third structure is a route interchange (Figure 10c). If applied
to only one route, two positions are randomly selected, and the customers between these
two positions are repositioned in reverse order (intra-2opt in Wei et al. [26]). If applied to a
pair of routes, where a customer on each route is randomly chosen, the initial portion of the
first route to the customer’s position is connected to the final portion of the second route
from the position of the other customer, and vice versa. The last structure is called block
exchange (Figure 10d), where there is an exchange of 2 route segments that can randomly
be 1 to 3 in size.

4.3.2. Generating Neighbors as Candidate Solutions for the Routing Problem

Each iteration of the tabu search calls for a procedure that generates new candidate
solutions from the current solution. One of the four structures mentioned in Section 4.3.1
is selected randomly with an equal probability to be applied to the current solution and
generate a candidate solution. The feasibility of each candidate solution is tested in terms
of the total weight and total area of the load, observing the strategy of the area of the
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vehicle considered for loading. This is controlled by the percAreaVehicle variable. Also, to
avoid wasting time, the routes of the solutions already analyzed regarding the feasibility of
loading by the LNS are consulted in the hash tables irHT and frHT. If an infeasible route is
generated and it is in the irHT, then it is discarded. On the other hand, if a feasible route
is generated and it is in the frHT, it is then kept; even if the area of its load exceeds the
maximum considered area for loading, this is controlled by the percAreaVehicle. The latter
conditional is applied when the parameter percAreaVehicle < 100%. Thus, the best candidate
is selected to be the next current solution and the procedure is carried out successively to
generate new neighbors in search of the best solution.

Figure 10. The neighborhood structures.

4.4. The Loading Procedure

For the loading subproblem, we developed the main procedure given by Algorithm 3
(EvalSolutionLoading). This procedure is responsible for carrying out assessments regarding
the feasibility of loading the best solution found by the tabu search in the routing stage,
as well as elite solutions, if necessary.

To verify the feasibility of loading each route of the evaluated solutions, the Eval-
SolutionLoading algorithm calls a procedure based on the LNS, denoted as Algorithm 4
(LNSpack). The code of LNSpack was partially based on the work published by Erdoğan [57].
The two procedures are described in the next subsections.



Symmetry 2021, 13, 1697 14 of 29

Algorithm 3 EvalSolutionLoading
Input: eliteList[], bestRoutingSolution
Output: Solution evaluation procedure for loading

1: Define array evalList[sizeEL + 1];
2: Put bestRoutingSolution and eliteList[] entries into evalList[];
3: Sort evalList[] by cost ascending;
4: for each solution entry in the evalList[] do
5: for each route in the solution do
6: if route is in f rHT then
7: Sign the route as feasible;
8: else
9: Start new thread with procedure to evaluate route loading in parallel:

10: Set items[] = all items demanded by customers in route;
11: isFeasible = LSNpack(items[]);
12: if isFeasible then
13: Sign route as feasible and insert it into f rHT;
14: else
15: Sign route as infeasible and insert it into irHT;
16: end if
17: End thread;
18: end if
19: end for
20: Wait until all threads end;
21: if all routes are feasible then
22: if evaluated feasible solution is better than globalBestSolution or the

globalBestSolution is null then
23: Update globalBestSolution;
24: end if
25: Break the loop;
26: end if
27: end for

4.4.1. A Procedure to Evaluate the Loading Feasibility of the Routing Solutions

The EvalSolutionLoading algorithm receives two parameters: the best solution (be-
stRoutingSolution) and the elite solutions (eliteList[]) found in the routing phase. Then, these
solutions are put on a list to be evaluated (evalList[]). The list is ordered from lowest to
highest cost so that the best solutions are evaluated first. As soon as a solution with feasible
loading is found, the evaluation of the other solutions does not proceed. In the evaluation
of each solution registered in evalList[], the verification of the feasibility of loading for
each route is performed by the LNSpack algorithm (Algorithm 4), which is discussed in
Section 4.4.2. To save time and processing, the first step in evaluating the route is to check
if it already exists in the frHT, that is, to check if it was already evaluated and identified
as feasible. In that case, there is no need to evaluate it again. The routes that are already
identified as infeasible are no longer generated during the routing process.

For the evaluation of the routes, a multithreading mechanism was implemented to
enhance the performance of the algorithm. Thus, several routes are evaluated simultane-
ously within a time limit that was defined in the algorithm’s initial parameters. Therefore,
the power of parallel processing is exploited using multiple CPU cores. Within each thread,
the LNSpack heuristic is called to evaluate the route loading. The LNSpack determines
whether the route is feasible or not. Then, the hash tables frHT and irHT are updated,
respectively. After all the route evaluation threads are finished, the solution is flagged as
feasible if all routes are feasible. If this is the case, and if the solution is better than the
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best global solution found or if a better global solution still does not exist, the best global
solution is updated, ending the procedure and returning to the global algorithm flow.

Algorithm 4 LNSpack
Input: items[]
Output: The feasibility status to pack the items[]

1: for sortType in {area, circumference} do
2: Sort items[] by sortType descending;
3: Use the first-fit-decreasing heuristic to repack the removed items;
4: while elapsedTime < maxLNSTime do
5: Perturb solution: randomly remove items from vehicle;
6: Use the first-fit-decreasing heuristic to repack the removed items;
7: if all items were packed then
8: return success;
9: if new solution is better than the best-known solution then

10: Update best-known solution;
11: else
12: Revert the best-known solution;
13: end if
14: end if
15: Set elapsedTime;
16: end while
17: end for
18: return f ailure

4.4.2. Large Neighborhood Search for 2D Bin Packing

In this work, a version of an LNS algorithm, which is denoted as Algorithm 4
(LNSpack), was developed to solve the 2BPP. The LNSpack requires a list of rectangular
items demanded by all customers in the route as parameters. When the LNSpack is called
by the procedure for evaluating the feasibility of a route, firstly, the items are sorted, and
then, the First-Fit Decreasing heuristic [58] is used to try to load the vehicle. Two forms of
ordering are applied: the first is by the area, and the second is by the circumference of the
item. Since in this work, only the 2|UR|L was considered, the ordering of the items by
area or by circumference is quite effective. Therefore, orders by the height or width of the
items were not used. Then, an iteration loop is initiated where the solution is disturbed
by the random removal of some loaded items. Next, the First-Fit Decreasing heuristic
is performed again to try to reload them. If all items were loaded, the procedure was
completed with success. Otherwise, it checks if the loaded area of the current solution
is larger than the area of the best solution found and updates the best solution. If the
current solution is not better, the best solution is once again the current solution for the
next iteration. The condition for stopping the iterations is finding the feasible packaging
route items or reaching the maximum time (maxLNSTime). If it is the case, the procedure
returns as a packaging failure.

5. Results

The algorithm proposed in this study, called the CGA-TS-LNS, was coded in C, and
the tests were performed on a virtual machine configured as an Intel 2 × Deca Core Xeon
E5-2640 CPU with a clock speed of 2.40 giga-hertz and 16 gigabyte of RAM running on a
Windows Server 2019 Standard edition operating system. For the benchmarks, the tests were
carried out with the well-known instances of Gendreau et al. [15]. The database is composed
of 180 instances that are divided into five classes according to the characteristics of the items.
Class 1 is characterized as the pure CVRP, where each customer is associated with only one
item with a unit of width and a unit of length, and there are no loading restrictions. In
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Classes 2–5, the quantity of items demanded for each customer i is generated by an uniform
distribution within a given interval, according to Column 2 of Table 1. There are 3 categories
in which the items can be classified according to their forms: vertical, homogeneous, and
horizontal. The dimensions of the items (w × l) are uniformly distributed according to the
ranges established for the categories of the items (Columns 3–8).

Table 1. Characteristics of items in Classes 2–5 instances.

Class mi Vertical Homogeneous Horizontal
Length Width Length Width Length Width

2 [1, 2] [0.4L, 0.9L] [0.1W, 0.2W] [0.2L, 0.5L] [0.2W, 0.5W] [0.1L, 0.2L] [0.4W, 0.9W]
3 [1, 3] [0.3L, 0.8L] [0.1W, 0.2W] [0.2L, 0.4L] [0.2W, 0.4W] [0.1L, 0.2L] [0.3W, 0.8W]
4 [1, 4] [0.2L, 0.7L] [0.1W, 0.2W] [0.1L, 0.4L] [0.1W, 0.4W] [0.1L, 0.2L] [0.2W, 0.7W]
5 [1, 5] [0.1L, 0.6L] [0.1W, 0.2W] [0.1L, 0.3L] [0.1W, 0.3W] [0.1L, 0.2L] [0.1W, 0.6W]

5.1. Initial Parameters

After carrying out experiments with the algorithm in 15 instances of the pure CVRP,
with low-, medium-, and high-complexities, we observed the results from the use of values
from 5–50 for the size of the tabuList[]. We chose to set sizeTL = 8, because with this value we
obtained the best results in the experiments. As it is not a very high value, the performance
of the TabuSearch algorithm improved. This is because in each iteration the new current
solution must not be in the tabuList[], and for that, the tabuList[] must be checked line-
by-line. So, with fewer positions in the list, less computational time is required. The
numNeighbors variable, which dynamically defines the number of neighbors during the
tabu search, is defined initially from a polynomial function of degree 3. This function was
found from a data analysis as described in the following.

Firstly, tests of the algorithm were performed with instances from the pure CVRP
(Class 1). Several values between 5 and 200 were randomly assigned to the textitnumNeigh-
bors for each execution of the framework on the instances chosen for the test. The values of
the variable where the best results were obtained for each instance were noted. Then, using
Pearson’s correlation coefficient, a correlation analysis was performed on the data of the
instances in relation to the values of numNeighbors noted. The data showed that the number
of customers presented a correlation coefficient of more than 80% in relation to the values
of numNeighbors noted. Therefore, the number of customers together with the values of
numNeighbors noted in the tests was chosen to obtain the polynomial regression function.
The function y = d1.67× 10-5 × x3 − 8.90× 10-3 × x2 + 1.57× 100 × x− 1.83× 101e, where
x ∈ Z | x ≥ 15 and y ∈ Z, y = numNeighbors and x is the number of customers, was
obtained through polynomial regression of degree 3, as shown in the graph of Figure 11.
Also, the function found for values of numNeighbors must be used for problems with more
than 15 customers, otherwise negative numbers would be obtained. For problems with
fewer than 15 customers, numNeighbors is limited to a minimum of 5.

The sizeEL that defines the size of the elite solution list was set to 20. The percAreaVehicle
variable was initially set to 100%, as described in Section 4.3.1, and it was applied to resolve
instances of Classes 2–5. This strategy proved to be more effective for routes in which the
items to be loaded had very irregular dimensions. Although it can be considered a simple
strategy that can go against the idea of maximizing the loading space of the vehicle used,
in general it showed good results. Due to the tests carried out in our experiments, this
strategy is not very efficient in the largest and most complex instances. This is because a lot
of time is needed to achieve promising results. The parameters for stopping conditions of
the stages of the algorithm, as well as the global stopping condition parameter, were defined
as follows: the parameter maxNoImproveCnt2End, which is one of the stopping conditions of
the TabuSearch in the routing phase, was set to 400,000 iterations. Namely, the tabu search
algorithm implemented in this framework can perform thousands of iterations per second.
The parameter maxNoImproveCnt was set to 40,000. In our tests, generally few iterations of
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the CGA were necessary to generate promising initial solutions, so the maxGen parameter
was set to 20. The maxLNSTime parameter was set to 60 s. The maxGTime was set to 7200 s.
The vehicle fleet was considered homogeneous and the dimensions of the loading area
were H = 40 and W = 20.

Figure 11. Polynomial regression to get function to set numNeighbors in TS algorithm.

5.2. Results Comparison

This work solved the pure CVRP (Class 1) and the 2|UR|L version of the 2L-CVRP
(Classes 2–5), where the rotation of the items is allowed, and the loading is unrestricted.
We compared our results for Class 1 with 4 of the best previous approaches: PRMP [22],
VNS [24], SA [25], and BR-LNS [59]. Importantly, after an extensive research, we found only
these four published studies that involve 2|UR|L-CVRP, which is the focus of our work,
and none of them implemented parallelism in their approaches. To solve the 2|UR|L, we
found only four approaches with which to compare the results: ACO by Fuellerer et al. [16],
MS-BR by Dominguez et al. [23], xPRMP by Zachariadis et al. [27], and SA by Wei et al. [25].
The framework was run 10 times for each instance with 1–10 random seeds, as was
done in several previous works, and the best solutions were compared to that of the
previous approaches.

The running time to find best cost values for all instances can be considered compatible
with the previous works. The running time for each one of the 180 instances remains less
than the maximum global time limit to run the algorithm, i.e., less than 7200 s. For the
pure CVRP, our method proved to be more effective and the running time to find best
solutions in this class was less than the time informed by the other previous approaches.
For the 2L-CVRP, our algorithm takes a little more time running, but it was able to find
some unpublished results.

5.3. Results for Class 1 Instances

Table A1 shows the results for the Class 1 instances, where the best costs are compared
with the other four previous frameworks. The CGA-TS-LNS found better and higher quality
solutions for the 6 most complex instances (30–36), and matched the BKS for 28 instances.
In addition, Figure 12 shows the average cost of the solutions found by the CGA-TS-LNS
for the 36 instances of Class 1 is lower than all previous approaches, and lower than the
average cost of all the BKS. This demonstrates the effectiveness of our algorithm to solve
the CVRP.
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Figure 12. Average cost for Class 1 instances.

5.4. Results for 2|UR|L Instances

When comparing our results for the 2|UR|L in Classes 2–5, we find that our average
cost in each class is better than two of the only four algorithms proposed to solve this
version found in the literature. In total, the CGA-TS-LNS surpassed the BKS in 7 of the
144 instances and matched in another 66. The CGA-TS-LNS only loses to the ACO and
MS-BR in 5 instances of 144, with 4 instances of Class 2, and 1 instance of Class 4. For the
2L-CVRP, the SA approach is evidently still the best, achieving the lowest average cost.

Table A2 compares the best 2|UR|L results for the Class 2 instances. In comparison
with that of the other four approaches and the BKS of the 36 instances, the CGA-TS-
LNS found better solutions for 2 instances and matched the other 15 better solutions.
Considering the average cost, xPRMP is the best framework to solve the Class 2 instances.

Table A3 compares the best results from the 2|UR|L over the 36 instances of Class 3,
where our CGA-TS-LNS found better higher quality solutions for 3 instances and matched
18 other better solutions. Considering the average cost for 36 instances, SA is the best
approach for this Class.

Table A4 compares the best results of the 2|UR|L for the 36 instances of Class 4.
The CGA-TS-LNS found better, higher quality solutions for 1 instance and matched the
other 14 best solutions. Again, the SA algorithm is the best to solve Class 4 instances.

Table A5 compares the best results of the 2|UR|L for the 36 instances of Class 5.
Our algorithm found better, higher quality solutions for 1 instance and matched 19 other
better solutions. One more time, the SA algorithm is the best approach to solve the Class
5 instances.

5.5. Statistical Validation for Algorithm Comparison

According to [60] inside the field of inferential statistics, hypothesis testing can be
employed to draw inferences about one or more populations of given samples (results).
To perform that, two hypotheses, the null hypothesis H0 and the alternative hypothesis
H1, are defined. The null hypothesis is a statement of no effect or no difference, whereas
the alternative hypothesis represents the presence of an effect or a difference (in our case,
significant differences between algorithms). When applying a statistical procedure to reject
a hypothesis, a level of significance α is used to determine at which level the hypothesis
may be rejected. The Sign test for multiple comparisons described in [60] allows us to
highlight those algorithms whose performances are statistically different when compared
to that of the CGA-TS-LNS algorithm.

As defined in [60], when using a level of significance α = 0.10 and setting our
hypotheses to be H0:Mj ≥ M1 and H1:Mj < M1 and m = 4 (m = k− 1) and n = 36, that is,
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our CGA-TS-LNS algorithm performs significantly better than the remaining algorithms.
Also, according to Table A.21 of [60], for m = 4 (m = k − 1) and n = 36 reveals that the
critical value of Rj is 10.

Tables A6–A10 present the number of times the CGA-TS-LNS algorithm was superior
to its competitors, as well as the number of occasions in which the CGA-TS-LNS algorithm
obtained the optimal solution. In Tables A1–A5, the best-known solution from the literature
(BKS) is the optimal solution to the problem and, therefore, it is impossible to obtain better
solutions. Thus, we add the number of times the GGA-TS-LNS algorithm was better to the
competitors to the number of times the BKS was obtained.

Table A6 shows the performance comparison of GGA-TS-LNS with PRMP, VNS, BR-
LNS, and SA algorithms for the instances of Class 1 (pure CVRP). Since the number of
minuses in the pairwise comparison between the GGA-TS-LNS algorithm and all others is
equal to 36, we can conclude that GGA-TS-LNS has a significantly better performance than
all of other competitors.

Table A7 shows the performance comparison of GGA-TS-LNS with ACO, MS-BR, SA,
and xPRMP algorithms for the 2|UR|L instances of Class 2. Since the number of minuses
in the pairwise comparison between the GGA-TS-LNS algorithm and ACO and MS-BR
algorithms is equal to 34 and 25, respectively, we can conclude that GGA-TS-LNS performs
significantly better than these two competitors.

Table A8 shows the performance comparison of GGA-TS-LNS with ACO, MS-BR, SA,
and xPRMP algorithms for the 2|UR|L instances of Class 3. Since the number of minuses
in the pairwise comparison between the GGA-TS-LNS algorithm and ACO and MS-BR
algorithms is equal to 35 and 27, respectively, we can conclude that GGA-TS-LNS performs
significantly better than these two competitors.

Table A9 shows the performance comparison of GGA-TS-LNS with ACO, MS-BR, SA,
and xPRMP algorithms for the 2|UR|L instances of Class 4. Since the number of minuses
in the pairwise comparison between the GGA-TS-LNS algorithm and ACO and MS-BR
algorithms is equal to 36 and 30, respectively, we can conclude that GGA-TS-LNS performs
significantly better than them. Also, in the pairwise comparison between the GGA-TS-LNS
algorithm and XPRMP algorithm, with a level of significance α = 0.05, we can conclude
that GGA-TS-LNS performs significantly better than it as well.

Table A10 shows the performance comparison of GGA-TS-LNS with ACO, MS-BR, SA,
and xPRMP algorithms for the 2|UR|L instances of Class 5. Since the number of minuses
in the pairwise comparison between the GGA-TS-LNS algorithm and ACO and MS-BR
algorithms is equal to 36 and 34, respectively, we can conclude that GGA-TS-LNS performs
significantly better than these two competitors.

6. Conclusions

This paper presents a new hybrid algorithm to solve the 2L-CVRP. The combination of
algorithms based on the CGA, the TS, and the LNS proved to be competitive when applied
to the 2L-CVRP. Our results outperformed two of the only four algorithms proposed, so
far, to solve version 2|UR|L of this problem. As stated by Wei et al. [25], it is not efficient
to simply combine conventional algorithms for the CVRP and the 2BPP, so some loading
strategies need to be employed to facilitate the solution of these integrated problems. In our
case, a simple strategy was to consider the loading area dynamically during the iterations
of the algorithm. This was combined with the diversification and intensification strategies,
plus the use of multithreading, to evaluate the loading of the routes. This facilitated the
process to find appropriate solutions for the 2L-CVRP, but it was not enough to outperform
the algorithms proposed by Wei et al. [25] and by Zachariadis et al. [27].

When analyzing the results for the pure CVRP, the framework proved to be extremely
efficient, surpassing all other approaches that were applied to the instances proposed by
Gendreau et al. [15]. This study brings, as a reference for future works, new best-known
solutions for the most complex instances of the pure CVRP and a better average of solutions
for the 36 instances of this Class.
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The algorithm proposed in this work has great potential, but it can still be improved.
For future works, we can think about the use of other strategies to improve solutions
regarding the loading subproblem. The ability to solve types 2|OU|L, 2|SO|L, and
2|SR|L can be added to the algorithm. The algorithm can also be adapted to solve other
problems, such as the 3L-CVRP. Additionally, it can be tested in other databases. Also,
to provide a more practical information measure, it is possible to use average values to
compare the results with that of other research.

The main application would be to solve the CVRP and to compare the results and
the effectiveness. In addition, we believe that the algorithm can serve as a basis for other
studies to obtain improvements in logistical and transportation processes. Its application
can contribute to reducing costs in the routing problems of capacitated vehicles in the real
world. In this sense, the integration of this algorithm with intelligent models for logistics
management [61] will improve the routes processing, and consequently, the safety of
transportation. The algorithm also will allow the implementation of ubiquitous intelligent
services for vehicular users [62]. Finally, future work will integrate the algorithm with
strategies used to treat Context Histories [63–66] such as pattern analysis [67], context
prediction [68], similarity analysis [69], cryptography [70], and IoT challenges in smart
environments [71,72]. This integration will support better solutions; specifically, to routing
problems and in general for problems involving context histories.
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The following abbreviations are used in this manuscript:

2BPP Two-Dimensional Bin Packing Problem
2|SO|L Two-Dimensional Sequential Oriented Loading Problem
2|SR|L Two-Dimensional Sequential Non-oriented Loading Problem
2|UO|L Two-Dimensional Unrestricted Oriented Loading Problem
2|UR|L Two-Dimensional Unrestricted Non-oriented Loading Problem
2L-CVRP Two-Dimensional Loading Constraints
ACO Ant Colony Optimization
BKS Best-known Solution
BR-LNS Biased-Randomized Large Neighborhood Search
Avg Average
CGA Constructive Genetic Algorithm
CVRP Capacitated Vehicle Routing Problem
FIFO First In, First Out
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frHT Feasible Routes Hash Table
GVRP Green Vehicle Routing Problem
irHT Infeasible Routes Hash Table
LNS Large Neighborhood Search
MS-BR Multistart Biased Randomized Algorithm
PRMP Promise Routing-Memory Packing Problem
SA Simulated Annealing
TS Tabu Search
TSP Traveling Salesman Problem
VNS Variable Neighborhood Search
VRP Vehicle Routing Problem

Appendix A

Table A1. Comparative results on the pure CVRP instances of Class 1.

Inst BKS PRMP VNS BR-LNS SA CGA-TS-LNS
Cost Imp Cost Imp Cost Imp Cost Imp Cost Imp

1 278.73 278.73 0.00 278.73 0.00 278.73 0.00 278.73 0.00 278.73 0.00
2 334.96 334.96 0.00 334.96 0.00 334.96 0.00 334.96 0.00 334.96 0.00
3 358.40 358.40 0.00 358.40 0.00 358.40 0.00 358.40 0.00 358.40 0.00
4 430.88 430.88 0.00 430.88 0.00 430.88 0.00 430.88 0.00 430.88 0.00
5 375.28 375.28 0.00 375.28 0.00 375.28 0.00 375.28 0.00 375.28 0.00
6 495.85 495.85 0.00 495.85 0.00 495.85 0.00 495.85 0.00 495.85 0.00
7 568.56 568.56 0.00 568.56 0.00 568.56 0.00 568.56 0.00 568.56 0.00
8 568.56 568.56 0.00 568.56 0.00 568.56 0.00 568.56 0.00 568.56 0.00
9 607.65 607.65 0.00 607.65 0.00 607.65 0.00 607.65 0.00 607.65 0.00
10 535.74 535.80 −0.01 535.80 −0.01 535.80 −0.01 535.80 −0.01 535.80 −0.01
11 505.01 505.01 0.00 505.01 0.00 505.01 0.00 505.01 0.00 505.01 0.00
12 610.00 610.00 0.00 610.00 0.00 610.00 0.00 610.00 0.00 610.00 0.00
13 2006.34 2006.34 0.00 2006.34 0.00 2006.34 0.00 2006.34 0.00 2006.34 0.00
14 837.67 837.67 0.00 837.67 0.00 837.67 0.00 837.67 0.00 837.67 0.00
15 837.67 837.67 0.00 837.67 0.00 837.67 0.00 837.67 0.00 837.67 0.00
16 698.61 698.61 0.00 698.61 0.00 698.61 0.00 698.61 0.00 698.61 0.00
17 861.79 861.79 0.00 861.79 0.00 861.79 0.00 861.79 0.00 861.79 0.00
18 723.54 723.54 0.00 723.54 0.00 723.54 0.00 723.54 0.00 723.54 0.00
19 524.61 524.61 0.00 524.61 0.00 524.61 0.00 524.61 0.00 524.61 0.00
20 241.97 241.97 0.00 241.97 0.00 241.97 0.00 241.97 0.00 241.97 0.00
21 687.60 687.60 0.00 687.60 0.00 687.60 0.00 687.60 0.00 687.60 0.00
22 740.66 740.66 0.00 740.66 0.00 740.66 0.00 740.66 0.00 740.66 0.00
23 835.26 835.26 0.00 835.26 0.00 835.26 0.00 835.26 0.00 835.26 0.00
24 1024.69 1024.69 0.00 1024.69 0.00 1024.69 0.00 1024.69 0.00 1024.69 0.00
25 826.14 826.14 0.00 826.14 0.00 826.14 0.00 826.14 0.00 826.14 0.00
26 819.56 819.56 0.00 819.56 0.00 819.56 0.00 819.56 0.00 819.56 0.00
27 1082.65 1082.65 0.00 1082.65 0.00 1082.65 0.00 1082.65 0.00 1082.65 0.00
28 1040.70 1042.12 −0.14 1042.12 −0.14 1042.12 −0.14 1042.12 −0.14 1042.12 −0.14
29 1162.96 1162.96 0.00 1162.96 0.00 1162.96 0.00 1162.96 0.00 1162.96 0.00
30 1028.42 1028.42 0.00 1028.42 0.00 1028.42 0.00 1029.79 −0.13 1028.42 0.00
31 1299.21 1299.56 −0.03 1302.48 −0.25 1299.21 0.00 1301.03 −0.14 1297.25 0.15
32 1296.18 1296.91 −0.06 1300.22 −0.31 1296.18 0.00 1300.30 −0.32 1295.87 0.02
33 1296.13 1299.55 −0.26 1298.02 −0.15 1297.50 −0.11 1296.13 0.00 1294.29 0.14
34 708.39 709.82 −0.20 708.39 0.00 709.08 −0.10 708.66 −0.04 708.26 0.02
35 862.79 866.06 −0.38 865.39 −0.30 864.63 −0.21 862.79 0.00 862.61 0.02
36 583.98 585.46 −0.25 586.49 −0.43 590.16 −1.06 583.98 0.00 582.92 0.18
Avg 769.37 769.70 −0.04 769.80 −0.06 769.69 −0.04 769.62 −0.03 769.25 0.01

BKS: Best-known solution from the literature. Bold entries correspond to higher quality solutions. Imp: Percentage improvement between
the cost and BKS (Imp = 100*(BKS – cost)/BKS).
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Table A2. Comparative results for the 2|UR|L instances of Class 2.

Inst BKS ACO MS-BR SA xPRMP CGA-TS-LNS
Cost Imp Cost Imp Cost Imp Cost Imp Cost Imp

1 278.73 278.73 0.00 278.73 0.00 278.73 0.00 278.73 0.00 278.73 0.00
2 334.96 334.96 0.00 334.96 0.00 334.96 0.00 334.96 0.00 334.96 0.00
3 380.35 380.35 0.00 380.35 0.00 380.35 0.00 385.29 −1.30 380.35 0.00
4 430.88 430.88 0.00 430.88 0.00 430.89 0.00 430.89 0.00 430.88 0.00
5 375.28 375.28 0.00 375.28 0.00 375.28 0.00 375.28 0.00 375.28 0.00
6 495.85 495.85 0.00 495.85 0.00 495.85 0.00 495.85 0.00 495.85 0.00
7 715.02 715.02 0.00 715.02 0.00 715.02 0.00 715.02 0.00 715.02 0.00
8 665.17 674.19 −1.36 665.17 0.00 665.17 0.00 665.17 0.00 665.17 0.00
9 607.65 607.65 0.00 607.65 0.00 607.65 0.00 607.65 0.00 607.65 0.00
10 667.42 684.42 −2.55 667.42 0.00 667.86 −0.07 667.42 0.00 673.95 −0.98
11 664.48 678.93 −2.17 664.48 0.00 666.16 −0.25 666.16 −0.25 668.48 −0.60
12 610.00 610.00 0.00 610.00 0.00 610.00 0.00 610.00 0.00 610.00 0.00
13 2502.65 2504.53 −0.08 2502.65 0.00 2504.53 −0.08 2502.65 0.00 2502.65 0.00
14 1029.34 1032.01 −0.26 1029.34 0.00 1029.34 0.00 1029.34 0.00 1029.34 0.00
15 1001.51 1008.56 −0.70 1001.51 0.00 1001.51 0.00 1001.51 0.00 1001.51 0.00
16 698.61 698.61 0.00 698.61 0.00 698.61 0.00 698.61 0.00 698.61 0.00
17 861.79 863.27 −0.17 861.79 0.00 861.79 0.00 861.79 0.00 861.79 0.00
18 982.44 988.91 −0.66 988.61 −0.63 987.10 −0.47 982.44 0.00 986.78 −0.44
19 711.97 730.16 −2.55 726.51 −2.04 723.93 −1.68 711.97 0.00 725.35 −1.88
20 488.69 492.91 −0.86 489.23 −0.11 488.69 0.00 488.69 0.00 488.17 0.11
21 962.10 978.07 −1.66 964.49 −0.25 968.42 −0.66 962.10 0.00 965.25 −0.33
22 976.70 988.15 −1.17 976.70 0.00 985.16 −0.87 993.50 −1.72 984.73 −0.82
23 984.00 1005.94 −2.23 985.18 −0.12 984.00 0.00 991.99 −0.81 987.88 −0.39
24 1140.13 1160.48 −1.78 1152.35 −1.07 1140.13 0.00 1142.02 −0.17 1139.84 0.03
25 1345.89 1360.72 −1.10 1356.24 −0.77 1345.89 0.00 1348.66 −0.21 1354.70 −0.65
26 1255.16 1267.04 −0.95 1262.43 −0.58 1257.00 −0.15 1255.16 0.00 1256.80 −0.13
27 1266.89 1283.66 −1.32 1285.24 −1.45 1271.10 −0.33 1266.89 0.00 1270.38 −0.28
28 2482.86 2528.64 −1.84 2517.27 −1.39 2491.86 −0.36 2482.86 0.00 2502.18 −0.78
29 2128.53 2184.59 −2.63 2151.68 −1.09 2129.10 −0.03 2128.53 0.00 2130.64 −0.10
30 1740.87 1780.54 −2.28 1755.89 −0.86 1740.87 0.00 1744.11 −0.19 1747.45 −0.38
31 2154.33 2232.71 −3.64 2171.60 −0.80 2162.88 −0.40 2154.33 0.00 2242.80 −4.11
32 2165.96 2221.66 −2.57 2191.58 −1.18 2165.96 0.00 2169.66 −0.17 2188.29 −1.03
33 2157.23 2205.34 −2.23 2175.85 −0.86 2157.23 0.00 2161.03 −0.18 2167.13 −0.46
34 1120.44 1150.81 −2.71 1140.83 −1.82 1121.67 −0.11 1120.44 0.00 1134.40 −1.25
35 1310.33 1350.91 −3.10 1340.41 −2.30 1310.33 0.00 1312.88 −0.19 1319.46 −0.70
36 1623.54 1702.33 −4.85 1679.27 −3.43 1625.42 −0.12 1623.54 0.00 1678.95 −3.41
Avg 1092.16 1110.74 −1.70 1100.86 −0.80 1093.90 −0.16 1093.53 −0.13 1100.04 −0.72

BKS: Best-known solution from the literature. Bold entries correspond to higher quality solutions. Imp: Percentage improvement between
the cost and BKS (Imp = 100*(BKS – cost)/BKS).
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Table A3. Comparative results for the 2|UR|L instances of Class 3.

Inst BKS ACO MS-BR SA xPRMP CGA-TS-LNS
Cost Imp Cost Imp Cost Imp Cost Imp Cost Imp

1 284.10 284.23 −0.05 284.10 * 0.00 284.11 0.00 284.10 0.00 284.10 0.00
2 352.16 352.16 0.00 352.16 0.00 352.16 0.00 352.16 0.00 352.16 0.00
3 385.32 390.55 −1.36 385.32 0.00 385.32 0.00 385.32 0.00 385.32 0.00
4 430.88 430.88 0.00 430.88 0.00 430.89 0.00 430.89 0.00 430.88 0.00
5 379.94 379.94 0.00 379.94 0.00 379.94 0.00 379.94 0.00 379.94 0.00
6 498.16 498.16 0.00 498.16 0.00 498.16 0.00 498.16 0.00 498.16 0.00
7 664.96 678.75 −2.07 664.96 0.00 664.96 0.00 664.96 0.00 664.96 0.00
8 738.43 738.43 0.00 738.43 0.00 738.43 0.00 738.43 0.00 738.43 0.00
9 607.65 607.65 0.00 607.65 0.00 607.65 0.00 607.65 0.00 607.65 0.00
10 591.16 615.68 −4.15 615.36 −4.09 591.61 −0.08 591.16 0.00 615.36 −4.09
11 699.35 706.94 −1.09 699.35 0.00 699.35 0.00 699.35 0.00 699.35 0.00
12 610.00 610.00 0.00 610.00 0.00 610.00 0.00 610.00 0.00 610.00 0.00
13 2377.39 2450.19 −3.06 2377.39 0.00 2377.39 0.00 2377.39 0.00 2377.39 0.00
14 988.79 996.11 −0.74 988.79 0.00 988.80 0.00 988.80 0.00 988.79 0.00
15 1116.07 1145.04 −2.60 1120.75 −0.42 1116.07 0.00 1116.07 0.00 1116.07 0.00
16 698.61 698.61 0.00 698.61 0.00 698.61 0.00 698.61 0.00 698.61 0.00
17 861.79 862.62 −0.10 861.79 0.00 861.79 0.00 861.79 0.00 861.79 0.00
18 986.30 1025.35 −3.96 986.30 0.00 986.30 0.00 1009.62 −2.36 986.30 0.00
19 749.43 753.66 −0.56 752.06 −0.35 749.43 0.00 751.56 −0.28 751.18 −0.23
20 511.46 517.61 −1.20 511.46 0.00 511.46 0.00 511.46 0.00 511.46 0.00
21 1086.72 1114.16 −2.53 1089.75 −0.28 1086.72 0.00 1087.79 −0.10 1085.69 0.09
22 1024.11 1046.71 −2.21 1031.79 −0.75 1024.11 0.00 1028.33 −0.41 1023.50 0.06
23 1041.60 1068.63 −2.60 1056.56 −1.44 1041.60 0.00 1044.06 −0.24 1045.13 −0.34
24 1064.38 1082.30 −1.68 1073.01 −0.81 1066.15 −0.17 1064.38 0.00 1064.43 0.00
25 1325.24 1355.61 −2.29 1353.90 −2.16 1333.64 −0.63 1325.24 0.00 1333.14 −0.60
26 1311.11 1344.32 −2.53 1335.80 −1.88 1311.11 0.00 1312.94 −0.14 1314.93 −0.29
27 1329.33 1376.34 −3.54 1354.76 −1.91 1329.33 0.00 1332.15 −0.21 1326.73 0.20
28 2541.02 2604.08 −2.48 2587.25 −1.82 2541.02 0.00 2544.39 −0.13 2545.98 −0.20
29 2040.83 2090.56 −2.44 2067.69 −1.32 2040.83 0.00 2051.52 −0.52 2048.04 −0.35
30 1767.72 1811.22 −2.46 1812.72 −2.55 1767.72 0.00 1772.71 −0.28 1775.00 −0.41
31 2196.26 2276.01 −3.63 2246.54 −2.29 2196.26 0.00 2196.40 −0.01 2196.32 0.00
32 2166.18 2247.06 −3.73 2219.26 −2.45 2166.18 0.00 2179.06 −0.59 2177.63 −0.53
33 2276.31 2355.08 −3.46 2325.36 −2.15 2276.31 0.00 2284.46 −0.36 2311.18 −1.53
34 1163.05 1204.31 −3.55 1176.71 −1.17 1165.57 −0.22 1163.05 0.00 1172.77 −0.84
35 1393.90 1439.13 −3.24 1437.30 −3.11 1393.90 0.00 1397.77 −0.28 1420.79 −1.93
36 1706.70 1791.54 −4.97 1739.36 −1.91 1708.05 −0.08 1706.70 0.00 1724.60 −1.05
Avg 1110.18 1137.49 −2.46 1124.20 −1.26 1110.58 −0.04 1112.45 −0.21 1114.55 −0.39

BKS: Best-known solution from the literature. Bold entries correspond to higher quality solutions. Imp: Percentage improvement between
the cost and BKS (Imp = 100*(BKS – cost)/BKS). * Lower scores for this instance were mistakenly reported in Dominguez et al. [23] and
Zachariadis et al. [27].
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Table A4. Comparative results for the 2|UR|L instances of Class 4.

Inst BKS ACO MS-BR SA xPRMP CGA-TS-LNS
Cost Imp Cost Imp Cost Imp Cost Imp Cost Imp

1 282.95 282.95 0.00 282.95 0.00 282.95 0.00 282.95 0.00 282.95 0.00
2 334.96 342.00 −2.10 334.96 0.00 334.96 0.00 334.96 0.00 334.96 0.00
3 358.40 362.41 −1.12 358.40 0.00 362.41 −1.12 362.41 −1.12 362.41 −1.12
4 447.37 447.37 0.00 447.37 0.00 447.37 0.00 447.37 0.00 447.37 0.00
5 383.87 383.88 0.00 383.87 0.00 383.88 0.00 383.88 0.00 383.87 0.00
6 498.32 498.32 0.00 498.32 0.00 498.32 0.00 498.32 0.00 498.32 0.00
7 686.26 702.45 −2.36 686.26 0.00 686.26 0.00 686.26 0.00 686.26 0.00
8 688.32 692.47 −0.60 688.32 0.00 688.32 0.00 688.32 0.00 688.32 0.00
9 625.10 625.13 0.00 625.10 0.00 625.10 0.00 625.10 0.00 625.10 0.00
10 703.64 703.64 0.00 703.64 0.00 703.64 0.00 703.64 0.00 703.64 0.00
11 771.93 782.31 −1.34 773.58 −0.21 771.93 0.00 773.58 −0.21 773.58 −0.21
12 610.23 614.24 −0.66 614.23 −0.66 610.23 0.00 610.23 0.00 614.23 −0.66
13 2500.85 2583.27 −3.30 2533.79 −1.32 2533.79 −1.32 2500.85 0.00 2533.79 −1.32
14 955.09 981.90 −2.81 981.00 −2.71 955.09 0.00 968.21 −1.37 968.39 −1.39
15 1164.63 1216.14 −4.42 1164.77 −0.01 1164.63 0.00 1164.63 0.00 1164.63 0.00
16 703.35 703.35 0.00 703.35 0.00 703.35 0.00 703.35 0.00 703.35 0.00
17 861.79 861.79 0.00 861.79 0.00 861.79 0.00 861.79 0.00 861.79 0.00
18 1100.52 1110.48 −0.91 1100.66 −0.01 1100.52 0.00 1100.52 0.00 1100.52 0.00
19 747.03 772.05 −3.35 765.51 −2.47 747.03 0.00 755.04 −1.07 754.98 −1.06
20 533.77 546.91 −2.46 534.14 −0.07 533.77 0.00 535.03 −0.24 535.07 −0.24
21 958.58 976.48 −1.87 967.85 −0.97 959.82 −0.13 958.58 0.00 961.78 −0.33
22 1041.80 1057.15 −1.47 1052.60 −1.04 1041.80 0.00 1042.01 −0.02 1040.65 0.11
23 1047.32 1079.63 −3.09 1064.76 −1.67 1047.32 0.00 1048.43 −0.11 1047.32 0.00
24 1086.09 1103.28 −1.58 1099.40 −1.23 1086.09 0.00 1086.09 0.00 1091.76 −0.52
25 1366.28 1408.64 −3.10 1402.08 −2.62 1366.28 0.00 1374.79 −0.62 1367.80 −0.11
26 1362.22 1414.28 −3.82 1391.02 −2.11 1362.22 0.00 1378.21 −1.17 1379.29 −1.25
27 1284.94 1318.93 −2.65 1318.45 −2.61 1284.94 0.00 1289.02 −0.32 1289.21 −0.33
28 2510.29 2638.07 −5.09 2647.15 −5.45 2510.29 0.00 2514.87 −0.18 2527.78 −0.70
29 2199.79 2267.37 −3.07 2274.09 −3.38 2199.79 0.00 2209.58 −0.45 2201.05 −0.06
30 1784.14 1834.68 −2.83 1851.15 −3.76 1784.14 0.00 1795.94 −0.66 1792.12 −0.45
31 2314.76 2385.63 −3.06 2387.72 −3.15 2314.76 0.00 2326.63 −0.51 2322.37 −0.33
32 2206.72 2268.67 −2.81 2267.57 −2.76 2206.72 0.00 2212.94 −0.28 2219.94 −0.60
33 2318.77 2393.01 −3.20 2387.22 −2.95 2318.77 0.00 2326.73 −0.34 2322.01 −0.14
34 1163.96 1208.19 −3.80 1210.66 −4.01 1163.96 0.00 1171.04 −0.61 1165.76 −0.15
35 1452.59 1503.42 −3.50 1519.28 −4.59 1452.59 0.00 1460.85 −0.57 1471.74 −1.32
36 1604.55 1683.25 −4.90 1670.84 −4.13 1605.00 −0.03 1604.55 0.00 1611.53 −0.44
Avg 1129.48 1159.83 −2.69 1154.27 −2.20 1130.55 −0.10 1132.96 −0.31 1134. −0.43

BKS: Best-known solution from the literature. Bold entries correspond to higher quality solutions. Imp: Percentage improvement between
the cost and BKS (Imp = 100*(BKS – cost)/BKS).
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Table A5. Comparative results for the 2|UR|L instances of Class 5.

Inst BKS ACO MS-BR SA xPRMP CGA-TS-LNS
Cost Imp Cost Imp Cost Imp Cost Imp Cost Imp

1 278.73 278.73 0.00 278.73 0.00 278.73 0.00 278.73 0.00 278.73 0.00
2 334.96 334.96 0.00 334.96 0.00 334.96 0.00 334.96 0.00 334.96 0.00
3 358.40 358.40 0.00 358.40 0.00 358.40 0.00 358.40 0.00 358.40 0.00
4 430.88 430.88 0.00 430.88 0.00 430.89 0.00 430.89 0.00 430.88 0.00
5 375.28 375.28 0.00 375.28 0.00 375.28 0.00 375.28 0.00 375.28 0.00
6 495.85 495.85 0.00 495.85 0.00 495.85 0.00 495.85 0.00 495.85 0.00
7 657.77 657.77 0.00 657.77 0.00 657.77 0.00 657.77 0.00 657.77 0.00
8 609.90 609.90 0.00 609.90 0.00 609.90 0.00 609.90 0.00 609.90 0.00
9 607.65 607.65 0.00 607.65 0.00 607.65 0.00 607.65 0.00 607.65 0.00
10 678.62 680.26 −0.24 684.17 −0.82 678.62 0.00 678.66 −0.01 678.62 0.00
11 624.82 624.82 0.00 624.82 0.00 624.82 0.00 624.82 0.00 624.82 0.00
12 610.00 610.23 −0.04 610.00 0.00 610.00 0.00 610.00 0.00 610.00 0.00
13 2334.59 2334.78 −0.01 2334.78 −0.01 2334.59 0.00 2334.59 0.00 2334.59 0.00
14 871.22 889.20 −2.06 875.07 −0.44 871.22 0.00 871.22 0.00 871.22 0.00
15 1159.94 1160.20 −0.02 1160.96 −0.09 1159.94 0.00 1160.20 −0.02 1159.94 0.00
16 698.61 698.61 0.00 698.61 0.00 698.61 0.00 698.61 0.00 698.61 0.00
17 861.79 861.79 0.00 861.79 0.00 861.79 0.00 861.79 0.00 861.79 0.00
18 917.94 924.04 −0.66 921.29 −0.36 917.94 0.00 917.94 0.00 917.93 0.00
19 644.59 651.97 −1.14 644.59 0.00 644.59 0.00 644.59 0.00 644.59 0.00
20 466.79 477.32 −2.26 472.77 −1.28 466.79 0.00 468.60 −0.39 466.79 0.00
21 870.82 888.26 −2.00 886.04 −1.75 870.82 0.00 870.82 0.00 873.25 −0.28
22 928.02 942.06 −1.51 945.92 −1.93 928.02 0.00 930.83 −0.30 931.63 −0.39
23 922.34 942.80 −2.22 938.25 −1.72 922.34 0.00 926.68 −0.47 927.42 −0.55
24 1042.37 1048.33 −0.57 1046.84 −0.43 1042.37 0.00 1042.37 0.00 1042.41 0.00
25 1149.66 1170.38 −1.80 1168.87 −1.67 1149.66 0.00 1150.04 −0.03 1154.53 −0.42
26 1209.34 1231.72 −1.85 1220.83 −0.95 1209.34 0.00 1213.03 −0.31 1216.09 −0.56
27 1231.52 1260.11 −2.32 1258.12 −2.16 1231.52 0.00 1237.05 −0.45 1237.96 −0.52
28 2276.71 2336.45 −2.62 2322.37 −2.01 2276.71 0.00 2287.98 −0.50 2321.42 −1.96
29 2115.53 2158.78 −2.04 2152.26 −1.74 2115.53 0.00 2125.35 −0.46 2146.14 −1.45
30 1512.71 1542.14 −1.95 1548.29 −2.35 1512.71 0.00 1517.86 −0.34 1520.51 −0.52
31 1968.89 2016.59 −2.42 2011.88 −2.18 1968.89 0.00 1980.17 −0.57 1976.45 −0.38
32 1938.96 1983.34 −2.29 1992.03 −2.74 1938.96 0.00 1949.14 −0.53 1955.43 −0.85
33 1946.51 2002.72 −2.89 2001.26 −2.81 1946.51 0.00 1968.32 −1.12 1959.31 −0.66
34 1006.38 1036.16 −2.96 1040.78 −3.42 1006.38 0.00 1014.20 −0.78 1030.70 −2.42
35 1224.21 1256.34 −2.62 1271.21 −3.84 1224.21 0.00 1227.13 −0.24 1239.41 −1.24
36 1457.05 1505.54 −3.33 1522.73 −4.51 1457.05 0.00 1462.33 −0.36 1472.74 −1.08
Avg 1022.76 1038.45 −1.53 1037.94 −1.48 1022.76 0.00 1025.66 −0.28 1028.44 −0.56

BKS: Best-known solution from the literature. Bold entries correspond to higher quality solutions. Imp: Percentage improvement between
the cost and BKS (Imp = 100*(BKS – cost)/BKS).

Table A6. Sign test pairwise comparison for the instances of Class 1.

CGA-TS-LNS PRMP VNS BR-LNS SA

(a) Wins (+) 6 6 6 6
(b) Loses (−) 0 0 0 0
(c) Equal to BKS 30 30 30 30
a + c 36 36 36 36
Detected differences α = 0.1 α = 0.1 α = 0.1 α = 0.1
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Table A7. Sign test pairwise comparison for the 2|UR|L instances of Class 2.

CGA-TS-LNS ACO MS-BR SA XPRMP

(a) Wins (+) 24 15 9 6
(b) Loses (−) 2 11 27 30
(c) Equal to BKS 10 10 0 0
a + c 34 25 9 6
Detected differences α = 0.1 α = 0.1 – –

Table A8. Sign test pairwise comparison for the 2|UR|L instances of Class 3.

CGA-TS-LNS ACO MS-BR SA XPRMP

(a) Wins (+) 27 19 8 9
(b) Loses (−) 1 9 28 27
(c) Equal to BKS 8 8 0 0
a + c 35 27 8 9
Detected differences α = 0.1 α = 0.1 – –

Table A9. Sign test pairwise comparison for the 2|UR|L instances of Class 4.

CGA-TS-LNS ACO MS-BR SA XPRMP

(a) Wins (+) 29 20 2 10
(b) Loses (−) 0 6 34 26
(c) Equal to BKS 7 10 0 0
a + c 36 30 2 10
Detected differences α = 0.1 α = 0.1 – α = 0.05

Table A10. Sign test pairwise comparison for the 2|UR|L instances of Class 5.

CGA-TS-LNS ACO MS-BR SA XPRMP

(a) Wins (+) 24 22 2 7
(b) Loses (−) 0 2 34 29
(c) Equal to BKS 12 12 0 0
a + c 36 34 2 7
Detected differences α = 0.1 α = 0.1 – –
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