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Abstract: The principal motivation of this paper is to establish a new integral equality related to
k-Riemann Liouville fractional operator. Employing this equality, we present several new inequali-
ties for twice differentiable convex functions that are associated with Hermite-Hadamard integral
inequality. Additionally, some novel cases of the established results for different kinds of convex
functions are derived. This fractional integral sums up Riemann-Liouville and Hermite-Hadamard’s
inequality, which have a symmetric property. Scientific inequalities of this nature and, particularly,
the methods included have applications in different fields in which symmetry plays a notable role.
Finally, applications of q-digamma and g-polygamma special functions are presented.
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1. Introduction

The theory of convexity in mathematics has a rich history and has been a focus of
intense investigation for more than a century. Numerous speculations, variations, and
augmentations of convexity theory have caught the attention of numerous researchers.
This theory plays a significant part in the advancement of the concept of inequalities. In
opposing research, inequalities have a great deal of uses in financial issues, numerical
analysis problems, industrial optimizations, probability theory, etc. As of late, many
mathematicians have investigated the relationship between convexity and symmetry. They
have disclosed that due to the strong connection between them, the conventions of one
may also be applied to the other. Inequalities have a fascinating numerical model due to
their important applications in classical as well as fractional calculus and mathematical
analysis. For applications, we refer readers to the papers [1-7]. In such a scenario, the
Hermite-Hadamard inequality [8] is undoubtedly one of the most elegant results.

For an interval I in R, a function & : I — R is said to be convex on I if,

S(gw, + (1-Q)w,) < ¢S(w,) + (1) S(w,)
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forallw,,w, € I andg € [0,1] holds and is said to be a concave function if the inequality
is reversed.

In the literature, the celebrated Hermite-Hadamard inequality, coined separately by
Charles Hermite and Jacques Hadamard, has attracted the interest of many mathematicians
who have used various types of convex functions to yield many generalizations of the said
inequality. This inequality is stated as follows:

Let § : I — R be a convex function on I in R and w,,w, € I withw, < w,, then

w & &
§<wl+a)2) < 1 / * §(x)dx < \s(wl)—}—\s(wZ)' )
(4.72 _wl wl

2 2

The concept of inequality is one of the most valuable features in mathematics, having
numerous applications in different fields of mathematical sciences. In this regard, Hermite—
Hadamard inequalities are widely known and have been studied and generalized for
different types of convex functions under different conditions and parameters.

In the last decade or so, the theories of convexity and inequalities have gained much
attention among researchers due to their nature and properties. Guessab et al. [9-12]
used convexity to determine the error estimation and approximation of convex polytopes.
Tarig, a young mathematician along with his collaborators used the property of convexity
and Hypergeometric functions to define some new definitions and inequalities such as
exponentially s-type convexity, generalised exponentially convexity and p-harmonic expo-
nential type convexity (see [13-18]). Many mathematicians have applied this inequality for
fractional estimates of Hermite-Hadamard inequalities using different kinds of convexity
(see, for example, [19-26]).

In [27], Varo$anec introduced an h-convex function as a generalization of a con-
vex function. After the publication of this article, many authors started working on the
generalizations of different types of convexities and one such recent generalization is
(h, m)-convexity. Interested readers can refer to references (see [28-30]) and cited therein
for details about (1, m)-convexity.

Let us first get familiarized with some definitions, basic concepts and earlier results.

Definition 1 ([27]). Let h: I — R be a positive function. We say that S : [ — R is an
“h-convex function” if I is non-negative and for all w,,w, € 1, ¢ € (0,1), we have

S(gw, + (1= ¢)w,) < h(g)S(w,) +h(1—¢)S(w,). )

Definition 2 ([31]). A function h : I — R is said to be a super-additive function if for all
w,w, €1 B B

h(w, +w,) = h(w,) + h(w,).

Definition 3 ([32]). A function S : [0,wy] — R, way > 0, is said to be m-convex, where
m € [0,1], if i i i
S(ew, +m(l —g)w,) < ¢S(w,) +m(l—¢)I(w,). ®)

Definition 4 ([33]). Let h: 1 — R C R bea positive function. We say that S : [ — R C R
is an (h, m)-convex function if § is non-negative and for all w,,w, € 1, ¢ € (0,1), we have

S(gw, +m(1 - g)w,) < h(g)S(w,) +mh(1 —¢)S(w,). 4)

Fractional calculus has applications in different fields of design and science such as
electromagnetics, viscoelasticity, signal processing, liquid mechanics, electrochemistry, and
optics. It has been utilized to display physical and scientific models that are observed to
be best portrayed by fractional differential conditions. Subsequently, it turns out to be
increasingly imperative for use in all conventional and recently created techniques for
addressing problems related to fractional calculus.
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For some recent results related to fractional operators, (see [34-38]) and the references
cited therein. The Hermite-Hadamard inequality plays a crucial role in various fields of
mathematics, especially in the theory of approximations. Thus, such inequalities have
been studied extensively by many researchers, and a large number of generalizations and
extensions of these for various kind of convex functions are established.

Here, we provide some necessary definitions from the theory of fractional calculus,
which are used in the following results.

Definition 5 ([1]). Let S € L1([w,, w,]), the fractional integrals I and I" _ of order y > 0 are
2
defined by: 1

- X -
S = r(ly)/w (x = P IS0 0 < w, < x < w,
1
" S(x) = —— [t —x) 1S ()t 0 <
“’E\S<x)'_m ’ (t—x)F"S(H)dt, 0 < w, < x < w,,

respectively.
In [1], Sarikaya and Yildirm, proved the following Hadamard-type inequalities for Riemann—
Liouville fractional integrals as follows:

Theorem 1 ([1]). Let S : [w,, w,] — R be a convex function with 0 < w, < w,. If S €
Llw,,w,], then the following inequality for fractional integral holds

1
& w1+wz <2H F(‘qul) iz & "
J( 2 ) () | gy S (@) F Ly

G

(@)

Sw)| < 2L

Lemma 1 ([37]). Let S : I — R be a differentiable mapping on 1°, where w,,w, € 1° with
0<w, <w, IfY € L|w,,w,|, then the following equality for fractional integral holds

g(C‘Jl> + g(C‘Jz> . Ty (p + k) Iﬂ,k
2 e
2(0.)2 - w1) k !

= a2 - - o] (e, + (- i

S(w,) + I{Z}l‘z),g(wl)]

This paper aims to show that Hermite-Hadamard type inequalities are set up for
consistently (1, m)-convex functions, which is concluded by using k-Riemann-Liouville
fractional operators. Finally, we obtain some estimations of q-digamma and q-polygamma
functions with respect to Hermite-Hadamard type inequalities. Nowadays, numerous
researchers are working to find a unified framework, which will help in solving some
real-life problems.

This paper is structured as follows: First, in Section 1, we discuss some known
definitions and results, which are used in the consequent sections to present our main
results. In Section 2, two Hermite-Hadamard type inequalities are presented involving
a fractional operator. Moreover, in Section 3, we prove a new identity using k-Riemann-
Liouville fractional operators. Employing this as an auxilliary result, we present some
refinements of Hermite-Hadmard inequalities related to (%, m)-convex functions and some
novel cases are elaborated. In Section 4, we discuss some applications related to special
functions, i.e., q-digamma and q-polygamma special functions.

2. Hermite-Hadamard Type Inequalities for (i, m)-Convex Functions

To begin this section, we recall the Riemann-Liouville k-fractional integrals, as given
in the following definition:
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Definition 6 ([37]). Let S

S € Li([w,,w,)), the k-fractional integrals (I" . and iI" _ of order
u > 0 are defined by: 1

1 x E 1=
F(x) = —— — ) 1& <
klwr"(’o KT () /(UI (x—¢)F "S(g)dg, 0 < w, <x<w

- 1 w ’_1<
H S0 = e [ e 0F S0 0w < v <y

respectively, where k > 0 and T'y is the k-gamma function given as

0 k
Te(x) i= [ e lefrde, Re() >0,
0
where Ty, satisfies the property Ty (x +k) = xTy(x) = 1and Ty (k) =1
Theorem 2. Let §

[w1, wa] — R be a (h, m)-convex function with 0 < wy < wy, m € (0,1]
If S € Llwy, ws), then the following inequality for k-fractional integral holds

u
1 2T -
g Crtman) k(ﬂ+k) ny+n,w S(mawn) + mbpk
(1 2 (mw, — wy) kL7207 (P
(1) 2w

w
2m ) ;):|
< MS(w @ (mew, ]/ c Q dc + umS(w) +m*S(24)]

1 2
n(3) PR A’“(Tg)@rldg )

iy

3(

Proof. Since S is a (h, m)-convex function, one has

3(2) <n(3) 1360+ m30)

(6)
where x = §wy + m(ZZ—g)
u
-

pand y = (g) L+ Sw).

! and integrating with respect to ¢ over [0, 1], we obtain

2_
— g)wz)dg
2—¢\w1 | ¢
<<2 )m—l—zcuz)dg
k w1 + mwy 2
<
uh(1/2) 2 =

mcawyp ’ 1<
0 /w1+mw2 (mwy —z) k™ S(z)dz
(mwy —wy)F /=2

Multiplying (6) by ¢
1

& [ w1+ mwy /1 = </1 -1 &
h(l/z)\y( 2 ) 0 ° 6= Jy of Slgwrtm
et
+ [ mgF
0

G

G
==

Bop w1 +mw,
2me+l 121 2 w1 Lkl*lc—\
T (v - —) S(v)do
(mwy — wy)k m

_ 2RkT(p) [Iy,k
- P

(mwy — wy)

Consequently,

K
1 < w1+mw2> 2kTy(p + k) [14, S F1pnk ~ (W1 }
< Il e S ETH] & 7
h(1/2)\$< 5 S o — o) F Loty . S(mwy) +m - \$< ) @)

me
( 2m

m
For the second inequality of (5), using the concept of (.

m)-convexity of S, we have

§<gw1 + m<22—g)w2) < h<%>g(wl) + mh(Zz_g)g(wz)
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and
2—¢ ¢ 2,(2-6\g (¥ €\5
< ST v \&( R o\ &
m‘y( 2 ( m ) T w2 ) = h( 2 \S(mz) +mh(z)‘y<“’2>
Adding the last two inequalities and multiplying by g%_l then integrating w.r.t, ¢ over
[0,1], we obtain

H

2%kT < 3
(V)[I’*wk]mwz +%(mw2)+m£ ) iy %(wl)]
mw, —awy)F L2 ( :

(
< [S(wr) + S(mws) /gk 1h< )dg—%m{

/(ﬂgl
+

3

4
/N
N —
N—
o\H
=
7N
N

i
N——
=

Y

This completes the rest of the proof. [

If h(g) = ¢, m = 1 in Theorem 2, then we have a result for convex functions as follows.

Corollary 1. Let S : [wy, wy] — R bea convex function with 0 < wy < wy. IfS' € L{wy, wy),
then the following inequality for fractional integral holds

G

(wl-i-CUz) 2k 11"k(;4+k) (®)

S(w1) + S(wa)
2 (ws —wl)y (M) 2 '

L S(w2) + ﬂ‘;i‘m),%(wl) <
sy

(

If h(t) = m = 1in Theorem 2, then it gives a result for P-function as follows.

Corollary 2. Let S : [wy, wy] — R be a P-function with 0 < wy < wy. If §' € Lwy, wy],
then the following inequality for fractional integral holds

B
g<a}1 +wz> < 25Ty (p +kﬂ) [I}t(fﬁwz S(ws) + I;w1+w2 g(“’l)] < 2[3(w1) + $(w))]- ©)
2 (wy — wq)F (=2)* (%)
If we put k = 1 in Corollary 1, we obtain
Remark 1.
s W1t wr 2T (p+1) & p & < S(wi) + S(w»)
J( 2 ) — (602 _ (U])H I(“l;wZ) \S(C(Jz) + I(wlng)_\f((»U1) >~ ] . (10)

Remark 2. If we put y = 1in Remark 1 , we obtain (1).

Theorem 3. Let S : [wy, wa] — R bea (h, m)-convex function with 0 < wy < wp, m € (0,1].
IfS € L|wy, ws], then the following inequality for k-fractional integral holds

I
2k kT k - -
_2FKT(p) [I?wl;wzﬁg(wz) +I(”w1+w2> %(wl)]

< [(wn) + S(w /gk (5 e+ m[3(1) + 3(42)] [ o35 ac

E.

&

+
/QI

g

N
;\
O\,_.
~

=
~
N[
~—
~—
)

[

"\
N———
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Proof. From the definition of (/, m)-convexity, we have
g8 2-¢c\w2 s A
d(zwﬁm( 2 )m)gh(2>”¢(w1)+mh( 2 )“(m)
S mz—g(—>+£w2 < mn (2= J(wl)—l—h( )_(wz).
2 m 2 - 2 m

Adding the last two inequalities and multiplying the resultant by ¢ 1 then integrating
w.r.t, ¢ over [0, 1], we obtain

/gk 1“<§w1+(229>w2>d9+/ Gk 1“(22_g(wl)+§wz)dg
< )+ St [ 10§t n[3(22) +3(2)] [ (25 )

which, gives
|

2kkT - _
(y),’j |:Il‘r’f g(ah) +1ﬂr’f %(wl)}
-7 -z

< 13w+ S(e)] [ ¢F($)de +m () 4 3(2)] [k (25 )ac

For the second inequality, using the Holder inequality, we have

[ (gm) ([6E))
[ 1h< : >dg-<m>;</;<h<t@>>%>é

and

This completes the proof. [

3. Refinements of Hermite—-Hadamard Type Inequalities

Before establishing our main results, we need the following lemmas.

Lemma?2. LetS: 1 — Rbea differentiable mapping on 1°, where w,, w, € 1°with0 < w, < w

-
IfS' € L|w,,w,], then the following equality for fractional integral holds:

- 1k -
Sma,) + 1, ) S(ew,)]

%(w1)+§(mwz) o rk(‘u+k) [I}‘k
2 L)

2(mw, —w

= mwzzwl{/(;l [(1 - g)% - gﬂ%’(gwl +m(1— g)wz)dg}.
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Proof. The proof can be easily verified using integration by parts and, hence, left. [

Lemma3. Let S : I — R beadifferentiable mapping on I°, where w,, w, € 1° with0 < w, < w,.
IfS' € L|w,,w,], then the following equality for fractional integral holds:

S(w) +S(mwy) — Ti(u+k) [k o wk &
2 2(mw, — w])% [I(wl)Jf‘g(mwz) + I(mwz)_\s(w])}

o -]

Proof. To prove this equality, we will use the result of Lemma 2

S(w,) +S(w,)  Tp(p+k)
2 2(w,

L2 - o - o] (e, + (- i

It is sufficient to verify that

1,k k&
%[Iéw +Sley) + 10 - 3(w,)]

_wl)

(mw, — w,)

22 1 {/01[(1 —¢)F —gﬂ%’(gwl +m(1 —g)wz)dg}

_ W{/Ol [1- (1= g)F ! = cF1] 8" (gw, +m(1 - €>wz)d€}'

By using integration by parts technique, we obtain

(s~ (1 o - ] e, (1 - e

(mwz—wl){k( §'(mw,) = §'(w,))
2 u+k

—k(mw, — w,)

! {(l—g)%'ﬂ—l—g%'H] X!
></0 oy S (gw, +m(1 —¢)w,)dg ».

Now, by using the fact
- - 1_
S (mw,) — ' (w,) = (mw, — ‘U1>/ S (gw, +m(1 — g)w,)dg,
0
we obtain the desired equality and the proof is complete. [J
Theorem 4. Let S : I — R be a differentiable mapping on 1°, where w,,w, € I° with

0 < w < w,and RZ € Llw,, w,]. If |S"| is (h,m)-convex function, then the following
mequalzty for fmctlonal integral holds:

g(wl)—'—g(mwz) B rk(.”"'k) wk s V g
2 2(mw, — wl)% {I S(mes) +1, (wl)}
k(mw, — 5( g =
< g ) [ - a-of e Jie

+|¥" (mw, |/ l— (1—¢)F —gZH}h(l—g)dg}.
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Proof. From Lemma 3 and using (%, m)-convexity of |3”|, we obtain

S(w,) + S(mw,) (n +k S o
e
<%{ 157 ( 1)|/ 1_ (1—¢)F g%ﬂ}ﬁ(é)dé?
13" (e, |/ 1_ (1-¢)F _gII:Jrl}h(l—g)dg}.

O

Corollary 3. Taking h(g) = ¢ in Theorem 4, we obtain a new result for m-convex functions:

& &
\s(wl) + \S(mwz) _ 1-‘k(.u +k) . {I} ’ig(mwz) + I”’kg(wl)}
2 2(mw, —w,)F L "
k(mw, —w,)* ( (1 U k
< 2 1 - Iad _ (\J/ (\// )
=T 2(u+R {(2 B +2) y+3k)“ DI+[S )H}
Corollary 4. Taking h(c) = ¢ and m = 1 in Theorem 4, we obtain a new result for con-
vex functions:
& &
‘9( )—;\S( ) o I-‘k(.l’l +k) . |:I£Jlg(wz) + I(]:,kg(wl)]
2(w, —wy)F L ?
k(wz — w1)2

< W{ (; -p(2 £ +2) - yf%) (18" ()] + |3 (w,)]] }

Corollary 5. Taking h(g) = ¢° in Theorem 4, we obtain a new result for (s, m)-convex functions:

G

<w1> + g(m(“)z) _ rk(.u + k)
2

)% {U‘r\g(mw )+ 1;{;2_%(%)} ’

2(mw, —w

mw, — w, )? <1 §'(
Sk(z(;qu)l) {<S—l1—1_'6(s+1’l;+2)_}l-i-kk5+2k>“%( IS )H}

Corollary 6. Taking h(¢) = ¢ and m = 1 in Theorem 4, we obtain a new result for s-
convex functions:

1

CJ?'
G?'

(w,) +
2

(w )_ rk(.u‘"k)y{lﬂk ( 2)+IZ/’_<<}((U1)]|

S
2(0_)2 - wl) “

k L — 12 k @// 0//
< (- (15 +2) — e 9@ + 19

Corollary 7. Taking h(g) = ¢(1 —¢) and m = 1 in Theorem 4, we obtain a new result for
tgs-convex functions:
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e (CR O D RS [CC R

Theorem 5. Let S : I — R be a twice differentiable mapping on I°, where w,, w, € I° with
0<w, <w,and " € Llw,,w,). IfIS"|", pr>11 5+ 7 1 — 1isan (h, m)-convex function,
then the following inequality for fractional integral holds

|%<wl> +Q(mw,)  Ti(p+k) [
2

I”kc‘(mw )+ I”k2 C‘(wl)] ‘

2(mw, —w) “1

k(mew

2(;;1(:))1)2 (1_P(ﬂ4r2]1(<)+k> (M |/ () + 3 me)V/olh(l_g)dg)i'

Proof. From Lemma 3, using (h, m)-convexity of |3”|” and Holder inequality, we obtain

S(w,) +S(mw,)  Te(p+k) [

" S(mw,) + " S(w )]
2 2(mw, — w,) ! e’ '

1

k(mw, — w,)? u

< 2(;114—](){_/01 [1 - (1_€)k+1 _gk+1} |<x//<gw1 +m(1 —g)wz)dg\}

1
< k(mw, — w,)? <1_ 2k >n
—  2(u+k) p(u+k)+k
- 1 1_ ¥
< (197l [ ee +18" ()" [ (1~ e )
0 0
0

Corollary 8. Tuking h(g) = ¢, in Theorem 5, we obtain a new result for m-convex functions:

%

+
w
1

2

(w,) +S(mw,)  Tr(p+k) {ﬂ‘k“(mw )+ M F(w )H
2(mw, — wl)% " 1

Corollary 9. Taking h(g) = ¢ and m = 1, in Theorem 5, we obtain a new result for convex
functions:

1

A () (P
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Corollary 10. Taking h(g) = ¢°, in Theorem 5, we obtain a new result for (s, m)-convex functions

Te(p + k) {[ﬂ\s(mw )+If’n’£§(w1)H

S(w,) +S(mw,)
2 2(ma)2—wl)% 1
k(mwz_wl>2 2k ‘(\//( )‘r_._|<\//( )lr ¥
2(u + k) (l_p(u+k)+k) ( s+1 )

Corollary 11. Taking h(g) = ¢ and m 1 in Theorem 5, we obtain a new result for s-

convex functions:
S(w) +S(w,)  Te(p+k) nks ks
2 2(w2—w1)£{1‘“f (@) + Ly (wl)H
k(w, — w,)? 2k [S"(w)|" +1S"(w))|"\ "
2(p+K) <1p<y+k>+k> ( s+1 )

Corollary 12. Taking h(¢) = ¢(1 —¢) and m = 1 in Theorem 5, we obtain a new result for
tgs-convex functions:

S(w) +3(w,) T4k ks o s
2 2(cuzcul)}kl{1“’1+ (2)+I“’5 (wl)H

Kw, — @, 2% 18 (w,) [ + 3" (w,) 7\ 7

STES (1_P(u+k)+k> ( 6 )

Theorem 6. Let S : I — R be a differentiable mapping on 1°, where w,,w, € I° with
0<w, <w,and§" € Lw,, w,]. IS, pr>1,1 T L —1isan (h,m)- convexfunctzon,

then the following inequality for the fractional integral holds

%

(@) +S(mw,)

2 2(mw, — w,) @

1

Ty (p +k) [I”f%(mw )+ Iz;’f}@(wl)} ‘

=

Jo[1-a-glEry —g(%‘*‘l)y :
Ilde )

<k(mw2_w1)2
T 2r R\ k[ (@)l + R - 9IS (maw

Proof. From Lemma 3, using (h, m)-convexity of |3”|" and Holder inequality,

(e + Slme) 2(;iu_+ f,)y,: [ 5me) + 12, 5] ‘
< K H+k 2{/01 gk“}l“”(gwl+m(1—€)wz)d9\}
Ko, — o, [ (1 Pl g () )
’Hk {</° wg) < 0 [I“”(gwﬁrm(l—g)iz)’dg

_ k(mw, —w,)? J[1- =gl — (k)] '
T 2An R\ [ (@)l + R = 9IS (mewy)|de |

This completes the proof. [
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Corollary 13. Particularly, for E(g) = ¢, in Theorem 6, we have a new result for m-convex
function, i.e.,

G

(w,) +S(mw,)  Tp(p+k)

2 2(mw, — w,)

(8" 06,118 (@) + (1, 6,1)|S" (mao,) "}

k&
; |:U4+\9(ﬂ’la] )+ IZwZS(wl)} ‘

k(mw, — wl)z

2(p+k)
where, S*(p,¢,1) = /ol g[l -(1- g)(%“) - g(%“)ydg

Pluer = [1-gft- - -] a

Corollary 14. Particularly, for E(g) = ¢and m = 1, in Theorem 6, we have a new result for a
convex function, i.e.,

S(w) +S(w,)  Te(p+k) nk ks
: %w_w)[l @w+12<%ﬂ‘
e o)1 618w + 820603 )}

Corollary 15. Particularly, for h(¢) = ¢*, in Theorem 6, we have a new result for (s, m)-convex
functions, i.e.,

G

() +S(mw,)  Ti(p+k) [
2 2(mw, —w )

— 2 = r
SM@$+SJ{§W&nM%( DI+ 82(1,6,7,9)| S (meo,) "}

1 ) /)
where, S*(u,¢,1,5) = / ¢* [1 —(1- g)(}?ﬂ) — g(}?“)ydg
0

1

I”kc‘(mw )+ I”k2 %(wl)} ‘

Corollary 16. Particularly, for h(g) = ¢* and m = 1, in Theorem 6, we have a new result for
s-convex functions, i.e.,

CQI

(w) +S(w,)  Te(p+k) [ ks ks
: %w_w)[r S(awy) + 1 (%ﬂ|

k(w, — w,)? S r 3 rlr
< S e 913 @) + 20698 ()}

l 0
where, S*(y,¢,1,5) = / ¢ [1 -(1- g)(%“) - g(}?“)]rdg
0
1
Suers) = [ 1-r[t- -l -] g,
0
Theorem 7. Let S : I — R be a differentiable mapping on I°, where wy,wy € I° with

0<w <w,and R% € Llw,,w,). If|S"|", forr > 1isan (h,m)-convex function, then the
followmg mequalzty for fractional integral holds:
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§(wl)+2§(mw2> 2(;1;52” :?) [Iglf%(mwgﬂz‘;w %wH
k(mw, — w,)? o F
e <y£2k) (/O |:1_(1_g)(k+1) g(k+1)i|

wrfae)

and power mean inequality,

% [R(&)IS" (@) + (1 = ¢)[$" (m

Proof. From Lemma 3, using (h, m)-convexity of |3 |"
g(wl)"_%(mwz) - rk(y+k)
2

2(mw, *wl)k [IM+\S(mw )+Iﬁ‘1’(’f)2§(wl)H
k(%lffﬁf { ([li-a-atm- e““)}dg)ly
x (/o1 (1— 1—¢)(F+) - (k“))lc‘”(gwl +m(l—c¢) de)’

)2 -1/ 1 p ‘
= k(n;((u;iw(:))l) (ﬂfﬂc) </0 1=t i)
% [1(6)IS" (w))I" + (1 = )| §" (mew

This completes the proof.

}

1

I ]de) "

O

G

Corollary 17. Tuking h(g) = ¢ in Theorem 7, we obtain a new result for m-convex functions
(@) +3(mew,)  Te(p+k)

k&
7 o w)% [IV+\s(mw)+If;w2\s(wl)H
k(mw, — w,)?

I (RN TR R e

Corollary 18. Taking h(g) = ¢ and m =
vex functions:

1 in Theorem 7, we obtain a new result for con-

(4)'

S(w,) +S(w,)  Ti(p+k)
2

k k=
, {Iﬂ%( 2)+1§)%<w1)H
2(w, —w, )k L1 2

1

s ) (et o)

1

) [ @r + 197 @]}

Corollary 19. Taking h(g) = ¢° in Theorem 7, we obtain a new result for (s, m)-convex functions
() +S(mw,)  Te(u+k) [
H"
¥

ks
> Il‘r\s(mw )+ IZWZ%(wl)} |

S () (Gt

s+1

k

%

2(mw, — w,)

1
r

E42) = e ) [ @l 19 ]}
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Corollary 20. Taking h(¢) = ¢° and m = 1 in Theorem 7, we obtain a new result for s-

convex functions:
S(w) +3(w,) - Telp+k) [Mg(%) Hy,kg(w])H
2 2(“}2_“}1)% “ “2
1
k(w, — w, )? i 1= 1 U k - - A7
< 2 1 _ ol o A r & '
2(u+k) <y+2k> {<s+1 ﬁ<s+1’k+2) pt+k(s+2))[|\y (@)I" + 3% ()] ”

Theorem 8. Let S : I — R be a differentiable mapping on 1°, where w,,w, € I° with
0<w, <w,and " € Llw,,w,]. If|S"|", r > 0is (h, m)-convex function, then the following
inequality for a fractional integral holds:

G

() Sns) __Tipth) |

2 2(%*‘01)}‘ !

Ifjfg(mwz) + Iﬁ}zg(wl)] ‘

1
14

k(mw, —w,)? | (1 U k
S TR {<2_ﬁ(2’p(k+1)+1)_p(y+k)+2k>

1

r

) K/Ol(l =9 [HOIS" (@) + (1~ 13" (mec, ] )
+ (/01 G {E(g)|§”(w1)|’ +h(1 - g)|g”("lw2)|’}dg) 1] }

Proof. From Lemma 3, using (h, m)-convexity of |S”'|” and Holder-Iscan integral inequality,

2 2(% _wl) wf

S(w,) + S(mw Ly (p+k ks kg
( 1) ( 2) . k(# )’; {IV %(mw2)+151w2%(w1):||

1

< Mo P[0 0i- - orE -0 t0]ac)

< ([ a-o18"cw, +m1 -l )’

1

N </01g[1 B (1_€)p(;{i+1) _gp(’;ﬂ)}dg) P
([ 19" ew, +mia - g>w2>|rdg)1}

k(mw, —w,)? | (1 i k v
= 2(u+k) {(2_ﬁ(2’p(k+1)+1)_ p(,u—i—k)—i—Zk)

~i=

. l(/;lu — Q) [HOI () (1 - €)|g//(mw2>r])

1
1o _ - G
([ <[FI3 @)r + R = 013" oyt H
This completes the proof. [

Corollary 21. Particularly, for h(g) = ¢ in Theorem 8, we have a new result for m-convex
functions, i.e.,
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G

(wl) +§(mwz) _ 1—‘k(,u"'k) W, S(mw uk S (w
. ZW%_%VP+< >+%%<1ﬂ

k(mw, —w,)? | /1 i k v
<M s e )

>4C%%)| P%3>Wl+0w%>||wwéﬂ>1},

Corollary 22. Particularly, for m = 1 in the last Corollary 21, we have a new result for convex

functions, i.e.,

k

k(w, —w))? | (1 U [
STEY) {(2_ﬁ(2’p(k+1)+1)_p(y+k)+2k>

{CN1)| Pﬂgﬂ) OM2>"“&>'Y]}

Corollary 23. Particularly, for h(g) = ¢° in Theorem 8, we have a new result for (s, m)-convex

functions, i.e.,

S(w,) + S(mw Ti(p +k kg
( 1) 5 ( 2) _ 5 k(]’l ) m [Iy+d(mw ) + Ir]/;;w%(wl)] ‘
(mw, — w, ) ! ’

1

k

k(mw, —w,)? | (1 u [
< {< - B2 p(z+1)+1) - p(y%—k)%—2k>

- 2(u+k) 2 k

<

X

I

Corollary 24. Particularly, for m =1, in the last Corollary 23, we have a new result for s-convex

@wuw@%mv'M+Q')+(Wﬁﬂ+¢wumww )

functions, i.e.,

CQ'
CQ'

e L‘HW+M[W%W»H”W%M

2w, —ao) LT

k(w, —w)? | (1 u k v
< {(2 B2 p(L+1)+1) ;7(}4—i-7€)+27<>

2(p+k)
X[(ﬁ(s+1,2)|g//(wl)|, |M(+2)| > + <|Os(+2)| +B(s+1,2)|3"(w z)|r>r] }

4. Applications to Special Functions
This part introduces a few applications to the assessments of some extraordinary
functions and, specifically, q-digamma functions. As a result of the applications of the
g-calculus in mathematics, physics and statistics, there was a critical increase in the quantity
of research work in the space of the q calculus.
The digamma function has been generalized for negative integers by Jolevska-
Tuneska et al. [39], who extended the digamma function for negative integers, and Salem
and Kilicman [40], who generalized polygamma functions for negative integers. Salem [41,42]
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introduced the concepts of neutrix and neutrix limit to define the q-analogue of the gamma
and the incomplete gamma functions and their derivatives for negative values of x. The
q-digamma function ¢4 (x) was introduced by Krattenthaler and Srivastava [43] and they
elaborated some more properties and explained the summations of basic hypergeometric
series. They presented that i4(x) tends to the digamma function ¢(x), whenever q — 1.
Salem [44] discussed some basic properties and extensions of q-digamma functions. The
g-digamma function has a great deal of applications in various fields of mathematical
sciences, such as probability theory. Specifically, totally monotonic functions including the
gamma and q-gamma functions are vital on the grounds that they empower us to assess
the polygamma and q-polygamma capacities.

q-digamma function: Suppose 0 < q < 1, the gq-digamma (psi) function g, is the
q-analogue of the Psi or digamma function ¢ defined by

=0+ 4

kx

:—ln(l—q)Jrlan:1 =
=0+ 9

For q > 1and x > 0, the g-digamma function ¢4 is defined by

0 q—(k+x) ]

1
Pg=—In(q—-1)+ lnq[x_2_kzolq(k+")

=—In(q—1)+ lnq{x—;—zqqu]

In [43], it was shown that lim,_,1+ §q(x) = limg_,1- Pq(x) = P(x).
The nth derivative of the q-digamma function function is called a q-polygamma
function, which is given as

le
Pq(x) = thq(x); x>0, 0<q<l

Proposition 1. For q € (0,1) and 0 < wy < wy, then the following inequality holds:

‘lp;(wl)w’q(mwz)_ Te(p + k)

wk 1k
2 2(meo — o) 1 me) + 12 ¥ >H )

me—wlz
SW{(;_ﬁ(z'Z”) ;4+3k>[¢°‘( +‘¢§1(W2)}}'

Proof. We set the function & = l/Jq thus the function S = 1[13 is a completely monotone
function on (0,00) for each q € (0,1). Applying Corollary 3, we obtain the desired
inequality (11). O

Proposition 2. For q € (0,1) and 0 < wy < wy, then the following inequality holds

1/’q(“’1)+24’q(mw2) _ _ T(ptk) {I'uklpq(mw ) I‘u’ qu( )H

i
2(mw, —w, )k
1
4

1
k(mw, —w, ) 2%k WJS( DI+l (mew,) " ’
< e (1 i) ( )

Proof. We set the function & = 1p;l, thus the function S = 1,0(3] is a completely monotone
function on (0,c0) for each q € (0,1). Applying Corollary 8, we obtain the desired
inequality (12). O

(12)
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Proposition 3. For q € (0,1) and 0 < wy < wy, then the following inequality holds

2(w, —w,)

1
K(w, -y )? s 7[R 93wl \ 7
< 2(2/4+k§ (1_P(H+k)+k) e :

Proof. We set the function & = 1/Jq thus the function S = lpa is a completely monotone
function on (0, c0) for each q € (0,1). Applying Corollary 12, we obtain the desired
inequality (13). O

‘/’q(%)‘;‘/’q(“’z) — _Delp+k) T [1}[+¢q( ,) + 10 ‘Pq(wl)H
(13)

Proposition 4. For q € (0,1) and 0 < wy < wy, then the following inequality holds

w\?

qu(%);‘/’q(“'z) — _Dlp+k) { +l/’q(w )+I% ¢q( )H

2(w,—w,)

< Hs () { (4Pl 2= ) [ + [#R10)

.
Iy

Proof. We set the function & = l/Jq thus the function S = 1/)3 is a completely monotone
function on (0, 0) for each q € (0,1). Applying Corollary 17, we obtain the desired
inequality (14). O

Proposition 5. For q € (0,1) and 0 < wy < wy, then the following inequality holds

a(w) T q(mw,)  Ty(u+k '
|wq<w> Jalenl LB [ty )+ 125 gyt >]|
(mwz_wl)k !

k(mw, — wl)2

1 k ,
2(p+k) {(2 A2 p( TUHD - p(y+k)+2k> (15)

3 r 3 N\ 3 r 3 N
X[(%(;ul) +tpq<r§wz>|> +<|wq<;ul>| +|wq<n;wz>> ”

Proof. We set the function & = 1/Jq thus the function S = tpf'l is a completely monotone
function on (0, c0) for each q € (0,1). Applying Corollary 21, we obtain the desired
inequality (15). O

Proposition 6. For q € (0,1) and 0 < wy < wy, then the following inequality holds

! +pq(w d K. j
ol () rk(”k)’;{lfirll)q( W) + 95 (@ )H

k(w, —w, )? 5
SM{@‘MZ'V@“)“)‘M)” (1e)
1

Proof. We set the function & = lp/q, thus the function S = gbg is a completely monotone
function on (0, c0) for each q € (0,1). Applying Corollary 22, we obtain the desired
inequality (16) . [

5. Conclusions

In this paper, we have set up a few new fractional integral Hermite-Hadamard
inequalities for (h, m)-convex functions. If we choose # = k = 1, one can obtain the classical
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integrals (as a unique case) from the definition of k-fractional integrals. Subsequently, we
have acquired some new inequalities as refinements of the Hermite-Hadamard type and
some special cases using different convexities such as convex function, m-convex function,
(s, m)-convex function, s-convex function, and tgs-convex function including fractional
integrals. Finally, we have presented some applications to q-digamma functions with
respect to our deduced results. The thoughts and strategies of this paper might inspire
further research in this powerful field.
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