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Abstract: A new sigma identification protocol (SIP) based on matrix power function (MPF) defined
over the modified medial platform semigroup and power near-semiring is proposed. It is proved
that MPF SIP is resistant against direct and eavesdropping attacks. Our security proof relies on the
assumption that MPF defined in the paper is a candidate for one-way function (OWF). Therefore,
the corresponding MPF problem is reckoned to be a difficult one. This conjecture is based on the
results demonstrated in our previous studies, where a certain kind of MPF problem was proven to be
NP-complete.

Keywords: matrix power function; sigma identification protocol; security against eavesdropping
attack; candidate for one-way function

1. Introduction

In this paper a new paradigm for the so-called Sigma Identification Protocol (SIP)
based on the authors’ earlier proposed new candidate for one-way function (OWF) is
presented. In general, Sigma protocols are three-round protocols similar to the well-
known Schnorr identification protocol. They are typically used as sub-protocols in more
complicated settings and for more advanced use. For example, Sigma protocols can
easily be transformed into corresponding identification and signature schemes. Another
application is to design protocols that allow one party to prove to another that certain facts
are true (without revealing private information). For example, to prove that encrypted
value V lies in a certain range without revealing any other information about V. Sigma
protocols can be combined to make new Sigma protocols. For example, in the AND-
proof construction, a Prover can convince a Verifier that he knows witnesses for a pair of
statements. In the OR-proof construction, a Prover can convince a Verifier that he knows
witnesses for one of two statements. These examples convince us that the development of
Sigma protocols based on new paradigms is promising.

The construction of cryptographic primitives based on matrix power function (MPF)
belongs to the field of so called non-commuting cryptography [1], [2]. The development of
non-commuting cryptography is important due to the need to replace traditional crypto-
graphic methods vulnerable to quantum cryptanalysis. Peter W. Shor has proposed the
polynomial-time quantum cryptanalysis [3] for the traditional cryptographic primitives
such as Diffie—Hellman key exchange protocol, RSA and ElGamal cryptosystems, Digital
signature algorithm (DSA) and Elliptic Curve DSA (ECDSA).

One of the promising trends is the creation of OWFs, the security of which relies on
the NP-hard problems [4]. Thus far, there are no known effective quantum cryptanalytic al-
gorithms solving NP-hard problems; therefore, this cryptographic trend is a significant part
of the so-called post-quantum cryptography [5]. One of the trends to create cryptographic
primitives that can resist quantum cryptanalysis attacks is lattice-based cryptography [6]
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and hidden field equations (HFE) based cryptosystems [7–10]. Despite some cryptanalytic
attacks on the HFE cryptosystem [8,9], this trend is viewed as promising [10].

MPF is somewhat related to the multivariate polynomials used in HFE cryptosystems
since the complexity of so called MPF problem and the NP-completeness of this problem
is proved using polynomial-time reduction of multivariate quadratic (MQ) problem [7].
Referencing [11] it is proved that certain kinds of MPF problems are NP-complete as
well [12,13].

In this paper the novel MPF based sigma identification protocol (SIP) is presented
using several specifically selected algebraic structures introduced in [14]. The concept of
abstract MPF as well as main definitions for the construction of SIP are given in Section 2.
The algebraic structures for the construction of MPF are defined in Section 3. MPF SIP is
presented in Section 4. The security of MPF SIP against eavesdropping attacks is proven
in Section 5. In Section 6, the selection of security parameters as well as the efficiency
analysis are presented. The discussions and conclusions are presented in Section 7. The
table of notations used in this paper as well as the numerical example are displayed in the
Abbreviations and Appendix A, respectively.

2. The Construction of the Abstract Matrix Power Function

In this section, the matrix power function (MPF) is constructed in an abstract form
without specifying exact algebraic structures that will be introduced in subsequent sections.
Let X = {xil}, W = {wlj} and Y = {yjk} be m × m matrices over some semiring, and indices i, j,
k, l ∈ Im = {1, 2, . . . , m}. Multiplying matrix W by matrix X from the left and by matrix Y
from the right yields a new matrix Q = {qik}.

XWY = Q;
m

∑
j=1

m

∑
l=1

xilwl jyjk = qik; i, j, k, l ∈ Im. (1)

Let S be some multiplicative semigroup and R some numerical semiring. In the case
that MPF S is named a platform semigroup and R an exponent semiring. The exponent
semiring of natural numbers with zero is denoted by N0 = {0, 1, 2, . . . }. The corresponding
semigroup of matrices defined over S is denoted by MS and the semiring of power matrices
defined over R is denoted by MR. Then, using an analogy with the matrix multiplication
defined in (1), the left MPF, the right MPF and the left-right or simply MPF are introduced
for X, Y ∈MR, xil, yjk ∈ R and for W ∈MS, wlj ∈ S as follows.

Definition 1. The left MPF corresponding to the matrix W powered by matrix X from the left with
the MPF value equal to the matrix C = {cij} has the following form:

XW = C cij =
m

∏
l=1

wl j
xil . (2)

Definition 2. The right MPF corresponding to the matrix W powered by matrix Y from the right
with the MPF value equal to the matrix D = {dlk} has the following form:

WY = D dlk =
m

∏
j=1

wl j
yjk . (3)

Definition 3. The left-right, or simply MPF corresponds to the matrix W powered by matrix X
from the left and by matrix Y from the right with the MPF value equal to the matrix Q = {qik} and
is expressed in the following way:

XWY = A, aik =
m

∏
j=1

m

∏
l=1

w
xil ·yjk
l j ; i, j, k, l ∈ I(m). (4)
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The MPF definition is related to the following associativity identities.

Definition 4. MPF is one-side, (left-side or right-side) associative and two-side associative if the
following respective identities hold:

Y(XW) = (YX)W = YXW; (WX)Y = W(XY) = WXY. (5)

(XW)Y = X(WY) = XWY. (6)

In general, MPF is a function F: MR × MS × MR → MS. To be concise, we will use
the notation MPFR

S for the definition of MPF with base matrix defined over the platform
semigroup S in MS and with power matrices defined over the exponent semiring R in MR.
The categorical interpretation of MPF is presented in [15], in the context of the construction
of several key agreement protocols. We slightly reformulate the notions used in the authors’
interpretation by the following proposition, which is more appropriate for our study.

Proposition 1. If MPF is associative, then MS is a multiplicative MR-semibimodule.

This means that there exist bilinear (left and right) actions of the matrix semiring MR
on the matrix semigroup MS. According to the definition of action, it must satisfy the
associative law corresponding to Definition 4. Since matrix semigroup MS is multiplicative,
then MR-semibimodule MS is multiplicative in our case. The following lemma is presented
without proof. The proof can be found in [14].

Lemma 1. If R is a commutative numerical semiring (e.g., N0 = {0, 1, 2, . . . }) and S is a
commutative semigroup, then MPF is two-side associative.

The direct MPF value computation requires finding matrix A in (4), when matrices X,
Y and W are given. The inverse MPF value computation requires finding matrices X and
Y in (4), when matrices W and A are given. The MPF problem is the computation of the
inverse MPF value.

Definition 5. A function F: Dom → Ran with finite sets of domain (Dom) and range (Ran)
is a candidate for one-way function (OWF) if for all d ∈ Dom the F(d) can be computed by a
polynomial time algorithm, but any polynomial time randomized algorithm that attempts to compute
an inverse value F−1(r) = d for F, where r ∈ Ran is given, succeeds with negligible probability. That
is, for all randomized algorithms, all positive integers c and all sufficiently large n = length(d), the
probability to compute an inverse value r for F is at most n−c. The probability is taken over the
choice of r from the discrete uniform distribution in Ran.

Paraphrasing this definition in a non-formal way, MPF is candidate for OWF if: (1) the
MPF direct value computation is easy, and (2) the MPF problem is hard.

The computation of the direct MPF value is effective and can be done by powering ele-
ments of the platform semigroup S by elements of the exponent semiring R with relatively
small values (e.g., up to 5 used in this study). It is related to the matrix multiplication by
the two matrices from the left and right. In this paper we present some evidence that the
solution of the MPF problem is hard.

Proposition 2. The necessary requirements for MPF for the proposed SIP are the following: (1) it
is a candidate for OWF, (2) it is associative, and (3) the following distributive identity holds:

(U+X)W( +Y) = UWV * UWY * XWV * XWY, (7)

where * is a Hadamard product of matrices [16].
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3. The Definition of Algebraic Structures

In order to construct a platform semigroup for MPF, the class of modified multi-
plicative medial semigroups [17] is used. A medial semigroup SM has the presentation
consisting of two generators a, b and relation RM is defined in the following way:

SM = <a, b | RM>, (8)

RM: w1abw2 = w1baw2, (9)

where w1 and w2 are arbitrary non-empty words in SM, written in terms of generators a and
b. The reason for the introduction of the medial semigroup is the existence of the following
identity, based on the relation RM, valid for all words w1, w2 ∈ SM and any exponent e ∈ N0,
where N0 = {0, 1, 2, . . . } is the semiring of natural numbers with zero:

(w1w2)
e = w1

ew2
e. (10)

In order to construct a platform semigroup S for MPF in (4), two extra relations R1
and R2 are added to SM:

R1: a5 = a; R2: b5 = b. (11)

These relations can be generalized for arbitrary finite exponents instead of 5, however,
only relations (11) are considered in this paper for simplicity. Thus, modified medial
semigroup S has the following presentation:

SM = <a, b | RM, R1, R2>. (12)

Note that we define S as a multiplicative, non-commuting and cancellative semigroup.

Proposition 3. Semigroups SM and S are transformed into monoids by introducing an empty word
as a multiplicatively neutral element, denoted by 1. Then, conveniently, the following identities
hold for all w in SM and S:

w1 = 1w = w, w0 = 1; 0 ∈ N0. (13)

Using relation RM in (9) any word in SM can be transformed to the form w = bsatbuav

moving generators a, b left and right, where s, t, u, v ∈N0. Let w = bsatbuav be such word in
SM. Reformulating the Theorem 12 in [14], the normal form wnf of word w in the semigroup
SM is defined by the following function nf : SM → SM,nf and is expressed by the relation:

wn f = max
t,u

(bsatbuav) = bβaia bib aα = n f (w); α, β ∈ {0, 1}; ia, ib ∈ N0. (14)

The normal form in the modified medial semigroup S is defined by the following
theorem.

Theorem 1. The normal form wη of the word wnf in the normal form of SM, is represented by the
function η: SM → S and obtained by applying the minimization procedure of exponents ia, ib in
(14) using the relations R1, R2:

wη = min
ia ,jb

wn f (β, ia, jb, α) = min
ia ,jb

(bβaia bjb aα) = bβaibjaα = η(wn f ); α, β ∈ {0, 1}; ia, ib ∈ N0. (15)

Since S is a multiplicative semiring, the following exponent identities hold for any
generator g ∈ {a, b}:

gigj = gi+j; (gi)j = g ij. (16)

Addition and multiplication tables for exponents i, j are presented in Tables 1 and 2
below.
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Table 1. Addition (+) table for exponents i, j.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 1

2 2 3 4 1 2

3 3 4 1 2 3

4 4 1 2 3 4

Table 2. Multiplication (•) table for exponents i, j.

• 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 2 4

3 0 3 2 1 4

4 0 4 4 4 4

Referencing relations R1, R2 the semiring N0 can be replaced by the finite semiring
N4 = {0, 1, 2, 3, 4}. This semiring has an additive semigroup with index 1 and period 4. The
exponent functions defined on S are determined by non-negative exponents in semiring N4.

We generalize these functions by introducing the “imaginary” unit ιwhich has some
weak analogy with complex numbers in classical numerical algebra based on the imaginary
unit i (i2 =−1). According to this “analogy” the set of complex exponents can be introduced
and denoted by ι·N4, where “·“ denotes a formal multiplication of ι by any number in N4.
According to our assumption and using the relation RM in (9), the following properties of
exponent ι are defined:

ι2 = 1, 1 ∈ N4; aι = b; bι = a; t + ι·u 6= ι·u + t, (17)

where t, u ∈ N4. This means that elements t + ι·u and ι·u + t do not commute.
The algebraic structure termed a near-semiring [18] was introduced for the construc-

tion of MPF in [14]. In general, it can be defined in the following way.

Definition 6. A near-semiring (NSR) is a nonempty set with two binary operations “+” and
“·”, such that <NSR; +; 0> is an additive monoid with neutral element 0, and <NSR; ·; 1> is a
multiplicative monoid with neutral element 1, satisfying the following (two-sided) axioms for all x,
y, z in NSR:

x·(y + z) = x·y + x·z, and (x + y)·z = x·z + y·z, (18)

0 + x = x + 0 = x; 0·x = x·0 = 0; 1·x = x·1 = x. (19)

Referencing to this definition the special type NSR required for MPF SIP construction
is defined in the following way.

Definition 7. The exponent near-semiring NSR consist of non-commuting additive monoid <NSR;
+; 0> and commuting multiplicative monoid <NSR; ·; 1> satisfying Definition 6 and is a union of
the following sets

NSR = N4 + ι·N4 + N4 ∪ ι·N4 + N4 + ι·N4, (20)

where the set N4 + ι·N4 + N4 defines the class of elements {t + ι·u + v} and the set ι·N4 + N4 +
ι·N4—the class {t·ι + u + v·ι}, where t, u, v ∈ N4.

The presentation of the semigroup S by relations RM, R1, R2 in (9) and (11) induces
certain properties and relations in NSR that can be directly verified and are presented
below without the proof.
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Proposition 4. For any x, y ∈ NSR, where x = t + ι·u + v and y = ι·t + u + ι·v and t, u, v ∈ N4,
the following identities hold for the exponents of generators a and b in S:

ax = at+ι·u+v = ataι·uav= atbuav; ay = aι·t+u+ι·v = aι·tau aι·v = btaubv. (21)

Identity to (21) can be extended for any word w ∈ S:

wx = wt+ι·u+v = wtwuwv; wy = wι·t+u+ι·v = wtwuwv, (22)

where the word w is obtained from w by renaming the generator a to b and b to a respectively.
It is easily verified that the exponent function in S satisfies the following more general
identities for any w, w1, w2 ∈ S and any x, y ∈ NSR:

wxwy = w(x+y) = wx+y; (wx)y = w(x·y) = wx·y, (w1w2)x = (w1)x(w2)x. (23)

The partial case of (23) are the following identities: ax ay = ax+y, (ax)y = a(x·y) = ax·y and
(a1a2)x = (a1)x(a2)x for any a, a1, a2 ∈ S and x, y ∈ NSR. The same is valid for the generator b.
The illustration of the computation of exponents in S is presented in Example 1 below.

The set of matrices defined over the NSR is denoted by MNSR.
Referencing to the Proposition 1, we present the following easily verifiable theorem

without a proof.

Theorem 2. MS is a multiplicative MNSR-semibimodule.

Since NSR is acting on the semigroup S as an exponent function, then MNSR is acting
on MS as MPF. According to Definition 7 and semigroup S presentation in (12) the following
proposition can be formulated.

Proposition 5. NSR introduced in the Definitions 6 and 7 has non-commuting additive monoid
<NSR; +; 0> and commuting multiplicative monoid <NSR; ·; 1>, i.e., for all x, y, z1, z2 ∈ NSR the
following identities hold:

z1 + x + y + z2 = z1 + y + x + z2. (24)

x·y = y·x. (25)

Relation (25) implies the following identity:

ι·x = x·ι. (26)

Example 1. The computation of wx. Let w = b3aba2 and x = 2 + ι·3 + 4, then the 1-st step of the
computation is performed in the following way.

wx = w2+ι·3·+ 4 = (b3aba2)2+ι·3+4 = (b3aba2)2 (b3aba2)ι·3 (b3aba2)4 = (b6a2b2a4) (a9b3a3b6) (b12a4b4a48)

At the second step transformation to the normal form (15), every word in parentheses is per-
formed.

(b6a2b2a4) (a9b3a3b6) (b12a4b4a48) = (b7aba5) (a12b9) (b15aba11) = (b3aba) (a4b) (b3aba3) = = ba9b8a = bab4a.

The final word is found using R1 and R2 as well, where b8 = b4, a9 = a.

The gray part of Table 1 represents the additive subgroup N4
+ = {1, 2, 3, 4} with neutral

element equal to 4. Subgroup N4
+ has the subset of two generators Γ = {1, 3}. The subgroup

N4
+ and generators Γ will play an important role in proving the uniform distribution

of conversations and the security against eavesdropping attack of MPF SIP in Section 5.
Moreover, relations R1, R2 in (11) define the smallest exponent e = 5 where subgroup N4

+

has at least two generators. It is important to have a random choice in the set having at
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least two generators and will be used in our construction as well. The gray part of Table 2
represents the multiplicative semigroup N4

+ in N4. It is easily verified that N4
+ is a sub-

semiring of N4. Replacing N4 by N4
+ in Definition 7, we obtain a new near-semiring as a

sub-semiring of NSR which is denoted by sNSR. The matrix set over the sNSR is denoted
by MaNSR and matrix set with entries in Γ = {1, 3} is denoted by MΓ. MPFs defined by the
multiplicative MsNSR-semibimodule MS and by the multiplicative MsNSR-semibimodule
MS are denoted by MPFNSR

S and MPFsNSR
S respectively.

Together with the introduced here near-semirings the introduction of anti-NSR, de-
noted by aNSR, to the original NSR is necessary. According to (20), aNSR is defined by:

aNSR = −N4 − ι·N4 − N4 ∪ − ι·N4 − N4 − ι·N4, (27)

where for any element x in NSR there exists a unique element x′ in aNSR obtained by
switching the sign of x from positive to negative, i.e., x′ =−x. The matrix set over the aNSR
is denoted by MaNSR. For any matrix H in MNSR there exists a unique matrix −H in MaNSR
with negative entries. Then, formally, we assume that

H − H = O, (28)

where O is the zero matrix, i.e., matrix with all entries equal to zero.
This construction will be used in the security proofs for the so-called simulator Sim

computations. Several additional properties of MPFaNSR
S are presented below without the

proof. Let O be a zero matrix in MNSR and E is a unity matrix in MS consisting of all entries
equal to 1 in S. Then according to (7), (27) and (28), for any W, A ∈MS and U, H ∈MNSR
the following identities hold:

AO = E; OA = E; W * E = E * W = W; (29)

UAH * UA−H = U(AH−H) = UAO = UE = E. (30)

The last identity remains valid if the presented actions are reversed from the left to
the right.

4. MPF Sigma Identification Protocol (SIP)

In general, sigma identification protocols (SIP) are realized using the conversation
between the Prover and the Verifier when the Prover proves to the Verifier the knowledge
of the secret (e.g., his private key—witness) without revealing knowledge about this
secret [19]. In this case it is said that SIP has the Zero Knowledge Proof (ZKP) property [19].
Prover is using his private, public key pair we denote by PrK, PuK named as a witness-
statement pair.

We denote any matrix Q that is generated uniformly at random from the matrix set M
by Q← rand(M).

We use matrix sets MsNSR and MΓ introduced in Section 3 instead of the matrix set
MNSR to provide a random uniform distribution of data generated in MPF SIP.

Parties share the same public parameter represented by matrix W in MS generated at
random W← rand(MS). The prover runs the following key pair generation algorithm. For
the private key PrK-witness generation two secret matrices X, Y in MΓ = {1, 3} are chosen
at random:

X,Y← rand(MΓ). (31)

Then PrK = (X, Y)∈MΓ ×MΓ.
The public key PuK-statement is computed using MPFsNSR

S defined above:

PuK = XWY = A. (32)
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Prover distributes his PuK = A ∈ MS to all users including Verifier. According to
the 3-rd condition in the Proposition 2 represented by the distributive identity (7), we
formulate the following easily verified theorem without proof.

Theorem 3. MPFsNSR
S satisfies the distributive identity (7).

Definition 8. Equation (32) defines a set of relations Rel between the set of witnesses (PrK) and
statements (PuK) which is a subset of the following direct product of sets: Rel ⊆ (MΓ ×MΓ) ×MS.

Since relations R1, R2 in (11) define a finite semiring S, they induce the finiteness of
sNSR. Then, sets MsNSR and MS are finite as well.

Definition 9. Let matrix A = {aij} be of finite order and assume that all entries qij can be effectively
encoded by the finite string of bits not exceeding polynomial length. Then, matrix A is effectively
recognizable in MS if all its entries can be effectively decoded and effectively transformed to the
normal form (15).

Proposition 6. Any finite length word w in S can be transformed to the normal form (15) using
the linear number of operations with respect to the length of w.

Definition 10. Relation Rel is efficiently recognizable if every matrix A’ = {aij’}, where aij’are finite
strings of generators a, b in MS, can be effectively transformed into the matrix A in MS with all
entries expressed in the normal form (15).

Definition 11. Relation is an effective relation if it is efficiently recognizable.

Proposition 7. Relation Rel is effective.

Referencing to the general definition of Sigma protocol in [19], the corresponding
definition can be formulated for MPF SIP.

Definition 12. Let Rel ⊆ (MΓ × MΓ) × MS be an effective relation. An MPF SIP for Rel is a
pair (P, V) of interactive protocols executed by the Prover and the Verifier. Protocol P is taking a
witness-statement pair (PrK, PuK) ∈ Rel as an input. Protocol V is taking as an input statement
PuK ∈MS. Then after the conversation V outputs accept or reject.

MPF SIP is performed during three pass communications named as a conversation
between the Prover and the Verifier.

1. Prover generates two matrices U, V← rand(MΓ) at random and using his witness-PrK
computes the commitment C = (C0, C1, C2) consisting of three matrices C0, C1, C2
in MS:

C0 = UWV, C1 = UWY, C2 = XWV. (33)

Prover sends C to the Verifier.
2. After receiving C, Verifier generates two matrices H′, H”← rand(MsNSR) at random

and independently, forms challenge H = (H′, H”) and sends H to the Prover.
3. Upon receiving H, Prover computes the response R = (S, T) consisting of two matrices

S, T in MsNSR:
S = U + H′X, T = V + YH”, (34)

and sends R = (S, T) to the Verifier.

At this stage Prover and Verifier complete the conversation. After receiving R = (S, T),
Verifier checks if

SWT = C0 * C1
H” * H′C2 * H ′AH”, (35)

and if it is the case outputs accept.
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The distinct feature of the proposed protocol (against, e.g., Schnorr or Okamoto
protocols, [19]) is that the Prover generates a commitment at the first step of the protocol
using components X, Y of the witness-PrK = (X, Y).

Completeness. On the common statement input PuK = A, the honest Prover knows
witness-PrK = (X, Y) for PuK and succeeds in convincing the Verifier of his knowledge
with probability 1. It follows from the validity of associativity identity (6) and distribution
identity (7):

SWT = (U+H′X)W(V+YH”) = UWV * UWYH′ ′ * H′XWV * HX′WYH′ = UWV * (UWY)H” * H′ (XWV) * H′ (XWY)H′ = C0 * C1
H” * H′C2 * H′AH”.

Verifier uses the conversation (C, H, R) together with the Prover’s statement PuK = A
for the verification and yields accept if (35) holds.

The test example of this protocol is presented in Appendix A.

5. Security Analysis

We consider the main three main kind of attacks for SIP presented in [19] ordered by
their power, i.e., direct attack, eavesdropping attack and active attack. The weakest attack
of the three is a direct attack and it is applied mainly for password protected systems which
can also be realized using symmetric cryptography. The outcome of these attacks is either
adversary impersonation of legal Prover or even compromisation of legal prover’s secret,
namely his password or private key PrK-witnwss. The detailed description of the attack
game and the theorem formulating security against this attack is presented in ([19], Section
18.3). Since this attack is not of direct interest for our research, we only use the security
formulation for this attack in our construction in Theorem 4 below as an intermediate
result to consider the more powerful eavesdropping attack. In this section we prove the
conditions under which the proposed MPF SIP is resistant against eavesdropping attack
finalizing it in Theorems 5 and 6. Unfortunately, we were not able to prove the resistance
against most powerful active attack for the reasons presented below.

Assumption 1. MPFNSR
S is a candidate for one-way function (OWF).

This assumption can be supported by our previous results presented in [11–14].
The MPF is constructed using similar algebraic structures as in [14]. In [12,13] the NP-
completeness of the similar MPF problem is proven. MPF function introduced there is
defined in finite modified medial platform semigroup and finite power near-semiring.
Despite the lack of proof of the NP-completeness of the MPF problem defined here, we can
present some links of this MPF with the well-known multivariate quadratic (MQ) problem
which is proved to be NP-complete over any field [7]. Let ϕ: S→ Sa is the homomorphism
of the semigroup S to the semigroup Sa defined by the introduced new relation b = 1. Then
Sa = {1, a, a2, a2, a4} is a cyclic monoid with index 1 and period 4 [20]. The corresponding
public matrix denoted by W’. Then the entries of this public matrix W’ consist of elements
ai, where I ∈ {0, 1, 2, 3, 4} due to relation R1. Analogously, the NSR can be homomorphically
transformed to the set of integers Z5 = {0, 1, 2, 3, 4} by introducing the relation ι = 0. Then
the matrices X’, Y’← rand(Z5) are generated.

Since Sa is a cyclic semigroup then the discrete logarithm operation dloga with the
base a can be applied elementwise to the MPF relation X′ (W′)Y′ = A′. In this case we obtain
MQ problem but defined not over the field F5 = {0, 1, 2, 3, 4} (where operations are defined
mod 5) since according to relation R1 in (11) the exponents of generator a cannot be reduced
mod 5. It seems that the obtained MQ problem represented by matrix equation

dloga(X′ (W′)Y′ ) = dloga(A′),

is at least no less complex than the “standard” MQ problem. Then, we can make an
assumption that MPF introduced in (4), (32), where unknown monomials are in exponents
is a candidate for one-way function (OWF).
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This assumption is required to prove that the proposed MPF SIP is secure against the
eavesdropping attack and to select the values of the security parameters.

Referencing to Assumption 1 and [19], we can formulate the following theorem.

Theorem 4. If MPFNSR
S is a candidate for OWF and the challenge space is super-poly, then MPF

SIP identification protocol is secure against the direct attack.

Proof. According to the Assumption 1, MPFNSR
S is a candidate for OWF.

Referencing to the relations R1, R2 in (11), the challenge space is exponential with
respect to the order m of matrices in MNSR. The cardinality of MNSR is no less than 52mm,
thus, it is super poly as well. �

It is easily verified that Assumption 1 and Theorem 4 can be applied to MPFsNSR
S .

In order to formulate the security against the eavesdropping attack, we need the
definition and the proof of the Honest Verifier Zero Knowledge (HVZK) property [19] for
MPF SIP. We realized that instead of HVZK of MPF SIP we can prove a rather stronger
result denoted as a special HVZK.

Definition 13. Identification protocol is a special HVZK if there exists an efficient probabilistic
algorithm called a simulator Sim such that for all possible witness-statement pairs or private and
public key pairs (PrK, PuK) the following two conditions hold: 1) the output distribution of Sim
on input (PuK, H) is identical to the distribution of transcript of a conversation (C, H, R) between
Prover on input (PrK, PuK) and Verifier on input Puk, and 2) for all inputs PuK and H, algorithm
Sim always outputs a pair (C, R) such that (C, H, R) is an accepting conversation for PuK.

Following the methodology presented in [19], the following theorem can be formulated.

Theorem 5. MPF SIP protocol is a special HVZK.

Proof. On Sim input R’, H’ and PuK, the valid commitment C′ = (C0′ , C1′ , C2′ ) and
corresponding transcript of a conversation (C′, H′, R′) must be generated with identical
distribution as (C, H, R) between the Prover and the Verifier. �

Lemma 2. Let W be a public parameter and two pairs of matrices X,Y ← rand(MΓ), X′,Y′ ←
rand(MΓ) are generated uniformly at random, then the entries of matrices A = XWY and A′ =
X′WY′ computed according to (32) are uniformly distributed.

Proof of Lemma. Define two subsemigroups in S, namely Sa = {a, a2, a3, a4}, Sb = {b, b2,
b3, b4} and a set of exponents of generators in S denoted earlier by N4

+ = {1, 2, 3, 4}. Then
exponent function of generator a in Sa provides the following 1-to-1 mapping expa: N4

+

→ Sa. Since expa is 1-to-1, then for any I ← rand(N4
+) the value expa (i) = ai will have

a uniform random distribution. The same is valid for the function expb: N4
+ → Sb. Let

expa,a: N4
+ × N4

+ → Sa is a function defining multiplication of generator ai by generator
aj, where i, j← rand(N4

+), i.e., expa,a (i, j) = aiaj = ai+j. According to R1 in (11), function
expa,a (i, j) provides a 4-to-1 mapping and hence the value ae obtained after the reduction
of exponent ai+j using R1 will have a uniform random distribution.

Let us consider the double exponent function expexpa: N4
+ × Γ→ Sa, where expexpa(i,

k) = (ai)k with I ∈ N4
+, k ∈ Γ. This function provides a 2-to-1 mapping. Let i, k values

are random and uniformly distributed, then the value (ai)k is also random and uniformly
distributed. The same is valid for the generator b and for complex exponents ι·i and ι·k. In
the latter case complex unit ι simply changes a to b and vice versa.

As a consequence, the mentioned above exponents of generators a, b are random and
uniformly distributed.

If we have any word w ∈ S and exponentiate it by i, then after the reduction of
exponents corresponding to the generators a and b the uniform distribution of resulting
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exponents will be obtained. After that the generators are grouped according to the normal
form defined in (15) and this grouping simply corresponds to computing expressions of
the type aiaj = ai+j. Hence the grouping procedure will not change the uniform distribution.
As a result, we obtain uniformly distributed normal form wη in (14).

These results are applied subsequently to the left MPF and right MPF (according to
Definitions 1 and 2) to prove the uniform distribution of entries of matrices A and A’ being
a value of two sided MPF in Definition 3. The proof is performed by induction with respect
to the order m of MPF matrices. The first step of induction for m = 1 is proved above.

The Lemma is proved. �

Lemma 3. Suppose the following pairs of matrices X, Y ← rand(MΓ), U, V ← rand(MΓ), X′,
Y′ ← rand(MΓ), U′, V′ ← rand(MΓ) and Hˆ′, Hˆ”← rand(MsNSR) are generated uniformly at
random. Then the distribution of entries of matrices S, T in (34) and of matrices S′, T′ computed by
the relations.

S′ = U′ + Hˆ′X′, T′ = V′ + Y′Hˆ”, (36)

have the same uniform random distribution.

Proof of Lemma. Firstly, we prove that the product of matrices H′X, YH” has the same
uniform random distribution as the product of matrices Hˆ′X′, Y′Hˆ”. Let us consider a
scalar case with h′x, yh” and hˆ′x′, y′hˆ” instead, where h′, h”, hˆ′, hˆ” ∈N4

+ and x, y, x′, y′

∈ Γ. Then the multiplication function is defined by the mapping mulh,x: N4
+ × Γ→ N4

+

which according to Table 2 is 2-to-1. Since multipliers are chosen uniformly at random,
then the value mulh, x(h, x) = hx in N4

+ is distributed uniformly at random. The same is
valid for other terms.

Now consider the addition function addu,z: Γ × N4
+ → N4

+ which according to
Table 1 is 2-to-1. Then, since the value z = hx is distributed uniformly at random the value
addu, z(u, z) = s is also distributed uniformly at random.

The random and uniform distribution of entries of matrices H′X, YH” and Hˆ′X′,
Y′Hˆ” can be proved by induction using the uniform and random distribution of values of
functions mulh, x and addu, z. Then, the entries of matrices S, T and S′, T′ are distributed
uniformly at random as well.

The Lemma is proved. �

Proof. Proceeding with the proof of the theorem, the response R′ = (S′, T′) must be
computed referencing to (34). Then, the following random matrices in MNSR are generated
independently: U′, V′ ← rand(MΓ), X′, Y′ ← rand(MΓ). As an additional input the
simulator takes two challenge matrices Hˆ′, Hˆ”← rand(MsNSR ×MsNSR). Then, according
to (34):

S′ = U′ + Hˆ′X′, T′ = V′ + Y′Hˆ”. (37)

Referencing to Lemmas 2 and 3, R′ = (S′, T′) and R = (S, T) have the same uniform
distribution and hence the distribution of S′WT′ is the same as the distribution of SWT in
(35). According to the Theorem 3 S′WT′ has the following expression

S′WT′ = (U′+Hˆ′X′)W(V′+Y′Hˆ”) = U′WV′ * U′WY′Hˆ”* Hˆ′X′WV′ * Hˆ′X′WY′Hˆ” = U′WV′ * (U′WY′ )Hˆ” * Hˆ′ (X′WV′ ) * Hˆ′BHˆ”, (38)

where B = X′WY′ .
For given matrices U′, V′, X′, Y′ and (Hˆ′, Hˆ”) generated uniformly at random and

independently, Sim must compute a challenge C′ = (C0′ , C1′ , C2′ ) satisfying the following
equation:

S′WT’ = C0′ * (C1′ )
Hˆ” * Hˆ′ (C2′ ) * Hˆ′AHˆ” (39)

Referencing to identity (37), Sim computes

C0′ = U′WV′ , C1′ = U′WY′ , C2′ = X′WV′ * BHˆ” * A−Hˆ”. (40)
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According to Theorem 5, the entries of matrices C0′ , C1′ , have the same uniform
distribution as of matrices C0, C1. Since (1) the distribution of S ′WT ′ is the same distribution
as of SWT, (2) X ′WV ′ is uniformly distributed and (3) the computation of matrix C2′ in (39)
is based on Hadamar multiplication rule [16] (i.e., elementwise), then the distribution of
C2′ is the same as the distribution of C2. Then the commitment C′ = (C0′ , C1′ , C2′ ) has the
same distribution as C = (C0, C1, C2). It remains to prove that (C′, H′, R′) is an accepting
conversation using the following identities.

C0′ * (C1′ )
Hˆ” * Hˆ′ (C2′ ) * Hˆ′AHˆ” = U’WV’ * (U’WY’)Hˆ′ * Hˆ′ (X’WV’) * Hˆ′BHˆ” * Hˆ′A−Hˆ” * Hˆ′AHˆ”

= S’WT’ * Hˆ′AHˆ”-Hˆ” = S’WT’ * Hˆ′AO = S’WT’ * E = S’WT’.
(41)

The theorem is proved. �

Since special HVZK implies HVZK, then according to the Assumption 1 and Theorems
4 and 5, proposed MPF SIP is secure against the direct attack and is HVZK. The Theorem
19.3 in [19] states that if an identification protocol is secure against direct attacks, and is
HVZK, then it is secure against eavesdropping attacks. Referencing to this result we have
proven the following theorem.

Theorem 6. MPF SIP is secure against the eavesdropping attack.

Unfortunately, we are not able to prove the security of MPF SIP against an active
attack since we have not proved the soundness of MPF SIP. Our construction is based on
far more complicated algebraic structures than many traditional identification protocols
including Schnorr protocol.

6. Selection of the Security Parameters and Efficiency Analysis

Since relations R1, R2 are fixed, the security parameter is the order m of matrices
defining MPF. Then, according to (32) PrK and PuK matrix relation in the Definition 8
consists of m2 exponent equations of the type (4). According to the Assumption 1 and
the belief that the solution of randomly generated MQ system is hopeless when system
consists of n ≥ 80 equations with v ≥ 80 variables [9], it is sensible to choose the number
of exponent equations of the type (4) corresponding to the matrix equation (32) to be no
less than 80. Then, m can be chosen to be equal to 10, 11, 12. In this case the number of
exponent equations is equal to 100, 121, 144 correspondingly. To represent NSR elements
of the types t + ι·u + v and t·ι + u + v·ι, where t, u, v ∈ {1, 2, 3, 4} 9 bits are required. Thus,
memory requirement for PrK = (X, Y) is 2 × 9 m2 bits. To represent the word w in S in
normal form (15) 6 bits are required. So, PuK = A representation requires 6 m2 bits.

Effectivity of SIP is related to the left and right MPF value computations in (2) and (3)
and can be performed using exponentiation tables of the size 4x4 in our case. Transforma-
tion of matrix entries to the normal form requires asymptotically O (m2) operations. The
computational resources for the one-sided MPF value computation are equivalent to the
matrix multiplication and are asymptotically at most O (m3). SIP realization for Prover re-
quires 6 one-sided MPF values computation, 2 multiplication of matrices in NSR requiring
O (m3) operations and two additions of matrices in NSR requiring O (m2) operations. Both
matrix multiplication and addition can be performed using the table of operations of the
size 4 × 4 as shown in Tables 1 and 2.

For the Verifier’s side one must compute MPF values presented in (35). It takes two
one-sided MPF computations for the left side of (35) and six one-sided MPF computations.
Hence asymptotically it takes O (m3) operations.

7. Discussion and Conclusions

It was an intriguing idea for the authors to create and analyze Sigma identification
protocol (SIP) based on the matrix power function (MPF) defined over the specially selected
algebraic structures, namely modified platform medial semigroup S and power near-
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semiring (NSR). The initial medial semigroup is infinite, cancellative, multiplicative and
non-commuting and is chosen to have two generators a and b. The modification of this
medial semigroup is performed by introducing two extra relations R1 and R2 for the
generators. It induces certain homomorphism yielding finite semigroup and preserving
other properties of medial semigroup. In order to construct MPF, the certain power NSR
is constructed. The properties of NSR are induced by the generic relation RM of medial
semigroup which makes addition operation non-commuting. Therefore, the notion of NSR
is applied. The reason is that constructed NSR is simply not a semiring.

These algebraic structures are far more complicated than the structures used currently
in well-known identification and sigma identification protocols, e.g., Schnorr or Okamoto
protocols. They are based on relatively simple algebraic structures, namely cyclic groups
Zp

* or Gq. MPF SIP construction based on more complicated algebraic structures was
successful since a very important property of MPF presented in Proposition 2 was satisfied.
In this connection we are expecting that proposed MPF SIP should provide greater security
than existing Sigma protocols based on numerical cyclic groups. The investigation of the
resistance against quantum cryptanalysis attack is very attractive and could be dedicated
for the future research.

MPF, presented here, has some similarity to the certain MPF problem which was
proven to be NP-complete in our previous publications [12,13]. It is believed so far that
NP-complete problems cannot be effectively solved by quantum computers. The security
of MPF SIP presented here relies on the assumption that this MPF problem is a candidate
for one-way function (OWF).

Following the methodology, notions and security analysis of Sigma protocols pre-
sented in D. Boneh, and V. Shoup tutorial we proved that the proposed SIP is secure against
the eavesdropping attack. Unfortunately, the proof that this protocol is secure against
active attack was not presented since we have not proved the soundness of this protocol yet.
The soundness of identification protocols is easily proven for simple algebraic structures,
namely Zp

* or Gq. In our case, however, the algebraic structures are far more complicated
and existing proof methodology used in cyclic groups cannot be applied.
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Abbreviations

Symbol Explanation
ι Imaginary unit in NSR, wiyh the property ι2 = 1.
A Public key (PuK) matrix and statement in MPF SIP.
a, b Generators in modified medial semigroup S.
aNSR Anti Near-semiring to the NSR.
C = (C0, C1, C2) Commitment consisting of three matrices C0, C1, C2 and computed by the Prover.
DSA Digital signature algorithm
ECDSA Elliptic curve digital signature algorithm
H′, H” Challenge matrices generated by Verifier.
HFE Hidden field equations cryptosystem
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Symbol Explanation
MNSR Set of matrices over NSR.
MPF Matrix Power Function.
MPFS

NSR Matrix Power Function defined by the matrices over base semiring S and
exponent matrices over NSR.

MS Set of matrices defined over semiring S.
N0 Semiring of natural numbers with zero.
NSR Near-semiring.
OWF One-way function
PrK = (X, Y) Private key or witness in MPF SIP consisting of two generated at random

matrices X, Y over the NSR.
PuK = A Public key and statement for PrK consisting of matrix A over the semiring S.
Rel Effective relation for MPF SIP relating a witness-PrK with statement PuK.
RSA Rivest, Shamir, Adleman cryptosystem
S Modified medial semigroup.
s, t, u, v Positive integers.
SIP Sigma Identification Protocol.
SM Medial semigroup.
sNSR Sub-near-semiring in NSR.
V, U Random matrices generated in NSR for commitment C computation.
w Word in medial semigroup SM or modified medial semigroup S.
X, Y Component matrices of PrK and witness over the NSR.
x, y, z Exponents of generators in NSR.

Appendix A. Numerical Example of the MPF SIP

A numerical illustration of the MPF SIP is presented below for the matrices with di-
mensions 3 × 3. Firstly, PrK = (X, Y) components are generated, where X,Y← rand(MNSR).
The entries of X, Y are chosen in the form {t + ι·u + v} as elements in NSR (see Proposition
4), where t, u, v are in N4

+ = {1, 2, 3, 4} according to Corollary 5.6. For convenience the
imaginary unit ι in (17) is replaced by latin notation i.

X =

 1 + i + 1 3 + 3i + 3 1 + 3i + 1
1 + 3i + 1 1 + i + 1 3 + 3i + 3
3 + 3i + 3 1 + 3i + 1 1 + i + 1



Y =

 3 + i + 3 3 + 3i + 1 1 + i + 3
1 + i + 3 3 + i + 3 3 + 3i + 1

3 + 3i + 1 1 + i + 3 3 + i + 3


Next, Public matrix W is generated at random (W← rand(MS)) and PuK = A= XWY is

computed referencing to (4), (21)–(23), (32).

W =

 ba3b3a ba2ba bab3a
bab3a ba2b3a bab2a
bab3a bab3a ba3b3a



A =

 ba4 ba3b2a bab2a
ba3b2a ba4 ba2

ba2 bab2a ba3b2a


Two matrices U, V are generated U,V← rand(MsNSR) for the computation of commitment.

U =

 1 + 3i + 3 3 + i + 3 3 + 3i + 1
3 + 3i + 1 1 + 3i + 3 3 + i + 3
3 + i + 3 3 + 3i + 1 1 + 3i + 3


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V =

 3 + i + 1 3 + 3i + 3 1 + 1i + 3
1 + 1i + 3 3 + i + 1 3 + 3i + 3
3 + 3i + 3 1 + 1i + 3 3 + i + 1


Then, according to (33), Prover computes the commitment C = (C0, C1, C2) consisting

of three matrices C0, C1, C2 in MS and sends it to the Verifier.

C0 =

 ba2 ba3b2a ba3b2a
ba2 ba3b2a ba3b2a

ba3b2a ba2 ba2



C1 =

 ba4 ba3b2a bab2a
ba4 ba3b2a bab2a

bab2a ba2 ba4



C2 =

 ba2 ba3b2a ba3b2a
bab2a ba4 ba4

ba4 bab2a bab2a


Verifier generates the challenge consisting of two matrices H′,H”← rand(MsNSR):

H′ =

 1 + i + 1 2 + 2i + 2 3 + 3i + 3
3 + 3i + 3 1 + i + 1 2 + 2i + 2
2 + 2i + 2 3 + 3i + 3 1 + i + 1



H′′ =

 4 + 4i + 4 2 + 3i + 4 1 + 2i + 4
1 + 2i + 4 4 + 4i + 4 2 + 3i + 4
2 + 3i + 4 1 + 2i + 4 4 + 4i + 4


Upon receiving H′,H” the Prover computes the response matrices S, T according to

(34) where S = U + H′X, T = V + YH”. The entries of these matrices are the exponents of
generators a, b in semigroup S and are presented in non-reduced form.

S = U + H′X =

 1 + 59i + 67 1 + 45i + 51 1 + 47i + 55
1 + 47i + 55 1 + 59i + 67 1 + 45i + 51
1 + 45i + 51 1 + 47i + 55 1 + 59i + 67



T = V + YH′′ =

 1 + 74i + 108 1 + 80i + 110 1 + 72i + 104
1 + 72i + 104 1 + 74i + 108 1 + 80i + 110
1 + 80i + 110 1 + 72i + 104 1 + 74i + 108


After reduction using relations R1, R2 in (11) the Prover computes the response

R = (S, T) and sends it to the Verifier, where matrices S, T are expressed in the follow-
ing way:

S = U + H′X =

 1 + 3i + 3 1 + i + 3 1 + 3i + 3
1 + 3i + 3 1 + 3i + 3 1 + i + 3
1 + i + 3 1 + 3i + 3 1 + 3i + 3



T = V + YH′′ =

 1 + 2i + 4 1 + 4i + 2 1 + 4i + 4
1 + 4i + 4 1 + 2i + 4 1 + 4i + 2
1 + 4i + 2 1 + 4i + 4 1 + 2i + 4


Upon receiving R = (S, T), Verifier checks if the identity (35) holds:

SWT = C0 CH′′
1

H′C2
H′AH′′ =

 ba2ba b2a b4a
b4a ba2b3a ba2ba
b2a ba2ba ba2b3a


Since in this case the identity (35) is satisfied, the Verifier outputs accept.
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