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Abstract: Wireless sensor networks (WSNs) are the cornerstone of the current Internet of Things era.
They have limited resources and features, a smaller packet size than other types of networks, and
dynamic multi-hop transmission. WSNs can monitor a particular area of interest and are used in
many different applications. For example, during the COVID-19 pandemic, WSNs have been used to
measure social distancing/contact tracing among people. However, the major challenge faced by
WSN protocols is limited battery energy. Therefore, the whole WSN area is divided into odd clusters
using k-means++ clustering to make a majority rule decision to reduce the amount of additional data
sent to the base station (or sink) and achieve node energy-saving efficiency. This study proposes an
energy-efficient binarized data aggregation (EEBDA) scheme, by which, through a threshold value,
the collected sensing data are asserted with binary values. Subsequently, the corresponding cluster
head (CH), according to the Hamming weight and the final majority decision, is calculated and sent
to the base station (BS). The EEBDA is based on each cluster and divides the entire WSN area into
four quadrants. All CHs construct a data-relay transmission link in the same quadrant; the binary
value is transferred from the CHs to the sink. The EEBDA adopts a CH rotation scheme to aggregate
the data based on the majority results in the cluster. The simulation results demonstrate that the
EEBDA can reduce redundant data transmissions, average the energy consumption of nodes in the
cluster, and obtain a better network lifetime when compared to the LEACH, LEACH-C, and DEEC
algorithms.

Keywords: wireless sensor networks (WSNs); k-means++ clustering; majority rule; binarized data ag-
gregation

1. Introduction

In recent years, wireless sensor networks (WSNs) have emerged as a topic of interest
to most scholars because of the increasingly mature and advanced technology of micro-
electro-mechanical systems (MEMS) and communication batteries, as well as improved
communication technology and related application software [1,2]. The advantage of WSNs
is their low implementation cost; there is no fixed infrastructure, and their deployment is
arbitrary. Hundreds to thousands of sensor nodes are densely and arbitrarily deployed to
sense areas of interest. Therefore, WSNs play an essential role in tracking and surveillance
operations, such as habitat monitoring, weather forecasting, high accuracy agriculture,
natural disaster prevention, border surveillance, smart cities, and home automation. They
operate in an environment that does not require attended assistance with sensing, compu-
tation, and communication capabilities. Each sensor node can communicate among nodes
and sends the gathered information using a multiple-hop relay. The base station (BS) is
generally fixed and arbitrarily deployed far from these sensors. Because the communi-
cation distance between the sensor nodes and the BS is considerable, the energy will be
exhausted quickly. Thus, the main factor influencing the total energy consumption is data
transfer over a distance between nodes. Furthermore, because of nodes’ dense deployment
for optimal data resolution, the consequences of sensor node redundancy are data highly
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correlated, producing unnecessary data transmissions from nodes owing to overlapping
sensing areas. The degree of data correlation causes redundant data and the additional
energy consumption of the nodes [3,4].

The sensor nodes use the sensed original sensor signals to assert a binary value of
one or zero by defining a threshold, thereby transferring binary values to the cluster head
(CH) in the same cluster. Subsequently, the CH performs data aggregation and the majority
decision through the Hamming weight (HW). Thus, in addition to reducing the redundant
transmission of data, the reporting nodes can also save energy and extend the lifetime of
the entire network [5]. Therefore, this study includes the following proposals:

• The calculation method for defining the k value of k-means++ to ensure that the dis-
tance between nodes in the cluster is less than the threshold value between transmis-
sion and reception in the first-order radio model and provides further energy-saving
efficiency and extends the overall network lifetime.

• The k value is defined as an odd number, which means that there will be an odd cluster
and cluster head, and the purpose is to aggregate the binarized data to a BS to achieve
a majority decision afterward.

• Once the nodes are deployed, the sensing nodes must operate for months or years
without any additional power supply. Notably, the communication between nodes
often consumes more energy than the computation. If the original sensing data are
directly transmitted to the sink, it will consume much more energy. WSNs are often
used in alarm applications. Moreover, we have assumed that a critical threshold
value is the warning level and is asserted/deasserted a binary. Only binary values are
transmitted, which conserves energy at the node and extends the network’s lifetime.

• The BS is fixedly deployed in the center of the sensing area. The sensing area consumes
the center of the entire WSN and is used as the origin to further divide it into four
quadrants. A data transmission chain is constructed in each quadrant. The chain starts
from the CH farthest from the BS, and ends at the CH nearest to the BS. In each round,
the CH transmits the majority binary value to the next hop until it reaches the BS by
the chain. This is a proven method of reducing CH energy consumption.

The remainder of this paper is organized as follows: Section 2 describes related
research examining the energy consumption, energy efficiency, cluster head selection, and
cluster formation in a WSN used, and applying the Hamming weight to count the number
of non-zero bits to obtain the majority result. Section 3 discusses the working principle
of our proposed EEBDA scheme in detail. In Section 4, the performance of the proposed
EEBDA against other related protocols is evaluated. Section 5 discusses, evaluates, and
compares the results with other protocols. Finally, we conclude the study and discuss
future work in Section 6.

2. Related Works

Many routings, energy management, and data propagation protocols have been specif-
ically developed for WSNs, where energy-efficient realization is an essential design issue.
Akyildiz et al. [6] and Mohamed et al. [7] described randomly distributed sensor nodes.
Each sensor node does not know its position relative to other sensor nodes; therefore,
the WSN must have a self-organization protocol, a self-organization communication net-
work between sensor nodes to transmit data. Because WSNs often operate in a severe,
unsupervised environment, monitoring activities cannot be managed efficiently without
manual involvement. In such surroundings, a large number of randomly deployed sensor
nodes guarantee fine-grained surveillance. Furthermore, in the routing and data collection
protocols, energy efficiency should be considered as a design priority in order to maximize
the lifetime of the network. In WSNs, the practice of grouping nodes into clusters has
been commonly applied. It combines routing and data collection protocols to achieve high
energy efficiency and maximize the network lifetime. These hierarchical data collection
protocols provide data fusion and aggregation through cluster-based groups of nodes.
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Consequently, they minimize the energy consumption of the nodes to sustain the long-term
running of the WSNs [8,9].

2.1. Majority Rule and Hamming Weight

A majority rule is a decision-making rule that chooses alternatives with a majority of
votes, that is, more than half of the votes. Decisions are an essential part of group activities,
especially in densely deployed sensor networks where the energy consumption of node
data transmission can be saved by producing final results through a majority decision. In
addition, majority decisions can report that the final event indication is of interest without
any other details of the event. Equation (1) denotes the results of majority decisions, where
n is eligible voters who participate in an election [10,11].

Mresult =

⌈
n + 1

2

⌉
(1)

For low-energy and fault-prone sensor nodes that are vulnerable, Biswas et al. [12]
presented a true event-driven and fault-tolerant routing (TED-FTR) algorithm that sends
a report to the BS through multiple hops. The ambiguity of the fault measurements is
eliminated using the majority voting algorithm among neighbors to identify an actual
event. If most neighbors experience identical but unusual results, the node considers it an
event and sends a report to the BS. In [12], majority voting is performed to disambiguate
the reporting event of neighbor nodes. The majority voting algorithm uses Equation (2),
which is given below. Suppose Ni has j number of neighbors, Ni(1), Ni(2), . . . Ni(j), with
binary decisions, Bdp

i (1), Bdp
i (2), . . . Bdp

i (j), as given in Equation (2).

Eventp
i =

{
1 i f

∣∣∣{k
∣∣∣Bdp

i (k) = 1
}∣∣∣ ≥ ∣∣∣{k

∣∣∣Bdp
i (k) = 0

}∣∣∣
0 otherwise

(2)

where
∣∣∣{k
∣∣∣Bdp

i (k) = 1
}∣∣∣ is the number of neighbor nodes, replied to with a binary deci-

sion (Bd). If the number of
∣∣∣{k
∣∣∣Bdp

i (k) = 1
}∣∣∣ is greater than or equal to the number of∣∣∣{k

∣∣∣Bdp
i (k) = 0

}∣∣∣, that is, the majority of neighbors vote is a binary decision (Bd) 1, Ni sets

Eventp
i = 1, otherwise 0 using Equation (2). TED-FTR does not exhibit better performance

in scenarios where more nodes are faulty or there are failures because the nodes responsible
for reporting event information can quickly consume their energy.

Irving S. Reed formulated a concept to the Hamming weight equivalent in a binary
case in 1953 [13]. The Hamming weight of the binary vector v ∈ {0, 1}n is a number that

ranges from 0 to n, which is defined as WH |v| =
n
∑

i=1
vi = |{vi ∈ [n] : vi = 1}|. We can

count the number of non-zero entries in vector V by the Hamming weight. The weight w of
a code word is the number of 1s in the vector to determine whether one is the majority by
the majority function. For example, the word 11,101,010 weighs five. Formally speaking,
for n odd, the majority function is given by the MAJn(v1, . . . , vn) = 1, if and only if
[v1 + v2 + . . . + vn] ≥

⌈ n
2
⌉
. In this study, we present the idea of majority decision making

and its application to the majority voting of Hamming weights [14], which are asserted
with a binary value of one or zero through a threshold value within the same cluster; that
is, the number of non-zero bits in the binary sequence. Thus, according to the definition of
the Hamming weight, the number of non-zeros in the given input binary sensing data is
calculated to find the final majority result in the cluster.

2.2. Spatial Correlation Model for Sensor Networks

Because communication is the primary bottleneck in energy consumption of the node,
rather than computation [15], the sensors are densely deployed to cause overlapping in the
sensing area, which leads to redundancy in the sensing data, and a high correlation in the
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data, thus resulting in a large volume of communication. That is to say, spatial correlation
also implies a high data correlation between the nodes. In this study, we intended to
exploit the spatial and data correlation to limit the number of reporting nodes to achieve a
minimum number of reporting nodes, while still maintaining data resolution. Thus, the
motivation is to design a significant amount of energy efficiency aggregation mechanisms
for energy-constrained WSNs by exploiting spatial and data correlation. Figure 1 illustrates
the overlapping sensing area leading to data redundancy of some nodes.

Figure 1. The coverage of nodes A, B, C and D, it is shown that node D is redundant.

Yin et al. [16] considered spatial clustering and principal component analysis (PCA)
techniques in which sensors with a hardy temporal–spatial correlation are grouped into a
cluster to facilitate further processing with novel efficient data compression schemes. To
conserve energy and prolong the lifetime of WSNs, the authors designed an adaptive CH
selection scheme that finds the CH dynamically and minimizes energy consumption. In
addition, the CH applies PCA with an error constraint guarantee to compress and handle
the data using a predefined compression algorithm. CH requires additional PCA and
error-bound guarantees to compress the data that utilizes multiple computing resources.
Therefore, it may not apply to most low-energy WSNs. Leandro A. Villas et al. [17] proposed
a dynamic and scalable tree aware of spatial correlation (YEAST) algorithm. YEAST is a
spatial correlation-aware dynamic and scalable routing structure for data gathering and
aggregation in WSNs. The YEAST algorithm builds a routing tree using the shortest paths
(in Euclidean distance), connecting all coordinator nodes and sink nodes while maximizing
data aggregation and minimizing distances. Furthermore, YEAST does not build a routing
tree by order of events. Thus, with YEAST, an event can be sensed more accurately, and the
residual energy of the node can be saved from the sensing area, in contrast to the classical
approach to data gathering. YEAST at during network formation and maintenance, nodes
exchange control information, which control message results in more energy depletion.
Therefore, YEAST is not feasible for large-scale WSNs with long-duration events because
the calculated shortest paths require a large amount of computation and control messages
to be exchanged, which quickly consumes the energy of the nodes. The data aggregation
scheme does not consider reducing the number of data values transferred between the
ordinary sensors and the CHs. Hence, it is one of the objectives of our study. Tayeh,
G.B. et al. [18] proposed a spatial–temporal correlation-based approach for sampling and
transmission rate adaptation (STCSTA) in cluster-based sensor networks. A data reduction
mechanism exploits the spatial–temporal correlation among sensor data to deploy nodes
and formulate a sampling strategy. Moreover, the authors designed a back-end algorithm
to find the spatial and temporal correlation among the reported dataset and fill the non-
sampled parts with predictions for reporting the data to the sink. Redundancy deployment,
residual energy, and distance to the sink are desired to avoid void area creation because
no void handling mechanism has been proposed. Sensor measurement faults were not
considered, resulting in a transmission delay and adding to the data discovery process.
Thus, it is necessary for a well-designed data transmission model that can reduce the
amount of data transmission while guaranteeing the requirement of data reliability.

Data correlation is extensively used in data reduction techniques. For example, the
sensing area of the sensor nodes could be optimized based on a coincident overlapping
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coverage area with its neighbors. This study avoided data redundancy by reducing the
reporting of correlated data in an environment with high node coverage redundancy,
considering that spatial correlation can lead to data collision. In addition, the excessive
energy consumption of CH can be reduced by CH rotation.

2.3. First-Order Radio Model

The first-order radio model is a widespread radio module used in WSN research. It
is often used in the simulation analysis of sensor nodes. When data are transmitted via a
wireless network, the distance is the main factor that affects the energy consumption of the
sensor nodes. Based on our understanding, the wireless communication component of a
sensor node is the critical component that consumes the most energy. We used the radio
model shown in Figure 2 [19]. The first-order radio model evaluates the energy consumed
when a sensor node transmits or receives at each cycle. The radio model has power
control and can expend the minimum energy required to reach the intended recipients. For
example, when a k-bit message is transmitted through a distance (d), the required energy
can be expressed as shown in Equation (3), and the energy consumed at the reception is
illustrated in Equation (4).

ETX = ETX−elec × k + ETX−amp

(
d2 × k

)
=

{
kEelec + kε f sd2, d < d0
kEelec + kεmpd4, d ≥ d0

(3)

ERX = ERX−elec × k (4)

where ETX−elec and ERX are the energy dissipated per bit of the transmitter and receiver,
respectively. ε f s and εmp depend on the transmitter amplifier model used, and d is the
distance between the sender and receiver. In Equation (3), the distance d between nodes
must be less than the threshold distance d0, kε f sd2 according to the free space model;
otherwise, εmpd4 uses the multipath model. In this study, we assumed that the radio
model dissipates Eelec = 50 nj/bit, ε f s = 10pJ/bit/m2 and εmp = 100pJ/bit/m2, where

d0 =

√(
ε f s/εmp

)
∼=
√

10
0.0013

∼= 87.705802 denotes the threshold distance between two nodes.

Figure 2. First-order radio model.

2.4. Cluster-Based WSNs

In clustering, hierarchical schemes have a significant advantage in minimizing en-
ergy consumption. Clustering is one of the techniques in machine learning that involves
grouping of data points. Given a set of data points and the conditions for classification, we
used the clustering algorithm to classify each data point into a specific group. Thus, data
points in the same group must contain similar attributes, while those in different groups
must contain considerably different attributes. Clustering is an unsupervised learning
method that is commonly used for statistical data analysis in many fields [20]. Owing to its
many advantages, clustering is emerging as an attractive branch of routing technology in
WSNs. Clustering is the process of dividing sensor nodes into groups based on specific
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characteristics. Typically, clusters are formed based on geographical location, residual
energy, or distance from the BS. Each cluster selects a CH, which has more duties than
cluster members. In cluster-based approaches, nodes are divided into different clusters
based on their distance from each other, where a capable and plentiful energy sensor node
is responsible for a cluster. In [19,21], the authors surveyed and discussed the design
of cluster-based schemes, essential parameters for cluster formation, and classification
of hierarchical clustering protocols. In addition, available cluster-based and grid-based
techniques were appraised by regarding specific parameters to assist researchers evaluate
suitable techniques.

Clustering and election of CHs for WSNs can be distributed or centralized. In a
distributed mechanism, each sensor node broadcasts its location and energy level to its
one-hop neighbors, and a node with a higher energy level and clustering concentration is
elected as CH. In the centralized mechanism, after the BS advertises the request message,
all nodes reply with their location and residual energy level to the BS, and the BS randomly
selects a node as the CH to form a new cluster and broadcast itself to all the nodes.
In a homogeneous sensor network, the CH is selected from the alive nodes. CHs are
responsible for transmitting sensing data from other nodes for data aggregation within
the cluster and communication with the BS, thus saving general node energy [22]. Many
scholars have proposed clustering-based routing protocol techniques to improve the energy
efficiency of WSNs, as only a few CHs are allowed to contact the BS directly. The CHs are
responsible for collecting data from their respective cluster members, processing it, and
further communicating it to the BS. Quan Wang et al. [23], suggested that by organizing
sensor nodes into clusters with the help of data aggregation/fusion mechanisms, energy-
efficient use can be obtained as the total amount of data sent to the BS is significantly
reduced. Moreover, intra-cluster communication minimizes the communication distance
and energy dissipation of cluster members. Cluster routing protocols based on clustering
algorithms have been proposed to manage the data communication in WSNs [24,25]
(Figure 3).

Figure 3. An overview of a typical cluster-based WSN architecture.

2.4.1. K-means++ Clustering Algorithm

K-means clustering is a widely used clustering technology that attempts to minimize
the average squared distance between data points in the same cluster. It was proposed in
1967 by MacQueen [26] and is sometimes called the Lloyd–Forgy algorithm. Its ease of
implementation, computational efficiency, reduction in the complexity of the data, and low
memory consumption have maintained the popularity of K-means clustering compared to
other clustering techniques. However, the disadvantage is that the initial cluster centers are
still selected arbitrarily, which may cause the concentration of all the initial cluster centers.
In addition, K-means clustering is highly exponential in the k value, and it is difficult to
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determine the number of clusters (k) at the beginning of the algorithm, making it complex
in practice.

Vassilvitskii and Arthur [27] proposed a specific method to improve the problem of
randomly selecting the initial cluster center. The k-means++ algorithm takes these data
points as initial centers that are as distant from each other as possible. In particular, this
method, which is called the k-means++, involves letting D(n) denote the shortest distance
from a data point to the closest center that has already been chosen. K-means++ clustering
improves the random selection of initial cluster centers and the possible over-concentration
of cluster centers in K-means clustering. Figure 4 shows the flowchart of k-means++
clustering in our study, which was used to determine the number of k clusters based on
the threshold distance of the first-order radio model over the entire sensing area. Gi is the
ith clustering center for each i ∈ {1, . . . , k}. Choosing the next center Gi+1 and selecting Gi

with probability (p(n) = D(n′)2

∑ D(n)2 ), the distance between two nodes was calculated using

the Euclidean distance D(n). Therefore, we could use the k-means++ algorithm to divide
the clusters evenly in the clustering phase.

Figure 4. Flowchart for k-means++ clustering in our study.

2.4.2. Cluster-Based Routing Protocol for WSNs

Clustering is one of the most effective solutions to energy issues, which balances the
energy consumption of the entire network by a cluster-based architecture to prolong the
network lifetime. Sensor nodes are divided into different clusters based on their distance
from each other, where a capable and plentiful energy sensor node is responsible for a CH.
The CH collects data from the sensor member nodes and forwards them to the sink node.
In cluster-based architectures, cluster formation and the selection of the cluster head node
determine the network lifetime [21,28].
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Low-energy adaptive clustering hierarchy (LEACH) [19] is one of the typical clustering-
based routing protocols in WSNs. In LEACH, CHs are randomly selected based on a
predefined percentage of CHs in the proposed network and the number of times that a
node has been a CH thus far. Each non-CH node in the current round looks for the nearest
CH to join as a member. CHs collect and aggregate data from their members. Finally,
the CHs transmit the aggregated data directly to the sink nodes. As LEACH is a random
selection of CHs, the number of CHs in each round is different. Every cluster also contains
a different number of nodes in each round. Therefore, the energy consumption is not
balanced in the overall network, in all the rounds. According to Equation (5), which is used
to determine the threshold value T(n), every node in the network produces a randomly
generated number (P) between 0 and 1, and if the number is less than the threshold value
T(n), then the node is defined as a cluster head. The CH broadcasts an advertisement
message to all other members in the cluster in the current round.

T(n) =

{ P
1−P[r mod( 1

P )]
i f n ∈ G

0 otherwise
(5)

where T(n) determines the threshold value of CH, r denotes the current round, P is the
desired percentage of cluster heads, and G is the set of nodes that have not been CHs in the
last 1/P rounds.

A centralized LEACH (LEACH-C) clustering algorithm with sensor networks was
introduced in [29]. This algorithm improved the original LEACH algorithm. A BS selects
a CH to improve the CH selection algorithm, whereas in the LEACH cluster, the cluster
heads are selected randomly by the node itself. As with the LEACH protocol, LEACH-C
has two phases: the setup phase and the steady-state phase. First, the BS selects the CH
with the highest average energy, location, and energy level in the setup phase and uses
it to aggregate the node data for transmission. After the BS selects the primary CH and
associated clusters, the BS then broadcasts a message to all nodes, including the cluster
head ID. If the cluster head ID matches its ID, the node is a CH; otherwise, it determines its
time division multiple access (TDMA) slot for data transmission and, if it is not assigned
to a TDMA slot, goes to sleep until it is time to transmit data. The steady-state phase of
LEACH-C is similar to that of the LEACH protocol. Thus, the LEACH-C protocol improves
the network lifetime as compared with the LEACH protocol. However, LEACH-C is
unsuitable for large network areas, and isolated nodes cannot transmit their coordinates
and residual energy to the BS. This results in severe data loss and degradation of network
performance.

LEACH-Z (LEACH zones) and S-LEACH protocols [30,31] are both improved versions
of LEACH. LEACH-Z protocol, divided into the cluster method is based on the larger
clusters near the BS (i.e., a greater number of nodes). On the contrary, the smaller clusters
are far away from BS. Thus, the smaller clusters prevent the election of CHs, thus reducing
the data to be sent, by multiple hops and conserves energy. However, dividing the cluster
size by the distance from the BS may still result in an energy hole or hot spot area. This may
lead to non-collection of required data from all corners, which would ultimately affect the
network performance. S-LEACH uses meta-data before receiving packets, an advantage
of this feature, so that there are no identical or similar packets. This makes it possible to
reduce the amount of redundant data transmission. However, S-LEACH encounters a
challenge as it requires extra overhead to identify the meta-data, or data packet.

Li Qing et al. [32] studied a distributed energy-efficient clustering (DEEC) scheme for
heterogeneous WSNs. In DEEC, considering the heterogeneity of the network, nodes cannot
all consume the same amount of energy for data transmission. Therefore, a probability
is used to select CH based on the ratio between the remaining energy of each node and
the average energy of the network, and, accordingly, the energy of each node is used
to adapt its rotation period. The nodes with high initial and residual energy will have
more cluster heads than those with low energy. The authors demonstrated that simulation
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results showed that DEEC achieved a longer lifetime and more energy efficiency than
the current necessary clustering protocols in heterogeneous environments, especially the
stability period. However, this CH selection scheme may penalize the plentiful energy
nodes because these nodes will be a CH consecutively, and they will die quicker than the
others, especially when their residual energy depletes and comes within the range of the
ordinary nodes.

It can be seen from the above literature that clustering can improve energy efficiency,
and the CH is responsible for the data reporting within the cluster. However, the CH is
still selected based on probability, and cluster size determination is also by probability,
which may cause the CHs to be too centralized or scattered. Therefore, this study used
residual energy, degree of data correlation, and binarization of data as the proposed CH
selection and data aggregation parameters. As a result, it balances the load among clusters
and reduces the energy consumption by further dividing the quadrants. Therefore, this
study proposes an energy-efficient binarized data aggregation mechanism (EEBDA) with a
spatial correlation among sensor nodes to avoid high correlation among data and reduce
node redundancy data transmission.

2.4.3. Cluster Head Rotation in WSNs

In clustering, hierarchical techniques have significant advantages in minimizing en-
ergy consumption [33]. Therefore, to maximize the network lifetime, cluster head selection
methods should be implemented appropriately. CH selection is a critical challenge to
achieving energy efficiency and maximizing network lifetime. The authors considered
the distance from the sensors to the BS for the optimal balance of energy consumption
between nodes [34]. The main focus is on cluster formation and CH selection, taking into
account the energy consumption and their effect on the overall network lifetime. In most
techniques, the selection of CH considers several parameters, such as energy level, a node’s
location, or the usage of a probabilistic approach, or it is performed through any random
technique [19]. The reselection CH technique has a fast execution and convergence time,
minimizes the number of exchanged messages, and reduces the number of CH rotations as
much as possible. Therefore, CH selection with the highest residual energy nearest to the
cluster center was the first choice in this study. Subsequently, CH rotation is evaluated by
considering certain parameters to help us in rotating CH-appropriate opportunities, such
as residual energy (Er) and minimum Euclidean distance from the group center. We chose
the node near the group center because the CH is beneficial in balancing the transmission
energy consumption within the cluster and reducing the communication distance between
clusters. Figure 5 illustrates the scanning area of cluster head rotation, where Gxy is the
group center, and D(nj) is the Euclidean distance from the Gxy to node (nj). The n1 will be
preferentially selected as the CH because it is closest to the group center.

Figure 5. Scanning area of CH rotation.

3. The Proposed Approach (EEBDA)

In general, each node is designed with a limited battery power to operate in the WSNs,
depleting quickly. However, the lifetime of a network relies on the energy available to the
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nodes. Therefore, the prime task of the WSN routing protocol design is to transfer data
to the BS through multi-hops with minimum energy consumption of nodes. Therefore,
maximizing the lifetime of a WSN is a primary challenge. This study uses k-means++
clustering to classify nodes according to the distance between nodes and discusses an
energy-efficient method, and the shortest distance between node and group center CH
selection. In addition, the k value is specially designed to define the appropriate number
of clusters (most of which are odd numbers) as the majority decision of each cluster data,
and the final result is transmitted to the BS. Furthermore, we considered that the spatial
correlation between the nodes prevents redundant transmissions. Our study is categorized
into the following phases: cluster formation, CH selection and rotation, the majority result
of a binarized aggregation, and the CH chain formation phase. In the following section, we
discuss the working principle of our proposed EEBDA scheme in detail, and the overall
operation of the proposed method is depicted in Figure 6 (flowchart). Table 1 lists the
notations and definitions used in this study.

Figure 6. Flowchart of the proposed EEBDA.
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Table 1. Notation and definition.

Notation Definition

d0 distance threshold based on the first-order radio model
K the number of clusters

nk(x) the nodes x in cluster {1, . . . , K}
Et energy threshold for CH rotation
Er the residual energy
Ein the initial energy
Gxy location of the group center

D(nk(x)) Euclidean distance between nk(x) and Gxy
Rmin scanning range at given cluster center with radius 10 m
Rmax scanning range at given cluster center with radius 25 m

Ck∈{1,..., k} cluster {1, . . . , K} of the deployed area

CHmaj
k∈{1,...,k} the final majority value of cluster {1, . . . , K}

CHk cluster head {1, . . . , K}
BnCk

k (x) a binary value of node x in cluster {1, . . . , K}
BSmaj the final majority value of a BS

3.1. Cluster Formation

There are different assumptions about the radio characteristics, including energy
dissipation in the transmission and reception nodes. This study adopts a simple model,
and the following parameter values reference the first-order radio model [19]. In Equations
(3) and (4), the amplifier parameters are used to calculate the distance threshold (d0) of

data transmission and reception between two nodes. Where d0 =

√(
ε f s/εmp

)
∼= 87.7058,

d0 = 87, simplifying the calculations to cut off the decimal points and take the distance
threshold as an integer value of 87. At the beginning of the cluster formation, neighboring
nodes were grouped into the same clusters using k-means++ clustering. Equation (6) is
used to calculate the k value of k-means++, which is used to divide the cluster into k groups,
as shown in Figure 7. In addition, the k value is defined as an odd value for the subsequent
calculation of the majority decision making. In Equation (6), C is the length and width
divided by d0 individually and takes the ceiling value. If C is odd, then k = C; if C is even,
then k = C + 1.

C =

⌈
length

d0

⌉
×
⌈

width
d0

⌉
then k = C + M

where M =

{
0, C is odd
1, C is even

(6)

Figure 7. A schematic drawing of the cluster formation.

In Figure 7, “length” denotes the length of the sensing range, and “width” denotes
the width of the sensing area. For example, assume that k equals five; it is divided into a
schematic diagram of five clusters.
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3.2. Cluster Head Selection and Rotation

A CH rotates among the nodes and attempts to equilibrate the energy usage through
all nodes. Therefore, the CH selection will affect the lifetime of a WSN because a CH
consumes more power than an ordinary (non-CH) node. The monitoring, aggregation,
and control of each cluster are performed by the CH, which acts as a leader. The cluster
heads have a direct transmission with the BS. In the initial phase, the cluster head selects
the node with the maximum residual energy, and more than the energy threshold (Et),
and is closest to the group center as the cluster head. Other nodes then join the nearest
cluster head, and their probability of being selected as the cluster head increases the next
time. The CH rotation aims to show the advantages of being cluster based and selecting a
plentiful energy sensor node to be a CH in a cluster; the energy load can be dispersed in
the cluster. In this study, a threshold value of the residual energy was considered when
selecting the CHs in each subsequent round. The nodes near the cluster head dissipate
less energy as the relay data of these nodes is a shorter distance. Likewise, more energy
is consumed if the nodes are far away from the CH. If the current CH energy is less than
the energy threshold, it triggers the rotation CH procedure, where the energy threshold
(Et) is the overall average residual energy of a cluster in which the current CH is located.
Equation (7) shows that the node with the highest score in each cluster is selected as the
CH. In Algorithm 1, Rmin and Rmax denote the scanning range with a radius of 10 m and
25 m, respectively [35]. Any nodes beyond the Rmax range are already far from the cluster
(group) center and are not ideal candidates as CHs. The process of accessing the nearest
nodes from the group center and finding a node with the maximum residual energy uses
Algorithm 1 at each rotation CH phase.

Score(nk(x)) =
Ernk(x)
Einnk(x)

+
1

D(nk(x))2 (7)

where Erenk(x)and Einnk(x) are the residual and initial energies of node x, respectively,
and D(nk(x)) is the distance between node x and the center of the group.

Algorithm 1 Cluster head rotation

Input: Rmin, Rmax, Gxy, CHk, nk(x), Et, Er
Output: New_CHk
For each node nk(x) in {1, 2, . . . , K}

IF CHk.Er <= Et//Check if the residual energy of the current CHk is less than or equal to the
energy

threshold (Et).
Scan Gxy.radius = Rmin//Scanning all nodes in the 10 m radius of a group center
IF Find a MAX{ Score(nk(x))}//Find the node with maximum residual energy, ref Equation (7)

Broadcast New_CHk = nk(x) selected
ELSE
Scan Gxy.radius = Rmax//Scanning all nodes in the 25 m radius of a group center

IF Find a MAX{ Score(nk(x))}
Broadcast New_CHk = nk(x) selected

ELSE
IF Random selection of a MAX{ Score(nk(x))}

Broadcast New_CHk = nk(x) selected
END IF

END IF
END IF

ELSE
The CHk to continues as the CH

END IF
END FOR
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3.3. The Majority Result of a Binarized Aggregation

All sensor nodes are designed to perform omnidirectional sensing and sense events
within a certain radius. Due to low cost and energy constraints, multiple sensor nodes are
required to be densely deployed in a domain of interest to perform a common sensing task,
which leads to highly correlated data transmission [36,37]. Notably, the communication
between nodes consumes more energy than computation [15]. For dense WSNs, multiple
nodes detect the same event simultaneously when the number of nodes exceeds the
minimum data resolutions required for the sensing area. The correlated data transmissions
cause unnecessary collisions and consume additional energy. Therefore, data aggregation
for energy efficiency considerations is a critical task in clustered sensing networks [38].
Moreover, a significant amount of energy saving can be taken advantage of by spatial
correlation and further binarized data. The cluster head is responsible for collecting data
sensed by non-CH nodes and passes this binarized data to a BS. The BS broadcasts a
data request message, and all sensor nodes transmit binary sensing data to their CH. The
energy consumed to relay one bit of data is equivalent to that consumed when executing
several hundred instructions. Therefore, communication must be managed according to
the properties of the network to solve the problem of what to do with multi-hop relay data
and redundant data transfer by all means.

Furthermore, the idea of this study is a constraint that can be built from multiple
constraints by simply using the “AND” and “OR” operators (that is, “1” and “0” bit values).
First, the collected sensing data are asserted (asserted/deasserted) with binary values of
one or zero at the sensor nodes through a threshold value and then sent to their CH. For
example, assume that the threshold value for humidity is 30%. IF node A = “humidity”
<= 30 THEN node A’s asserted value is 1. This means that the humidity value sensed at
the node is too low, the environment is too dry, and crops need watering. CH calculates
the Hamming weight of the binary value from all nodes within a cluster; decisions with a
majority rule then send majority decision result of a 1-bit or 0-bit value to the BS. In the
final phase, the BS also uses the Hamming weight to calculate the binary values from all
CHs to obtain the final majority result. Suppose Ck has a number of members nk(1), nk(2),
. . . ,nk(x) with binary decisions BnCk

k (1), BnCk
k (2), . . . , BnCk

k (x), k ∈ {1, . . . , k} as given in

Equation (8), where CHmaj
k∈{1,...,k} denotes the majority result of each CH in the network.

The final majority result of the entire network (∑ BSmaj) can be determined by Equation
(9). Finally, the pseudo-code of the network’s final majority result algorithm is presented
in Algorithm 2. An illustration is shown in Figure 8, where the one-dimensional matrix
represents binarized aggregation data and then computes the Hamming weight in each
matrix to obtain the majority result.

∑ CHmaj
k∈{1,...,k} =

{
1 i f

∣∣∣{x
∣∣∣BnCk

k (x) = 1
}∣∣∣ ≥ ∣∣∣{x

∣∣∣BnCk
k (x) = 0

}∣∣∣
0 otherwise

(8)

∑ BSmaj =

{
1 i f

∣∣∣{k
∣∣∣CHmaj

k∈{1,...,k}(k) = 1
}∣∣∣ ≥ ∣∣∣k∣∣∣{CHmaj

k∈{1,...,k}(k) = 0
}∣∣∣

0 otherwise
(9)



Symmetry 2021, 13, 1671 14 of 22

Figure 8. Concept of using the Hamming weight to data aggregation.

Algorithm 2 Find the majority result of a cluster

Input: Ck∈{1,...,k}, CHk, nk(x), BnCk
k (x),

Output: Majority result of a cluster (∑ CHmaj
k∈{1,...,k})

For each node nk(x) in Ck∈{1,...,k}

CHk∈{1,...,k} =
{

BnCk
k (x)

}
//each cluster head (CHk) receives binary values from its own member nodes BnCk

k (x)

IF ∑ CHmaj
k∈{1,...,k} = 1

//where ∑ CHmaj
k∈{1,...,k} can be calculated by using Equation (7).

Send CHmaj
k∈{1,...,k} = 1 to BS//Send cluster final majority result one value to the BS

ELSE
Send CHmaj

k∈{1,...,k} = 0 to BS
END IF

BSmaj = {CHmaj
k∈{1,...,k}(k)} //BS receives binary values from CHmaj

k∈{1,...,k}
IF ∑ BSmaj = 1
//where ∑ BSmaj can be calculated by using Equation (8).

final majority result of the entire network is true
ELSE

final majority result of the entire network is false
END IF

End For

3.4. CH Chain Formation Phase

For the CH chain formation phase, the center of the entire sensing area is used as
the origin to divide into four logical quadrants, and it is assumed that the BS is located
in the center of the sensing area. The CHs in the same quadrant construct a data-relay
transmission chain, and the CH of the closest BS is fixed at the chain-end for communication
with the BS. The CHs transmit the cluster’s majority decision results to the BS, as shown
in Figure 9. There are K cluster heads in this study, and each cluster head is assigned a
unique random number from 1 to K, where K is the number of clusters and K is the odd
number. To avoid CHs closer to the BS, more data must be relayed. The CH is located in
the same quadrant, from the farthest CH and nearest CH to the BS as the chain head and
chain tail, constructing a data transmission chain. The CH nodes in each chain transmit
data to their chain tail node. Consider the third quadrant in Figure 9. For example, there
are three cluster heads, CH6, CH7, and CH8, in quadrant 3. The farthest from the BS, CH6
is the beginning of a chain node and ends at the nearest cluster head (CH8), forming a



Symmetry 2021, 13, 1671 15 of 22

communication chain. Finally, CH8, CH9, CH3, and CH5 forward the aggregated binarized
data toward the BS.

Figure 9. CH Data transmission in the chain.

3.5. Overhead Cost Analysis

In the proposed EEBDA method, overhead cost analysis is mainly divided into major-
ity decision part and data aggregation. For data aggregation, after CHs receive a BS data
request message (a request message), all nodes send a binary value to CH by threshold
asserting/deasserting. The node sends data to CH within one hop. The CHs construct
a chain, which also sends data to the BS within three hops. Assuming that there are n
nodes in each cluster, each CH receives n binary values. If the network has k clusters, the
BS will receive k binary values from the CH. As a result, the total number of messages
per round is Mtotal = k × n. The binary value is transmitted to the CH through the sensor
nodes in the majority decision part, and the CH stores binarized aggregation data in the
one-dimensional matrix to perform Hamming weight operations. Therefore, the time
complexity is O(n), and no additional space is consumed; hence, the space complexity is
O(1) [12,39].

4. Experimental Analysis

In this section, we evaluate the performance of the proposed EEBDA. First, the pro-
posed mechanism was experimented with and simulated using the MATLAB simulation
tool [40]. Second, all experiments were executed on a single machine running Windows 10
with an Intel Core i7-7700 CPU @ 3.60 GHz.

4.1. Experiment Setting

We compared EEBDA with LEACH, LEACH-C, and DEEC algorithms for performance
analysis. Therefore, all four protocols are simulated for comparative analysis, where nodes
are randomly deployed 100, 200, and 500 nodes in a WSN environment. All nodes possess
the same initial energy. The parameter settings used in the simulations are listed in Table 2.

Table 2. Simulation parameters.

Parameters Values

Size of the WSN 100 m2, 200 m2

Number of sensor nodes 100, 200, and 500

Position of BS (m, m) (50, 50), (100, 100)

Packet size 4000 bits

Initial energy (E0) 0.5 J

Energy for data aggregation 5 nJ/bit/signal

Deployment type Random deployment

Energy model First-order radio model
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We evaluated the energy consumption of WSNs as it is a major limitation. These
simulation experiments aimed to evaluate the effectiveness and efficiency of the protocols.
Furthermore, several metrics were used to compare them, such as the average residual
energy of the network, the number of nodes alive, and the variance of the residual energy.
Finally, we performed experiments on three metrics to compare the EEBDA with the other
protocols.

4.2. The Energy Consumption Performance

A comparison of the network average residual energy concerning time (in rounds)
is shown in Figure 10. In the parameter setting for initial energy, 0.5 J energy is assigned
to each node, where the total energy of the network is 50, 100, and 250 J for 100, 200,
and 500 nodes, respectively. The simulation parameters of the network are presented in
Table 2. The 100, 200, and 500 sensor nodes were randomly deployed in regions of size
100 m2 and 200 m2, respectively.

Figure 10. Cont.
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Figure 10. Average residual energy relative to the number of rounds in EEBDA, LEACH, LEACH-C, and DEEC protocols.
(a) 500 nodes in 100 m2 area; (b) 200 nodes in 100 m2 area; (c) 100 nodes in 100 m2 area; (d) 500 nodes in 200 m2 area;
(e) 200 nodes in 200 m2 area; (f) 100 nodes in 200 m2 area.

As illustrated in Figure 10, the residual energy of the sensor nodes is compared after
multiple simulations run over LEACH, LEACH-C, DEEC, and EEBDA in WSNs. The total
residual energy of the network considers the residual energy of all the nodes in each round.
This metric is reported in Figure 10, which shows that the proposed scheme (EEBDA)
saves more energy than the other protocols. In Figure 10, the maximum number of rounds
is 5000; as shown in the figure, the average residual energy in the WSN varies with the
number of rounds. For example, when the number of rounds is approximately 2250, the
average residual energy of the other three algorithms is approximately zero. We considered
the distance between the sender and receiver, the cluster size, and the spatial correlation
among sensor nodes. Therefore, the EEBDA scheme has a lower energy consumption than
the other algorithms, and the proposed scheme can prolong the lifetime of a WSN. It is
clearly shown in the Figure that the energy dissipation of the proposed protocol is less than
that of all the other schemes.

To evaluate the proposed EEBDA algorithm more accurately, we compared it again
with LEACH, LEACH-C, and DEEC from surviving sensor nodes. In Figure 11, the results
show the number of surviving sensor nodes after 5000 rounds; the sensing area is 100 m2

and 200 m2, and the number of network nodes is 100, 200, and 500 for LEACH, LEACH-C,
DEEC, and EEBDA.

The surviving sensor nodes of the WSN consider the alive nodes in each round.
This simulation result is reported in Figure 11, which shows more alive nodes in our
proposed method (EEBDA) than in the other protocols. In Figure 11, 100, 200, and
500 nodes deployed randomly are reported to be almost zero at about round 2000 on
LEACH, LEACH-C, and DEEC. Thus, in our proposed method, the network lifetime is sig-
nificantly better than the other algorithms in all cases. As expected, our scheme determines
the network configuration that consumes the lowest energy in every round. Therefore, the
surviving nodes of the network are higher than those obtained with LEACH, LEACH-C,
and DEEC. From the Figure, we can conclude that EEBDA realizes the lowest energy
consumption and prolongs the lifetime of the network.
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Figure 11. Number of alive nodes over rounds. (a) 500 nodes in 100 m2 area; (b) 200 nodes in 100 m2 area; (c) 100 nodes in
100 m2 area; (d) 500 nodes in 200 m2 area; (e) 200 nodes in 200 m2 area; (f) 100 nodes in 200 m2 area.

4.3. The Variance of the Residual Energy

The unbalanced energy consumption affects the network lifetime and leads to an
unbalanced energy consumption in nodes. In addition, the premature death of some nodes
reduces the overall performance of the WSN. In addition, it results in significant differences
in the death time of the nodes in the WSN, which adversely affects the stability of the
network and the efficiency of the transmission of information. Figure 12 mainly reflects the
energy consumption balance in the remaining surviving sensor nodes in the network with
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high network operation times. In this work, we have made an experimental simulation
variance of the residual energy to demonstrate this problem to compare the difference
in the number of nodes and sensing area among the algorithms. As shown in Figure 12,
the variance of the residual energy of each node is smaller than that of the other three
algorithms when using EEBDA. This means that the energy consumption of each node is
more balanced, and it is more conducive to improving the overall practical lifetime of the
WSN.

Figure 12. Comparison of the variance of the residual energy. (a) 500 nodes in 100 m2 area; (b) 200 nodes in 100 m2 area;
(c) 100 nodes in 100 m2 area; (d) 500 nodes in 200 m2 area; (e) 200 nodes in 200 m2 area; (f) 100 nodes in 200 m2 area.
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5. Discussion

The EEBDA outperformed the LEACH, LEACH-C, and DEEC protocols in the lifetime
of the network, energy consumption, and energy balance. The reasons are summarized as
follows.

LEACH, LEACH-C, and DEEC protocols define different threshold values of the
CH selection. In LEACH and DEEC, the CH’s selection is random. These results cause
an imbalanced distribution of CH in each round, which causes an imbalance in energy
consumption among nodes and the premature death of some nodes. In DEEC, some ad-
justments are made for CH selection such that high-energy nodes have a higher probability
of becoming CH than low-energy nodes. However, the main weakness of DEEC is the
overhead involved in handling the average energy of the entire network. This results in
faster death of high-energy nodes, which prolongs the instability period of the network
and imbalanced energy consumption among nodes. In the probability of electing CHs, the
LEACH-C protocol that selects CHs considers the average energy of the nodes. In other
words, when the residual energy of a node is higher than the average energy of the network,
the average probability of that node being elected as CH is higher than that of a node
whose residual energy is less than the average energy of the network. Therefore, compared
to LEACH, the difference in energy consumption between advanced and ordinary nodes
decreases, and the network lifetime is more prolonged than LEACH. In the CH selection
model, LEACH-C applies the residual energy and the average energy of the network to
the defined threshold compared to DEEC. When the residual energy is higher than the
average energy of the network, the node has a higher probability of being elected as CH;
however, it remains slightly random. Therefore, the lifetime of the network is improved
relative to the DEEC protocol; however, there is no more significant improvement in the
residual energy variance than LEACH and LEACH-C.

Conversely, our algorithm uses the Hamming weight to calculate the majority results
by the sensing data asserted/deasserted with binary values of one or zero through a
threshold value. The data-relay chain of CH considers the distance from the CH to the
BS and overcomes the transmission of redundant data. Our algorithm considers that the
search range of CH selection is located as near as possible from the group center, reduces
the energy consumption in unnecessary transmission, saves network energy consumption,
and prolongs the lifetime. Therefore, EEBDA is superior to LEACH, LEACH-C, and DEEC
protocols concerning energy consumption and lifetime. The proposed EEBDA mechanism,
with binarized data aggregation afterward, achieved a majority decision that utilizes spatial
and symmetry data correlation in the sensor data that can be used to reduce the energy
consumption of sensor nodes for persistent data collection and maximize the lifetime of
the network.

6. Conclusions and Future Works

According to the aforementioned simulated results, the evidence of spatial correla-
tion chain-clustering in the EEBDA binarized data aggregation mechanism is superior
to LEACH, LEACH-C, and DEEC protocols in terms of the residual energy of sensor
nodes and the network lifetime. To further improve the performance of WSNs, this study
proposes a novel WSN clustering routing protocol. First, the binarized data aggregation
technique is introduced based on a simple energy consumption model. Subsequently, the
k-means++ clustering algorithm determines the K value as an odd value to set the number
of clusters to judge the majority decision. The CHs first construct a data-relay chain with
CHs in the same quadrant, construct a data-relay chain with neighboring CHs, and send
their clusters’ final majority results to the BS. The CHs check their residual energy at the
end of each round, which decides whether or not to rotate the CH to balance the energy
consumption within the cluster. In cluster-based WSNs, there is a mode of asymmetric data
transmission from sensor nodes to the CH, allowing sensor nodes to report sensed data in
turn, maximizing the network lifetime. However, our protocol has some shortcomings.
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First, even if the node energy is sufficient, faulty nodes or transmission failures may
occur because of the uncertainty of the natural environmental factors in the data trans-
mission process. Therefore, in future works, we can consider adding a fault-tolerant
mechanism to allow a few faulty nodes, in tandem with mostly healthy nodes, to execute
data transmission tasks and keep network operation. Second, the protocol applies only
to two-dimensional or land scenarios. We did not consider three-dimensional or under-
water scenarios; typically, sensor nodes may be deployed in three dimensions, and robust
communication protocols should be considered to avoid interference. Therefore, in the
future, we will consider proposing a clustering routing protocol based on this protocol that
is suitable for three-dimensional scenarios with energy efficiency.
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