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The authors wish to make the following corrections on paper [1]:

(1) Eliminate Lemma 1 because we have found that this lemma is not correct.

(2) Theorem 3 states that for any graph G with no isolated vertex,

γst(G) ≤ α(G) + γ(G).

The result is correct, but the proof uses Lemma 1. For this reason, we propose the
following alternative proof for Theorem 3.

Proof. Let D be a γ(G)-set. Let I be an α(G)-set such that |D ∩ I| is at its maximum among
all α(G)-sets. Notice that for any x ∈ D ∩ I,

epn(x, D ∪ I) ∪ ipn(x, D ∪ I) ⊆ epn(x, I). (1)

We next define a set S ⊆ V(G) of minimum cardinality among the sets satisfying the
following properties.

(a) D ∪ I ⊆ S.
(b) For every vertex x ∈ D ∩ I,

(b1) if epn(x, D ∪ I) 6= ∅, then S ∩ epn(x, D ∪ I) 6= ∅;
(b2) if epn(x, D ∪ I) = ∅, ipn(x, D ∪ I) 6= ∅ and epn(x, I) \ ipn(x, D ∪ I) 6= ∅,

then either epn(x, I) \ D = ∅ or S ∩ epn(x, I) \ D 6= ∅;
(b3) if epn(x, D∪ I) = ∅ and epn(x, I) = ipn(x, D∪ I) 6= ∅, then S∩N(epn(x, I)) \

{x} 6= ∅;
(b4) if epn(x, D ∪ I) = ipn(x, D ∪ I) = ∅, then N(x) \ (D ∪ I) = ∅ or S ∩ N(x) \

(D ∪ I) 6= ∅.

Since D and I are dominating sets, from (a) and (b) we conclude that S is a TDS. From
now on, let v ∈ V(G) \ S. Observe that there exists a vertex u ∈ N(v) ∩ I ⊆ N(v) ∩ S,
as I ⊆ S is an α(G)-set. To conclude that S is a STDS, we only need to prove that S′ =
(S \ {u}) ∪ {v} is a TDS of G.

First, notice that every vertex in V(G) \ N(u) is dominated by some vertex in S′,
because S is a TDS of G. Let w ∈ N(u). Now, we differentiate two cases with respect to
vertex u.

Case 1. u ∈ I \ D. If w /∈ D, then there exists some vertex in D ⊆ S′ which dominates
w, as D is a dominating set. Suppose that w ∈ D. If w ∈ ipn(u, D ∪ I), then I′ =
(I ∪ {w}) \ {u} is an α(G)-set such that |D ∩ I′| > |D ∩ I|, which is a contradiction. Hence,
w /∈ ipn(u, D ∪ I), which implies that there exists some vertex in (D ∪ I) \ {u} ⊆ S′ which
dominates w.

Case 2. u ∈ I ∩ D. We first suppose that w /∈ D. If w /∈ epn(u, D ∪ I), then w is dominated
by some vertex in (D ∪ I) \ {u} ⊆ S′. If w ∈ epn(u, D ∪ I), then by (b1) and the fact that
in this case all vertices in epn(u, D ∪ I) form a clique, w is dominated by some vertex in
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S \ {u} ⊆ S′. From now on, suppose that w ∈ D. If w /∈ ipn(u, D ∪ I), then there exists
some vertex in (D ∪ I) \ {u} ⊆ S′ which dominates w. Finally, we consider the case in that
w ∈ ipn(u, D ∪ I).

We claim that ipn(u, D ∪ I) = {w}. In order to prove this claim, suppose that there
exists w′ ∈ ipn(u, D ∪ I) \ {w}. Notice that w′ ∈ D. By (1) and the fact that all vertices in
epn(u, I) form a clique, we prove that ww′ ∈ E(G), and so w /∈ ipn(u, D ∪ I), which is a
contradiction. Therefore, ipn(u, D ∪ I) = {w} and, as a result,

epn(u, D ∪ I) ∪ {w} ⊆ epn(u, I). (2)

In order to conclude the proof, we consider the following subcases.

Subcase 2.1. epn(u, D ∪ I) 6= ∅. By (2), (b1), and the fact that all vertices in epn(u, I)
form a clique, we conclude that w is adjacent to some vertex in S \ {u} ⊆ S′, as desired.

Subcase 2.2. epn(u, D ∪ I) = ∅ and epn(u, I) \ {w} 6= ∅. By (2), (b2), and the fact
that all vertices in epn(u, I) form a clique, we show that w is dominated by some vertex in
S \ {u} ⊆ S′, as desired.

Subcase 2.3. epn(u, D ∪ I) = ∅ and epn(u, I) = {w}. In this case, by (b3) we deduce
that w is dominated by some vertex in S \ {u} ⊆ S′, as desired.

According to the two cases above, we can conclude that S′ is a TDS of G, and so S is
a STDS of G. Now, by the the minimality of |S|, we show that |S| ≤ |D ∪ I|+ |D ∩ I| =
|D| + |I|. Therefore, γst(G) ≤ |S| ≤ |I| + |D| = α(G) + γ(G), which completes the
proof.

The authors would like to apologize for any inconvenience caused to the readers by
these changes. The changes do not affect the scientific results.
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