

Correction Correction: Cabrera Martínez et al. On the Secure Total **Domination Number of Graphs.** *Symmetry* 2019, 11, 1165

Abel Cabrera Martínez 🔍, Luis P. Montejano * 🗅 and Juan A. Rodríguez-Velázquez 🗅

Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; abel.cabrera@urv.cat (A.C.M.); juanalberto.rodriguez@urv.cat (J.A.R.-V.) * Correspondence: luispedro.montejano@urv.cat

The authors wish to make the following corrections on paper [1]:

- (1) Eliminate Lemma 1 because we have found that this lemma is not correct.
- (2) Theorem 3 states that for any graph *G* with no isolated vertex,

 $\gamma_{st}(G) \le \alpha(G) + \gamma(G).$

The result is correct, but the proof uses Lemma 1. For this reason, we propose the following alternative proof for Theorem 3.

Proof. Let *D* be a $\gamma(G)$ -set. Let *I* be an $\alpha(G)$ -set such that $|D \cap I|$ is at its maximum among all $\alpha(G)$ -sets. Notice that for any $x \in D \cap I$,

$$epn(x, D \cup I) \cup ipn(x, D \cup I) \subseteq epn(x, I).$$
(1)

We next define a set $S \subseteq V(G)$ of minimum cardinality among the sets satisfying the following properties.

- (a) $D \cup I \subseteq S$.
- (b) For every vertex $x \in D \cap I$,
 - (b1) if $epn(x, D \cup I) \neq \emptyset$, then $S \cap epn(x, D \cup I) \neq \emptyset$;
 - (b2) if $epn(x, D \cup I) = \emptyset$, $ipn(x, D \cup I) \neq \emptyset$ and $epn(x, I) \setminus ipn(x, D \cup I) \neq \emptyset$, then either $epn(x, I) \setminus D = \emptyset$ or $S \cap epn(x, I) \setminus D \neq \emptyset$;
 - (b3) if $epn(x, D \cup I) = \emptyset$ and $epn(x, I) = ipn(x, D \cup I) \neq \emptyset$, then $S \cap N(epn(x, I)) \setminus \{x\} \neq \emptyset$;
 - (b4) if $epn(x, D \cup I) = ipn(x, D \cup I) = \emptyset$, then $N(x) \setminus (D \cup I) = \emptyset$ or $S \cap N(x) \setminus (D \cup I) \neq \emptyset$.

Since *D* and *I* are dominating sets, from (a) and (b) we conclude that *S* is a TDS. From now on, let $v \in V(G) \setminus S$. Observe that there exists a vertex $u \in N(v) \cap I \subseteq N(v) \cap S$, as $I \subseteq S$ is an $\alpha(G)$ -set. To conclude that *S* is a STDS, we only need to prove that $S' = (S \setminus \{u\}) \cup \{v\}$ is a TDS of *G*.

First, notice that every vertex in $V(G) \setminus N(u)$ is dominated by some vertex in S', because *S* is a TDS of *G*. Let $w \in N(u)$. Now, we differentiate two cases with respect to vertex *u*.

Case 1. $u \in I \setminus D$. If $w \notin D$, then there exists some vertex in $D \subseteq S'$ which dominates w, as D is a dominating set. Suppose that $w \in D$. If $w \in ipn(u, D \cup I)$, then $I' = (I \cup \{w\}) \setminus \{u\}$ is an $\alpha(G)$ -set such that $|D \cap I'| > |D \cap I|$, which is a contradiction. Hence, $w \notin ipn(u, D \cup I)$, which implies that there exists some vertex in $(D \cup I) \setminus \{u\} \subseteq S'$ which dominates w.

Case 2. $u \in I \cap D$. We first suppose that $w \notin D$. If $w \notin epn(u, D \cup I)$, then w is dominated by some vertex in $(D \cup I) \setminus \{u\} \subseteq S'$. If $w \in epn(u, D \cup I)$, then by (b1) and the fact that in this case all vertices in $epn(u, D \cup I)$ form a clique, w is dominated by some vertex in

Citation: Cabrera Martínez, A.; Montejano, L.P.; Rodríguez-Velázquez, J.A. Correction: Cabrera Martínez et al. On the Secure Total Domination Number of Graphs. *Symmetry* 2019, *11*, 1165. *Symmetry* 2021, *13*, 1668. https://doi.org/ 10.3390/sym13091668

Received: 30 August 2021 Accepted: 31 August 2021 Published: 10 September 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). $S \setminus \{u\} \subseteq S'$. From now on, suppose that $w \in D$. If $w \notin ipn(u, D \cup I)$, then there exists some vertex in $(D \cup I) \setminus \{u\} \subseteq S'$ which dominates w. Finally, we consider the case in that $w \in ipn(u, D \cup I)$.

We claim that $ipn(u, D \cup I) = \{w\}$. In order to prove this claim, suppose that there exists $w' \in ipn(u, D \cup I) \setminus \{w\}$. Notice that $w' \in D$. By (1) and the fact that all vertices in epn(u, I) form a clique, we prove that $ww' \in E(G)$, and so $w \notin ipn(u, D \cup I)$, which is a contradiction. Therefore, $ipn(u, D \cup I) = \{w\}$ and, as a result,

$$epn(u, D \cup I) \cup \{w\} \subseteq epn(u, I).$$
⁽²⁾

In order to conclude the proof, we consider the following subcases.

Subcase 2.1. $epn(u, D \cup I) \neq \emptyset$. By (2), (b1), and the fact that all vertices in epn(u, I) form a clique, we conclude that w is adjacent to some vertex in $S \setminus \{u\} \subseteq S'$, as desired.

Subcase 2.2. $epn(u, D \cup I) = \emptyset$ and $epn(u, I) \setminus \{w\} \neq \emptyset$. By (2), (b2), and the fact that all vertices in epn(u, I) form a clique, we show that w is dominated by some vertex in $S \setminus \{u\} \subseteq S'$, as desired.

Subcase 2.3. $epn(u, D \cup I) = \emptyset$ and $epn(u, I) = \{w\}$. In this case, by (b3) we deduce that *w* is dominated by some vertex in $S \setminus \{u\} \subseteq S'$, as desired.

According to the two cases above, we can conclude that S' is a TDS of G, and so S is a STDS of G. Now, by the the minimality of |S|, we show that $|S| \le |D \cup I| + |D \cap I| = |D| + |I|$. Therefore, $\gamma_{st}(G) \le |S| \le |I| + |D| = \alpha(G) + \gamma(G)$, which completes the proof. \Box

The authors would like to apologize for any inconvenience caused to the readers by these changes. The changes do not affect the scientific results.

Reference

1. Cabrera Martínez, A.; Montejano, L.P.; Rodríguez-Velázquez, J.A. On the secure total domination number of graphs. *Symmetry* **2019**, *11*, 1165. [CrossRef]