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Abstract: Recently, Discriminative Correlation Filters (DCF) have shown excellent performance in
visual object tracking. The correlation for a computing response map can be conducted efficiently
in Fourier domain by Discrete Fourier Transform (DFT) of inputs, where the DFT of an image has
symmetry on the Fourier domain. To enhance the robustness and discriminative ability of the filters,
many efforts have been devoted to optimizing the learning process. Regularization methods, such as
spatial regularization or temporal regularization, used in existing DCF trackers aim to enhance the
capacity of the filters. Most existing methods still fail to deal with severe appearance variations—in
particular, the large scale and aspect ratio changes. In this paper, we propose a novel framework
that employs adaptive spatial regularization and temporal regularization to learn reliable filters
in both spatial and temporal domains for tracking. To alleviate the influence of the background
and distractors to the non-rigid target objects, two sub-models are combined, and multiple features
are utilized for learning of robust correlation filters. In addition, most DCF trackers that applied
1-dimensional scale space search method suffered from appearance changes, such as non-rigid
deformation. We proposed a 2-dimensional scale space search method to find appropriate scales
to adapt to large scale and aspect ratio changes. We perform comprehensive experiments on four
benchmarks: OTB-100, VOT-2016, VOT-2018, and LaSOT. The experimental results illustrate the
effectiveness of our tracker, which achieved a competitive tracking performance. On OTB-100, our
tracker achieved a gain of 0.8% in success, compared to the best existing DCF trackers. On VOT2018,
our tracker outperformed the top DCF trackers with a gain of 1.1% in Expected Average Overlap
(EAO). On LaSOT, we obtained a gain of 5.2% in success, compared to the best DCF trackers.

Keywords: Discriminative Correlation Filters; visual object tracking; adaptive spatial regularization;
temporal regularization; scale space search; non-rigid deformation

1. Introduction

An object tracking algorithm aims to track the object’s position in a 2D or 3D input,
such as wireless signal, radar (i.e., a radar echo), or camera (i.g., video frame). For example,
the Bluetooth 5.1 Direction Finding standard provides the probability of high-precision and
real-time tracking of targets based on Angle of Departure (AoD) and the Angle of Arrival
(AoA) [1]. Visual object tracking, as the main topic of this paper, is an important area in
computer vision, which estimates the trajectory of the target object with visual information
from a video sequence. visual object tracking can be applied into many applications, such
as video surveillance, motion analyses, human computer interaction, automatic robot
navigation, and traffic monitoring.

In recent years, the Discriminative Correlation Filter (DCF) for tracking has attracted
a lot of attention due to its efficiency and effectiveness, from the trackers based on hand-
crafted features [2–4] to the trackers that exploit learning with deep features [5–7]. The
core idea in DCF trackers is how to learn robust and discriminative filters to adapt to
appearance changes online by minimizing a least-squares loss for all circular shifts of a
training sample.
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Compared with the end-to-end deep trackers that require large-scale training set for
offline training, the DCF-based trackers are model-free and do not need offline training.
Although the deep trackers obtain superior performance on challenging sequences with
attributes such as deformation, rotation, and scale variation. One limitation of deep
Siamese trackers, such as SiamRPN++ [8], is that the model can easily lose the target if it is
occluded by the similar distractors. While state-of-the-art DCF trackers exhibit more stable
performance on non-rigid objects and are even more robust in the case of heavy occlusion
caused by similar distractors.

The recent advancements in this area include applying different kinds of regularization
techniques [4,6,9–11], developing an efficient model update strategy [12], reducing bound-
ary effects [10], employing background information [9,10], applying kernel tricks [13,14],
and using the efficient scale estimating scheme [3].

There are a variety of regularizations, such as spatial regularization [4], spatial-
temporal regularization [6], context regularization [9,10], and adaptive spatial regular-
ization [11], which can steadily improve the tracking performance on public tracking
benchmarks. As spatial-temporal regularized correlation filters (STRCF) [6] and adaptive
spatially-regularized correlation filters (ASRCF) [11] merely consider limited auxiliary
information, both of them still suffer from severe appearance changes on challenging
video sequences.

ASRCF does not consider the temporal consistent, while STRCF does not exploit the
changes of spatial constraints over time explicitly. In this paper, we first employ both
the temporal information and spatial continuity during the filters learning procedure.
Secondly, we study the problem of multiple features (e.g., Histogram of Oriented Gradient
(HOG) [15], color features [16], and deep features [17]) combination for correlation filters
learning. We found that different feature combinations lead to different impacts on the
tracking performance.

The feature representation of the different layers in a deep Convolution Neural Net-
work (CNN) are different, and one limitation of most existing DCF trackers [5–7] is the
utilization of the specific layer of the CNN model. In some cases, the appearance of the
target experiences significant changes caused by deformation or rotation. For example, the
DeepSTRCF [6] and ASRCF [11] both fail to track the target on MotorRolling sequence in
OTB-100 [18], in which the target rotates in the image plane and has experienced severe
non-rigid deformation.

Another limitation of the published DCF trackers is that most of them, such as
STRCF [6] and ASRCF [11] utilize the 1-dimensional scale space search method to find
the optimal scale. By applying the scale factor, the height and width of the tracking result
are adjusted simultaneously in the current frame. However, such a scaling scheme is not
sufficient for severe appearance changes, such as deformation, viewpoint change, and
aspect ratio change.

In this paper, we explore the scale estimation in 2-dimensional scale space to address
the above limitation, in which it can adjust the height and width of target with two different
scale factors. By applying the new scale space search scheme, we demonstrate that it leads
to better adaptive ability to aspect ratio changes and severe deformation.

The contributions of this paper can be summarized as follows:
•We develop a novel tracker that seamlessly applies temporal and adaptive spatial

regularization to learn the correlation filters, which can significantly improve the accuracy
and robustness of the tracker for videos with challenging attributes.

• An efficient optimization procedure is presented, and the Alternating Direction
Method of Multipliers (ADMM) algorithm is applied for solving each sub-problem.

•We propose a 2-dimensional scale space search method for finding the optimal 2-
dimensional aspect ratios to adapt to target deformation, instead of the 1-dimensional scale
factor. We validate our approach through sufficient experiments, and the tracking results
demonstrate that our new scale search method can achieve significant improvements. On
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LaSOT, our approach outperforms its counterpart DeepSTRCF in success score by 5.6% on
the deformation attribute and 5.4% on the Scale Variation attribute.

• We evaluate our method on OTB-100 [18], VOT-2016 [19], VOT-2018 [20], and
LaSOT [21] tracking datasets and report the state-of-the-art tracking performance. On
OTB-100, our approach outperforms its counterparts ASRCF and DeepSTRCF by 0.8% and
2.3% in success. Compared to DeepSTRCF [6], our tracker improves by 5.2% in success.

The remainder of the paper is structured as follows. In Section 2, we review the most
closely related work on visual object tracking, the traditional DCF tracking procedure is
described in Section 3, our approach is presented in Section 4, experimental results are
presented in Section 5, and our conclusions are drawn in Section 6.

2. Related Work

Most of the traditional tracking algorithms can be categorized as either generative or
discriminative. The generative trackers search the region that is the most similar to the
reference target in a video sequence, such as `1 tracker [22], Multi-Task Tracking (MTT) [23],
and Multi-task Correlation Particle Filter (MCPF) [24]. The discriminative trackers aim
to distinguish the target from the background by a detection model, such as the Multiple
Instance Learning (MIL) classifier used in [25] and the kernelized structured output support
vector machine (SVM) applied in Struck [26].

The tracking-by-detection [27] tracker exploited the circular structure for fast learning
of the classifier and detecting with the dense sampling strategy. Henriques et al. [13]
proposed kernelized correlation filters (KCF) based on linear and kernel ridge regression
for fast visual object tracking. In order to utilize multi-channel RGB images or features (e.g.,
HOG), Kiani Galoogahi et al. proposed the Multi-channel correlation filter (MCCF) strategy
for car localization, with the efficient use of memory and computations. Tang et al. [14]
demonstrated that the single kernel can be decomposed into multiple kernels that can be
applied to fuse multiple channel features for tracking.

Regularization methods are widely used for solving the least-squares problem, such
as the spatial regularizer in [4], total generalized variation (TGV) regularizer in [28], and
temporal regularizer in [6]. To solve the boundary effect problem caused by the circular
assumption, Danelljan et al. [4] proposed spatially regularized discriminative correla-
tion filters (SRDCF), which adds spatial regularization to the optimization problem via a
weighted function.

The spatial weights are based on the prior information about the spatial extent of
the filter. The framework in [10] allows the learning of background-aware correlation
filters (BACF) from both the background and target region. In additional, Mueller et al. [9]
applied context image patches around the target to learn discriminative context-aware
correlation filters (CACF) for tracking.

Similar to SRDCF [4], Li et al. [6] proposed spatial-temporal regularized correlation
filters (STRCF) that exploit both the spatial and temporal regularizations during model
learning. The closed solution can be obtained by the ADMM algorithm, which performs the
learning procedure only on a single image instead of using multiple samples in SRDCF [4].
In [29], Lukežič et al. proposed a discriminative correlation filter with Channel and Spatial
Reliability (CSR-DCF) model, in which the channel and spatial reliability are combined
to constrain the filter learning. The unsupervised segmentation mask is utilized as the
spatial reliability.

In [30], Ma et al. applied multiple convolutional features with identical resolution for
learning independent Correlation Filters (CFs) and then hierarchically estimated the final
response. In [7], Danelljan et al. proposed the Continuous Convolution Operator Tracker
(C-COT) to learn the CFs in a continuous domain and integrate multi-resolution shallow
and deep feature maps. In [12], Danelljan proposed Efficient Convolution Operators (ECO)
to reduce the computation cost while preserve the tracking performance. However, the
multiple samples used for learning CFs still led to a high computation cost.
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Zhang et al. proposed a ensemble tracker based on Multi-Expert Entropy Minimization
(MEEM) restoration scheme to address the model drift problem. Li et al. [31] extended
the MEEM to multi-expert in a collaborative way, instead of the independent entropy
computation in MEEM. Similarly, Li et al. [32] utilized the unified discrete graph to model
the relationship of multi-expert, while the computation load of dynamic programming
increased significantly with a larger number of experts.

In [33], Wang et al. proposed a strategy to adaptively select the suitable expert from a
pool of experts which was generated with different features combinations. Bhat et al. [34]
combined the shallow feature model and deep feature model through adaptive weights
to enhance the capacity of the model, in which the model can be obtained by solving the
Quadratic Programming problem. While the limitation of it is that they only consider the
two different features and the fusion happens in the model prediction stage. The weighted
confidence margin is computed with the confidence scores and their locations, which does
not consider the scale variation of target object.

Dai et al. [11] proposed adaptive spatially-regularized correlation filters (ASRCF) to
further improve the accuracy of CFs by adding the adaptive spatial regularization, while
they directly concatenate the multiple features (i.e., HOG and deep features) together for
CF learning.

Although the advanced CF trackers, like STRCF [6] and ASRCF [11], have achieved
state-of-the-art performance in most sequences on the OTB-100 [18] dataset, the sequences,
such as Jump, MotorRolling, and Diving in OTB-100 [18], still pose challenges. Most existing
DCF trackers estimate the scale of target by 1-dimensional scale space search, which limits
the tracker’s ability to adapt to large scale ratio aspect changes due to challenges, such as
deformation, rotation, and viewpoint changes.

Recently, with the development of large scale datasets, the improvement of computing
power, and reliable and efficiency computing resources allocation [35], applications based
on deep learning have entered a period of rapid development. Trackers based on the deep
Siamese network have also drawn great attention and shown significant improvements
regarding tracking performance.

In [36], Bertineto et al. proposed the Siamese Fully-Convolutional (SiamFC) tracker
based on an end-to-end fully-convolutional Siamese network and achieved high tracking
speed beyond real time. In [37], the Correlation Filter Network (CFNet) was proposed for
the joint learning of deep features and correlation filters in an end-to-end manner.

In the Siamese region proposal network (SiamRPN) [38], Li et al. took the advantages
of the Siamese network and region proposal network (RPN) to improve the accuracy of
localization and regression of the target bounding box. Furthermore, SiamRPN++ [8]
employed a lightweight Depthwise Cross Correlation (DW-XCorr) layer instead of the
Channel Cross Correlation (UP-XCorr) layer in SiamRPN, which achieved state-of-the-art
tracking performance.

In contrast to most of the Siamese trackers, Danelljan et al. [39] proposed the Accurate
Tracking by Overlap Maximization (ATOM) tracker, which combined the offline trained tar-
get estimation module and online learned target classification module for tracking. In [40],
a model predictor was designed to estimate the target model, which was trained with a set
of multiple samples of the sequence instead of the image pairs in Siamese approaches.

In [41], Zhang et al. designed new residual modules to build deeper and wider
backbone networks, in which the cropping-inside residual (CIR) unit was utilized to
remove the effect of padding operation, and the downsampling cropping-inside residual
(CIR-D) unit was utilized to reduce the spatial size of the feature maps. One limitation in
recent deep trackers is that they need to train the target model with large scale datasets in
the offline phase.

Different from the DCF trackers that update the model with a continuous strategy in
each frame [10,11] or a sparser scheme in every N frames [12], the deep trackers, such as
SiamRPN++ [8] do not update the model during tracking, as they are sensitive to sudden
changes caused by deformation and viewpoint change. Deep trackers (e.g., SiamRPN [38]
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and ATOM [39]) also easily lose the target when there are many similar distractors around
the target.

3. Revisiting Traditional Correlation Filter Tracking

In this section, we first introduce the standard discriminative correlation filters for
visual object tracking. Then, we briefly describe the two baseline trackers, STRCF [6] and
SRDCF [11]. These two methods utilize different regularizations for filter learning.

3.1. Revisting Standard Correlation Filter

Given a sequence of images and its initial state, including the position and size of
target, the task of standard DCF trackers is to learn CFs using a set of training samples
{xi, yi}N

i=1, where xi denote the multiple channel feature representation of i-th image, yi is
the corresponding desired output. The main objective function can be defined as:

` =
N

∑
i=1
‖

D

∑
d=1

f d ? xd
i − yi‖2

2 +
λ

2
‖ f ‖2

2 (1)

Here, λ represents the weight of regularization term. f is the correlation filter. According
to Parseval’s theorem, the filter f can be efficiently formulated in the frequency domain as

f̂ =
∑N

i=1 ŷi � conj(x̂i)

∑N
i=1 x̂i � conj(x̂i) + λI

(2)

where � denotes the element-wise multiplication of two vectors. Theˆdenotes the Discrete
Fourier Transform (DFT) F , which possesses the property of symmetry, i.e., x̂i = F{xi}
and ŷi = F{yi} are the DFT of the sample and its desired output. conj denotes the complex
conjugation operation. Given a test image patch z, the corresponding response can be
obtained by:

G = F−1

{
D

∑
d=1

ẑd � conj( f̂ d)

}
(3)

where F−1 denotes the inverse DFT operation.

3.2. Revisiting STRCF

In STRCF [6], a temporal regularization term ‖ f − ft−1‖2
2 is incorporated into the

objective as follows:

L = arg min
f

1
2
‖

D

∑
d=1

xd
t ? f d − y‖2

2 +
λ

2

D

∑
d=1
‖w� f d‖2

2 +
µ

2
‖ f − ft−1‖2

2 (4)

where w denotes the spatial regularization weight as SRDCF [4]. λ and µ are the penalty
factors of the two regularization terms. The temporal regularization aims to exploit rela-
tionship between adjacent samples by passively updating the correlation filters, making
the filter learned in the current frame close to the one in the previous frame.

3.3. Revisiting ASRCF

In ASRCF [11], Dai et al. introduced a regularization based on spatial weight w and
its reference wr. The objective can be formulated as:

L = arg min
f

1
2
‖

D

∑
d=1

xd
t ? (P

> f d)− y‖2
2 +

λ

2

D

∑
d=1
‖w� f d‖2

2 +
µ

2
‖w−wr‖2

2 (5)

where λ and µ are the penalty factors of the two spatial regularization terms. P is the
cropping matrix to encourage using large number of negative samples from surrounding
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background for training. The third term is used to adjust the spatial weight during
model learning.

4. Our Approach

In this section, we propose a novel tracking framework that simultaneously considers
the spatial similarity of the target between current frame and reference frame, and the
temporal consistency of filters in adjacent frames. For accurate scale estimation, we
proposed a 2-dimensional scale space search method to adapt to appearance changes
caused by challenging scenarios, such as deformation, target rotation, and viewpoint
change. The Figure 1 shows the diagram of our tracking approach. The two sub-models
are refer to two different learning rates.

First, the feature extractor is utilized to extract the features of an image patch. After
obtaining the features of a target object, we obtain the appearance model-1 and appearance
model-2. Secondly, we learn the two sub-models (filters) with different learning rates,
which correspond to h1

t and h2
t . During the tracking process, the two sub-models are used

to produce response maps. Finally, the response maps of the two sub-models are weighted
aggregated together to produce the final tracking result.

Feature 
extractor

Frame(t-1)

Frame(t)
Feature 

extractor

Appearance 
model-1

+

Appearance
 model-2

+

Learning stage

CF
learner

CF
learner

Detection stage

Feature 
extractor

Corr

C
o
r
r

Corr Response_1

Response_2

Feature map
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frame + Final 
Estimation

Filters-1

Filters-2
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Frame(t-1)

Frame(t)
Feature 
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+
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CF
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Detection stage

Feature 
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o
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Estimation
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CF: Correlation Filter

Corr: Correlation

Figure 1. Overview of our visual tracking framework.

4.1. Adaptive Spatial-Temporal Regularization

Li et al. [6] introduced a temporal regularization term ‖ f − ft−1‖2
2 to make the filter

learned from the current frame similar to the previous filter. In [11], Dai et al. proposed
a spatially-regularized term ‖w−wr‖2

2 to constrain the adaptive spatial weight w in the
current frame be similar to a reference weight wr. We found that both the temporal
regularization and adaptive spatial regularization can be combined seamlessly to enhance
the discriminative ability of filters. In this paper, we introduce an adaptive spatial-temporal
regularization into the discriminative correlation filters framework.

In frame t, we prepare the training pair {xt, y}, where xt is the sampled image patch,
ẙ denotes its desired response generated with Gaussian function. By applying the adaptive
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spatial-temporal regularization, the corresponding optimization problem can be defined
as follows:

L = arg min
f

1
2
‖

D

∑
d=1

xd
t ? (P

> f d)− y‖2
2 +

λ

2

D

∑
d=1
‖w� f d‖2

2

+
µ1

2
‖w−wr‖2

2 +
µ2

2
‖ f − ft−1‖2

2

(6)

where ft−1 denotes the learned CFs of the t− 1th frame. f is the CFs of the current frame
to be learned, ‖w� f d‖2 and ‖w−wr‖2

2 are the two spatial regularizers. P is the cropping
matrix as in BACF [10]. ‖ f − ft−1‖2

2 denotes the temporal regularizer. λ1, λ2, and µ are the
three different penalty factors, respectively. The > operator computes the transpose of the
matrix. For a complex vector or matrix, it computes the conjugate transpose of them.

By applying the Parseval theorem, the above objective function can be expressed in
the frequency for the computation efficiency as:

L = arg min
f̂

1
2
‖

D

∑
d=1

conj(x̂d)� ĝd − ŷ‖2
2 +

λ

2

D

∑
d=1
‖w� f d‖2

2

+
µ1

2
‖w−wr‖2

2 +
µ2

2
‖ĝ− ĝt−1‖2

2,

s.t., ĝd =
√

TFP> f d, d = 1, ..., D

(7)

Equation (7) can be solved with an Augmentation Lagrangian Method (ALM) as:

L = arg min
f̂

1
2
‖

D

∑
d=1

conj(x̂d)� ĝd − ŷ‖2
2 +

λ

2

D

∑
d=1
‖w� f d‖2

2

+
D

∑
d=1

(ζ̂d)T(ĝd −
√

TFP> f d) +
µ1

2
‖w−wr‖2

2

+
µ2

2
‖ĝ− ĝt−1‖2

2 +
γ

2

D

∑
d=1
‖ĝd −

√
TFPT f d‖2

2

(8)

where the ζ̂ and γ denote the Fourier Transform of the Lagrangian vector and penalty
factor, respectively. Inspired form the STRCF [6], we introduce an auxiliary variable h = 1

γ ζ,
Equation (8) can be reformulated as,

L = arg min
f̂

1
2
‖

D

∑
d=1

conj(x̂d)� ĝd − ŷ‖2
2 +

λ

2

D

∑
d=1
‖w� f d‖2

2

+
γ

2

D

∑
d=1
‖ĝd −

√
TFP> f d + ĥd‖2

2

+
µ1

2
‖w−wr‖2

2 +
µ2

2
‖ĝ− ĝt−1‖2

2

(9)

Then, the ADMM Algorithm [42] is adopted alternatively to solve the objective function.
Subproblem f:

f d = arg min
f d

λ

2
‖W f d‖2

2 +
γ

2
‖ĝ−

√
TFP> f d + ĥd‖2

2 (10)

where W denotes the diagonal matrix: W = diag(w). Taking the derivative of Equation (10)
with respect to f d and setting it to be zero, we can obtain the solution for f d,

f d =(λW>W + γTP)−1Q,

Q =γTP(g + h)
(11)
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where g and h can be obtained by applying the inverse DFT F−1 on ĝ and ĥ, i.e., g =
F−1{ĝ}, h = F−1{ĥ}.

Subproblem g:

ĝ∗ = arg min
f̂

1
2

D

∑
d=1
‖conj(x̂d)� ĝd − ŷ‖2

2

+
γ

2

D

∑
d=1
‖ĝd −

√
TFP> f d + ĥd‖2

2

+
µ2

2
‖ĝd − ĝd

t−1‖2
2

(12)

As the jth element of ŷ is dependent only on the jth element across the D channels of
the filters ĝd and samples x̂d, d = 1, ..., D. We denote Vj(â) = [conj(â1(j)), ..., conj(âD(j))]>

the vector of jth element of â along all D channels. Thus, solving Equation (12) equals to
solve T subproblems as:

ĝ(t)∗ = arg min
ĝ

1
2
‖Vj(x̂t)

>Vj(ĝ)− ŷj‖2
2

+
γ

2
‖Vj(ĝ) + Vj(ĥ)− Vj(

√
TFP> f )‖2

2

+
µ2

2
‖Vj(ĝ)− Vj(ĝt−1)‖2

2

(13)

Then, we can obtain the solution of ĝ(t)∗ as:

ĝ(t)∗ = (Vj(x̂t)Vj(x̂t)
> + (γ + µ2)TIk)

−1M (14)

where M = Vj(x̂t)ŷj + γTVj(
√

TFP> f )− γTVj(ĥ) + µ2TVj(ĝt−1). Then, Equation (14) can

be solved by using the Sherman Morrison formula [43], (A + uv>)−1 = A−1 − A−1uv>A−1

1+v>A−1u ,

where uv> is a rank-1 matrix. u ∈ RT×1 and v ∈ RT×1 are two column vectors, respectively.
Then, Equation (14) can be reformulated as:

ĝ(t)∗ =
1

(γ + µ2)T

(
Ik −

Vj(x̂)Vj(x̂)>

(γ + µ2)T + Vj(x̂)>Vj(x̂)

)
M (15)

Subproblem w: The solution of spatial regularization weight w can be obtained by
solving the following object function,

w∗ = arg min
w

λ

2

D

∑
d=1
‖diag(w) f d‖2

2 +
µ1

2
‖w−wr‖2

2

= arg min
w

λ

2

D

∑
d=1
‖diag( f d)w‖2

2 +
µ1

2
‖w−wr‖2

2

=(λ
D

∑
d=1

(diag( f d)>diag( f d)) + µ1 I)−1µ1wr

(16)

Updating the Lagrangian Multiplier: We update the Lagrangian vector as:

ĥi+1 = ĥi + γ(ĝi+1 − f̂i+1) (17)

where the penalty factor γ is updated as:

γ = min(γmax, βγ) (18)
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Model Update: Instead of the online update strategy which updates the tracking
model at each frame in most of the traditional DCF trackers [2,10,13], we employ the
criterion called Peak to Sidelobe Ratio (PSR) [2] to measure the tracking uncertainty and
decide when to update the tracking result in upcoming frames. Generally, the larger PSR
value indicates the better location accuracy.

4.2. 2-Dimensional Scale Space Search Method

In visual object tracking, trackers often lose the target due to non-rigid deformation, es-
pecially for the most of DCFs trackers, which utilize the 1-dimensional fast scale estimation
approach [3]. In this method, S number of scales with a scale factor a are used to extract an
image patch Jn of size anP× anP centered around the target, where n ∈

{
−b S−1

2 , ..., b S−1
2 c
}

.
During online tracking, the tracking algorithms learn their appearance models and perform
tracking with initialization in the first frame.

The aspect ratio is fixed in this scale estimation approach. For example, if the best
scale factor is a∗, the width and height become [a∗ ×Wt−1, a∗Ht−1], where Wt−1 and Ht−1
are the width and height of the target in the previous frame. The limitation of this scheme
is that the width Wt−1 and Ht−1 are scaled with a same factor a∗. Since the new estimated
state cannot cover the appearance variance of target due to severe non-rigid deformation,
the variance of width and height are not the same with each other.

As shown in Figure 2, the size of the ground truth bounding boxes of target objects
in raw frames are W1 = 133, H1 = 146, W2 = 90, H2 = 132, W3 = 95, and H3 = 93,
respectively. Then, the ratios are: a1

w = W2/W1 = 0.676, a1
h = H2/H1 = 0.904, a2

w =
W3/W2 = 1.056, and a2

h = H3/H2 = 0.705. The different ratios of height and width
illustrate that applying an identical scale factor to scale estimation is not enough to capture
the shape variation.

H1

W1

H2

W2 W3

H3

(a) (b) (c)

H1

W1

H2

W2 W3

H3

(a) (b) (c)

#1 #40#14

Figure 2. Examples of changes in terms of the aspect ratio. Frames are selected from the bag sequence
in the VOT2018 dataset. (a) The frame #1; (b) The frame #14; (c) The frame #40.

To adapt to shape changes, we proposed a novel scale space search method, which
allows the scale factors to change along two axis directions. As shown in Figure 3, the
figure above is the scale variation in conventional trackers that use the 1-dimensional scale
space search method, and the figure below is scale variation in our new method. Let the
S denotes the size of scale filter, for each m, n ∈

{
−b S−1

2 , ..., b S−1
2 c
}

, we extract an image
patch Jm,n of size amP × anR centered around the previous target location for tracking,
where am and an denote scale factors along two dimensions as shown in the Figure 3.

Compared to the 1-dimensional scale space search method, our new scale search
method explores different aspect ratios along two dimensions, aiming to capture severe
non-rigid deformation of the target. Afterwards, the final translations and scale factors are
computed by Newton’s method as in SRDCF [4].
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aw x aH

a1w x a2H

1-dimensional search method

2-dimensional search method

Figure 3. Comparisons of aspect ratios with different search strategies.

4.3. The Impact of Learning Rate

In traditional CF-based visual tracking methods, the learning rate is a common pa-
rameter that is used for updating the appearance model. In our framework, if we set the
learning rate to 1, then the appearance model will degenerate to STRCF [6], which directly
feeds the current appearance feature to the learning model. Through the experiments, we
found that the learning rate also has a significant impact on the tracking accuracy of the
model. For example, the Car24 sequence in OTB-100 [18] consists of more than 3k frames,
and the appearance of the Car changes slightly when it moves from right side to left side of
the road or from far to near as in the examples we present in Figure 4. The larger learning
rate implies that the appearance model updates rely more the recent features and less the
previous features.

Different from the learning rate in the domain of machine learning and deep learning,
which can be adjusted by the model online, we do not have the fully labeled training data
to find the optimal hyper parameter, such as the learning rate. In our framework, we utilize
the learning rate to update the appearance model, and the main difference is that there
are two kinds of learning rates employed in our model, corresponding to two different
sub-models as shown in Figure 1.

Figure 4. Tracking examples with different learning rates on Car24 sequence, where the results in the
upper row use larger learning rate and the results in the bottom row use relative small learning rate.
The ground truth bounding boxes are in red.

5. Experiments
5.1. Experimental Implementations

Our approach ASTRCF is implemented with Matlab 2019b using MatConvNet on
a PC with an i5-7500 CPU at 3.4 GHz, 64GB RAM, and a NVIDIA Geforce 1080ti GPU.
Algorithm 1 provides a brief outline of our tracker. In order to fuse the deep and hand-
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crafted feature in a proper way for filter learning, we set the standard deviation for the
desired correlation output to 1/16 of the target size as the same with [3]. The initial penalty
factor γ is set as 1. We set the maximal penalty factor γmax as 10,000. We set the step β as 10
to update γ by γi+1 = min(γmax, βγi). The spatial regularization factor µ1 is set to 0.001.

Algorithm 1 The proposed tracking algorithm: iteration at time step t

Inputs: Images {It}T
t=1, object position in previous frame p1, scale estimation on previous

frame st−1, filters h1
t−1 and h2

t−1.
Outputs: updated correlation filters h1

t and h2
t , estimated target position pt, estimated scale

st.
1: repeat
2: extract the feature map xt based on previous target position pt−1.
3: estimate the current pos pt and scale st using the CFs h1

t−1, h2
t−1 by the 2-dimensional

scale space search method.
4: extract samples zt based on current target position pt.
5: update models of h1

t and h2
t based on samples zt and previous models of h1

t−1 and
h2

t−1.
6: until end of the sequence.

The temporal regularization factor µ2 is set to 15 and 8 for the two sub-models,
respectively. The learning rates are set to 0.0185 and 0.003 for two sub-models, respectively.
The number of scales S is set to 3 and the scale step a is set to 1.05. Then, we extract 9 image
patches during tracking in our algorithm. For target representation, we combined hand-
crafted features (i.g., HOG and Color-Names) with 27-th (relu-4_4) and 36-th (relu-5_4)
layers in the Vgg19 network [44] for model learning.

5.2. Evaluation Methodology

We use precision and success plots as [18] to measure the performance of the trackers.
The precision plot shows the percentage of frames for which the distance between estimated
location and ground truth is within the specific threshold. The success plot indicates how
many times the target is successfully tracked among all frames of a sequence within the
IoU (Intersection-over-Union) over the estimated bounding box and the ground truth.

The VOT2016 and VOT2018 datasets evaluate the trackers with three metrics: (1) Ac-
curacy measures the intersection over union between the predicted bounding box and
ground truth. (2) Robustness measures the mean number of failures per sequence. (3) The
Expected Average Overlap (EAO) integrates the accuracy and robustness and is computed
as the average of the expected average overlap over a selected range of sequence lengths.

5.3. Ablation Study

An ablation study was conducted on the OTB-100 [18] dataset to validate the effective-
ness of our proposed framework. For a fair comparison, we used deep features include
layer-79 from ResNet-101 [45], layer-14 from VggM-2048 [17], layer-27 and layer-36 from
Vgg-19 [44], and hand-crafted feature (i.g., HOG) for different trackers. First, we investigate
the robustness of deeper features for dealing with the drastic deformation; secondly, we
follow the same features setting to fairly compare our framework with the two baseline
trackers (e.g., STRCF [6] and ASRCF [11]), conducting the challenging sequences in Table 1.

We also employ two kinds of deep features on STRCF [6] and ASRCF [11]. First, we
found that more robust features (e.g., feature maps of layer-79 in ResNet101) improved the
performance of STRCF [6], while not significant for ASRCF [11]. For example, the AUC suc-
cess of Ironman sequence with deep features of ResNet101-79 layer decreases to 0.125 from
0.436 for ASRCF [11]. Secondly, through the Singer2 sequence, we found that the low level
features and high semantic features contributed differently to the tracking performance.

In such a scenario, the deep semantic features degraded the tracker’s discriminative
ability and make the tracker suffer from the background clutter. In order to improve
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the robustness of our tracker, we constructed a collaborative tracking framework, which
includes a shallow model and a deep model, operating as a parallel way during the tracking
process. For the MotorRolling sequence, the experimental results show that both the
STRCF [6] and ASRCF [11] lose the target with relatively low-level features (e.g., HOG and
Vgg16-23). While our tracker with the deeper features from ResNet101 could successfully
handle this problem and can achieve promising performance as the Table 1 shown.

Table 1. Average Overlap on challenging sequences of OTB-100 with different model settings.

Tracker Ironman MotorRolling Matrix Skater2 Singer2 Soccer KitSurf Skiing Skater Trans Models

STRCF 0.117 0.094 0.010 0.639 0.039 0.189 0.716 0.088 0.601 0.570 HC+VggM-14
STRCF 0.096 0.154 0.494 0.635 0.764 0.201 0.561 0.099 0.635 0.578 HC+ResNet101-79+VggM-14

ASRCF 0.436 0.117 0.448 0.614 0.765 0.502 0.733 0.513 0.494 0.546 HC+Vgg16-23+VggM-4
ASRCF 0.125 0.119 0.441 0.610 0.788 0.449 0.712 0.515 0.537 0.563 HC+ResNet101-79+VggM-14

Ours 0.515 0.117 0.597 0.588 0.040 0.572 0.743 0.512 0.574 0.551 HC+Vgg16-23+VggM-4
Ours 0.531 0.525 0.581 0.611 0.747 0.477 0.688 0.494 0.600 0.552 HC+ResNet101-79+VggM-14
Ours 0.406 0.583 0.573 0.645 0.739 0.551 0.777 0.574 0.677 0.631 2D search method

In addition, if we increase the learning rate, then our model can obtain large improve-
ments on sequences of the challenging attributes, for example, fast moving, illumination
variation, and in-plane rotation. The results of our final model (HC+Vgg19-27+Vgg19-36)
with 2-dimensional scale space search method are presented at the last line in Table 1,
which outperform the other models by a large margin on these challenging sequences.

5.4. State-of-the-Art Comparison

We evaluated our framework with the selected state-of-the-art trackers, including
KCF [13], DeepSRDCF [4], CCOT [7], MDNet [46], ECO [12], ECO_HC [12], DeepSTRCF [6],
MCPF [24], ASRCF [11], ACFN [47], CSR-DCF [29], Staple [48], SAMF [49], MEEM [50],
LSART [51], SiamRPN [38], SiamRPN++ [8], ATOM [39], and DiMP50 [40] on OTB [18],
VOT-2016 [19], VOT-2018 [20], and LaSOT [21] datasets. To further illustrate the effectiveness
of our approach, we also present qulitative results on these tracking datasets in Section 5.4.2.

5.4.1. Quantitative Evaluation

OTB-100 Dataset. OTB-100 [18] is an online tracking benchmark that contains 98
fully annotated sequences with 100 different target objects. Each of the Skating2 sequence
and Jogging sequence contains two annotated targets. The OTB-50 dataset [18] contains
49 sequences with 50 targets selected from the OTB-100 dataset. The detail tracking results
are presented in Figure 5 with precision and robustness plots. Our proposed approach
outperforms most of the state-of-the-art trackers, achieving an AUC score of 70.0% and a
precision score of 93.6%.

Compared to DeepSTRCF, our approach achieves a gain of 2.3% AUC score and 5.3%
precision score, respectively. Our approach outperforms the ASRCF by 0.8% in AUC and
1.4% in precision, respectively. Compared to other recently proposed deep neural network
based trackers, such as ATOM [39], DiMP [40], and SiamRPN++ [8] which obtain AUC
scores of 66.0%, 67.8%, and 69.7%, respectively, our method also achieves a competitive
tracking performance, with a relative gain of 4%, 2.2%, and 0.3% over them.

We present the quantitative results on different attributes of OTB-100 dataset in terms
of precision and success, corresponding to Figures 6 and 7, respectively. The precision and
success plots in Figures 6 and 7 illustrate that our approach outperforms other trackers on
most of the attributes, such as the precision scores on deformation, fast motion, illumination
variation, out-of-plane rotation, out-of-view, and low resolution attributes, and the AUC
scores on background clutter, illumination variation, out-of-plane rotation, low resolution,
and out of view attributes.

From the tracking results from Figures 5–7, we can conclude that our approach
achieves state-of-the-art performance compared with others on OTB-100 dataset. The
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success plots shows that our approach estimates scale more accurately on these dataset.
For example, our tracker outperforms ASRCF [11] and DeepSTRCF [6] by a gain of 2.6%
and 8.4% in success score on the attribute of in-plane rotation, respectively.
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Figure 5. The overall performance of precision and success on OTB-100 [18] dataset using one-pass
evaluation (OPE).
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Precision plots of OPE - background clutter (31)
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Precision plots of OPE - deformation (44)
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Precision plots of OPE - fast motion (42)
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Precision plots of OPE - illumination variation (38)
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Precision plots of OPE - in-plane rotation (51)
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Precision plots of OPE - low resolution (10)
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Precision plots of OPE - motion blur (31)
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Precision plots of OPE - occlusion (49)
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Precision plots of OPE - out-of-plane rotation (63)
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Precision plots of OPE - out of view (14)
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Precision plots of OPE - scale variation (65)
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Figure 6. The precision plots on each attribute on OTB-100 [18] dataset.
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Success plots of OPE - background clutter (31)
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Success plots of OPE - deformation (44)
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Success plots of OPE - fast motion (42)
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Success plots of OPE - illumination variation (38)
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Success plots of OPE - in-plane rotation (51)
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Success plots of OPE - low resolution (10)
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Success plots of OPE - motion blur (31)
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Success plots of OPE - occlusion (49)
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Success plots of OPE - out-of-plane rotation (63)
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Success plots of OPE - out of view (14)

Ours [0.684]

ASRCF [0.666]

ECO [0.663]

CFCF [0.662]

SiamRPN++ [0.652]

CCOT [0.650]

DeepSTRCF [0.649]

MDNet [0.627]

DiMP [0.626]

ECO-HC [0.595]

ATOM [0.582]

SiamRPN [0.559]

DeepSRDCF [0.555]

BACF [0.554]

MCPF [0.554]

CSR-DCF [0.513]

ACFN [0.504]

SAMF [0.501]

Staple [0.490]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
cc

e
ss

 r
a
te

Success plots of OPE - scale variation (65)
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Figure 7. The success plots on each attribute on OTB-100 [18] dataset.

VOT Datasets. VOT-2016 [19] consists of 60 short sequences selected from a large
pool of 356 sequences. The sequence selection method is extended to be fully automated
compared to VOT2014, and the selection process focus on those sequences that are more
likely challenging for tracking. VOT-2018 dataset [20] maintains the same object classes
with VOT2016 but the least challenging sequences from latter were replaced by new
sequences. The evaluation criteria in VOT-2018 is same as that in VOT-2016. We compare
our approach with 20 state-of-the-art trackers. Table 2 shows the comparison results of
different trackers on VOT-2016 and VOT-2018 datasets. Our approach outperforms most of
the trackers in terms of Av, Rv, and EAO metrics. Our approach obtains an EAO score of
33.9%.
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Table 2. Performance comparison among the state-of-the-art trackers on VOT 2016, and VOT 2018.
The results are presented in terms of EAO, Av and Rv. The top three results are marked in red, blue,
and green fonts, respectively.

Trackers
VOT2016 VOT2018

Av Rv EAO Av Rv EAO

Ours 0.528 0.177 0.402 0.507 0.225 0.339
ASRCF [11] 0.568 0.187 0.390 0.492 0.234 0.328

DeepSTRCF [6] 0.55 0.257 0.313 0.531 0.272 0.299
ATOM [39] 0.617 0.189 0.424 0.589 0.201 0.401

SA-SIAM [52] 0.543 0.337 0.291 0.5 0.459 0.236
CSR-DCF [29] 0.524 0.239 0.338 0.491 0.356 0.256

CFCF [53] 0.560 0.169 0.384 0.511 0.286 0.283
CCOT [7] 0.541 0.239 0.331 0.494 0.318 0.267

SiamRPN [38] 0.56 0.314 0.340 0.490 0.464 0.244
SiamRPN++[8] 0.637 0.178 0.478 0.6 0.234 0.414

ECO [12] 0.54 0.201 0.374 0.484 0.276 0.281
ECO_HC [12] 0.53 0.304 0.322 0.494 0.435 0.238

DSST[54] 0.535 0.707 0.181 0.395 1.452 0.079
LSART [51] 0.495 0.215 0.323 0.495 0.276 0.323
MEEM [50] 0.490 0.515 0.194 0.463 0.534 0.193
Staple[48] 0.547 0.379 0.295 0.530 0.688 0.169
SRDCF [4] 0.536 0.421 0.247 0.490 0.974 0.119

DeepSRDCF [5] 0.507 0.326 0.276 0.492 0.707 0.154
SiamFC [36] 0.532 0.461 0.88 0.503 0.585 0.188
SAMF [49] 0.507 0.590 0.186 0.484 1.302 0.093
KCF [13] 0.491 0.571 0.192 0.447 0.773 0.135

In addition, our tracker outperforms ASRCF with a relative gain of 1.5% in Av and
1.1% in EAO on VOT-2018 dataset. Our approach improves the DeepSTRCF by 4% in EAO
on VOT-2018 and by 8.9% in EAO on VOT-2016. Our approach also outperforms the deep
Siamese trackers, such as SiamRPN [38] and SA-SIAM [52] in Rv and EAO. SiamRPN++ [8]
obtains a high EAO score of 41.4%, with the Av score of 60%. The deep neural network
based trackers, such as SiamRPN++ and ATOM, employ the bounding box regression
branch to estimate the scale variation of the target, which promotes the IoU between
estimated target state and its ground truth, comparing with the search strategy applied in
the DCF trackers.

LaSOT Dataset. LaSOT [21] dataset contains 1400 sequences with 3.52 million frames
and an average of 2512 frames per sequence, among which, the test set contains 280 se-
quences. There are 70 different object categories in the whole dataset and each category
consists of 20 sequences. This dataset provides high-quality dense bounding box annota-
tions for each sequence. Moreover, this dataset categorizes the sequences into 14 attributes,
including aspect ratio change (ARC), background clutter (BC), camera motion (CM), de-
formation (DEF), fast motion (FM), full occlusion (FOC), illumination variation (IV), low
resolution (LR), motion blur (MB), out-of-view (OV), partial occlusion (POC), rotation
(ROT), scale variation (SV), and viewpoint change (VC).

As shown in Figure 8, our approach achieves the highest performance in terms both
the robustness and accuracy compared to previous methods. Our approach obtains a gain
of 5.7% and 9.3% in AUC over ASRCF [11] and DeepSTRCF [6], respectively. In addition,
our approach obtains a gain of 6.8% and 10.1 % in precision compared with its counterparts
ASRCF [11] and DeepSTRCF [6], respectively. Figures 9 and 10 show the success plots and
precision plots on LaSOT with different attributes.

Our approach obtained improvements for all attributes in the precision score and
success score compared to ASRCF [11] and DeepSTRCF [6]. Our approach outperforms its
counterparts ASRCF and DeepSTRCF by a large gain of 5.7% and 5.8% in success on aspect
ratio change attribute, respectively. In addition, Our approach outperforms its counterparts
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ASRCF and DeepSTRCF by a gain of 7% and 5.6% in success on the deformation attribute,
respectively. This illustrates the ability of our tracker to deal with challenging sequences.
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Success plots of OPE on LaSOT Testing Set
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Figure 8. The overall performance of precision and success plots on the LaSOT dataset using one-pass
evaluation (OPE).

Our approach still has a gap compared with the end-to-end trained deep tracker
SiamRPN++ [8] and DiMP [40], which benefit from the large-scale offline training and
bounding box regression network.

5.4.2. Qualitative Results

In this section, we present the qualitative tracking results of different trackers on the
OTB-100, VOT-2018, and LaSOT datasets, corresponding to Figures 11–13, respectively.
The qualitative results illustrate that our approach is capable of tracking scale changes and
appearance deformation compared with other DCF trackers. In Figure 11, we observed
that the target in the MotorRolling sequence flipped in plane, and the scale also changed
dramatically over time. The STRCF [31] and ASRCF [11] both lost the target, while our
approach can successfully track the target among most of the frames and obtain relative
high AUC score. Furthermore, our tracker achieves promising performance and is on par
with the ATOM tracker. For the example of Trans sequence, the target transformed from a
robot to a car with the severe appearance changes, as the frames #16, #61, and #117 shown.
The results of our tracker are closer to the ground truth than other trackers.

As shown in Figure 12, our tracker outperforms the DCF trackers and deep Siamese
tracker SiamRPN++ [8] in frame #119 and #145 in sequence fish1 when the posture of
fish changes significantly. In bag sequence, our approach can adjust the width and height
properly to adapt to the deformation of bag. In Figure 13, our approach can still capture
the shape of the dog in frame #209 and frame #230, while most of the other DCF trackers
have lost the target or merely tracked the part of dog. For the cat-3 sequence, only our
approach and SiamRPN++ [8] can successfully track the target object, which also illustrates
the effectiveness of our method.
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Precision plots of OPE - Fast Motion (53)
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Figure 9. The precision plots on LaSOT [21] dataset for each attribute.

The OTB-100 dataset contains more sequences that with rigid target objects, such
as car, box, and football. While VOT-2018 and LaSOT contain more sequences with non-
rigid target objects. Our approach yields favorable performance on OTB-100 dataset with
more stable sequences. However, the end-to-end trained deep trackers exhibits better
performance on sequences with more deformable targets. The deep trackers employ deep
convolutional network as the backbone to extract features, while our tracker utilizes both
the HOG and deep features for correlation filters learning. SiamRPN++ [8] tends to lose
the target which was occluded by similar distractor, as the Walking2 sequence shown in
Figure 11.
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Figure 10. The success plots on LaSOT [21] dataset for each attribute.
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Figure 11. Qualitative results on sequences of MotorRolling, Skiiing, Trans, and Walking2 in OTB-100 dataset. The ground
truth bounding boxes are in white.

Figure 12. Qualitative results on sequences of bag, bmx, fish1, and sheep in VOT-2018 dataset. The ground truth bounding
boxes are in white.
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Figure 13. Qualitative results on sequences of cat-3, dog-1, and leopard-1 in LaSOT dataset. The
ground truth bounding boxes are in white.

6. Conclusions

In this paper, we proposed a new visual object tracking algorithm based on dis-
criminative correlation filters. Our approach learns the discriminative correlation filters
(DCFs) via not only adaptive spatial regularization but also temporal regularization for
estimating the target state. A 2-dimensional scale space search method was proposed to
adapt to appearance variations of the target object and to improve the accuracy of the
tracking results.

From the ablation study on OTB-100, we found that the features from deeper neural
networks can improve the robustness of the tracker. We also analyzed the impact of differ-
ent learning rates on learning process of the target model. Comprehensive experiments and
analysis were performed on the OTB-100, VOT2016, VOT2018, and LaSOT datasets. The
qualitative and quantitative results illustrated the effectiveness of our tracking framework.

Our tracking framework outperformed most of the existing state-of-the-art DCF
trackers on challenging sequences and achieved competitive performance compared with
end-to-end deep trackers. The results on challenging sequences of three datasets further
demonstrate that our novel scale space search method can improve the accuracy of scale
estimation.

In future research, we could apply trainable end-to-end deep convolutional neural
networks to represent the target during learning of DCFs in the future. An interesting
direction for future work is to incorporate bounding box regression technologies in many
deep learning based detectors, such as [55], to further improve the performance.
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