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Abstract: The numerical modeling of one-dimensional (1D) domains joined by symmetric or asym-
metric bifurcations or arbitrary junctions is still a challenge in the context of hyperbolic balance laws
with application to flow in pipes, open channels or blood vessels, among others. The formulation of
the Junction Riemann Problem (JRP) under subsonic conditions in 1D flow is clearly defined and
solved by current methods, but they fail when sonic or supersonic conditions appear. Formulations
coupling the 1D model for the vessels or pipes with other container-like formulations for junctions
have been presented, requiring extra information such as assumed bulk mechanical properties and
geometrical properties or the extension to more dimensions. To the best of our knowledge, in this
work, the JRP is solved for the first time allowing solutions for all types of transitions and for any
number of vessels, without requiring the definition of any extra information. The resulting JRP solver
is theoretically well-founded, robust and simple, and returns the evolving state for the conserved
variables in all vessels, allowing the use of any numerical method in the resolution of the inner
cells used for the space-discretization of the vessels. The methodology of the proposed solver is
presented in detail. The JRP solver is directly applicable if energy losses at the junctions are defined.
Straightforward extension to other 1D hyperbolic flows can be performed.

Keywords: junctions; 1D model; hyperbolic balance laws; blood vessels; subsonic-supersonic flow

1. Introduction

Numerical modeling of one-dimensional (1D) flow in networks of spatial domains
joined by junctions offers a satisfactory compromise between the quality of the numerical
predictions and the computational cost. There are a variety of 1D flow applications in the
literature such as industrial piping networks, traffic flow, water flows in open channels or
blood flow in the human circulatory system [1]. Flow physics at the bifurcation is complex
in symmetric or asymmetric bifurcations and also in arbitrary junctions. One-dimensional
modeling has proven to be an accurate tool in complex applications, such as computational
hemodynamics in deformable arterial models under pulsatile flow, leading to competi-
tive results if compared with three-dimensional (3D) simulations [2,3]. Flow in elastic
and collapsible tubes is of great interest, and especially in the context of hemodynam-
ics, physiology and medicine, and has been analyzed in many studies [4–11] in the last
few decades.

However, the numerical modelling of 1D flow in networks is still challenging. In
the 1D framework the junction is a singular point, where the numerical scheme cannot
be directly applied and therefore internal boundary conditions must be prescribed [12],
leading to the Junction Riemann Problem (JRP). A shortcoming of existing methods is
their inability to deal with discontinuities or high subcritical, transcritical and supercritical
flow through junctions, as in 1D channel networks, or to deal with transonic and super-
sonic flow conditions at junctions in physiological flows, such as in the venous system
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because of postural changes [1,13]. Existing methods are based on coupling approaches
for energy or momentum conservation to the continuity equation and the characteris-
tic equations [12,14,15] considering only subcritical or subsonic flow conditions. Those
methods assume that the Riemann problem solutions involve only rarefaction waves.

The modeling of networks of vessels with highly compliant walls, such as veins,
makes the problem even more challenging. When transmural pressure falls below a critical
value in thin-walled elastic tubes, the vessel will collapse, and its cross-sectional area will
diminish dramatically Flaherty et al. [16]. The fluid–structure interactions in veins may
also include choking or limiting flow conditions, shock waves, and self-oscillation [8,17,18].

One alternative to overcoming the difficulties that the 1D approach has to face at the
junctions, is to increase locally the number of spatial dimensions [1,19,20], avoiding in this
way the computational cost of multidimensional modeling in the whole domain. In [1],
channel networks were modeled with junctions where the two-dimensional (2D) shallow
water equations were solved using the true geometry, whereas in channels, the usual 1D
equations were solved. It is notorious how for transient gas flow modeling in [21], the
flow inside the junction, defined as a 3D prismatic container, was modeled using the 2D
Euler equations.

In the context of circulatory vessels, junction models can be defined using a confluence
volume with assumed bulk mechanical properties [13,22]. The volume reference at zero
transmural pressure depends on the grid size used to spatially discretize the 1D vessels
and the stiffness of the confluence can be set using an average of the stiffness of the vessels
connecting at the same junction. By combining the pressures at the junction and the
neighboring cells it is possible to solve supersonic flow conditions [13] using a suitable
numerical discretization.

In this work we will follow the approach based in the exact solution of the classical
Riemann problem at the junction [9,10,12,23,24]. The exact solutions will be based on wave
relations for shock and rarefactions (or compression and decompression waves) derived
by a standard eigen-structure analysis of the hyperbolic system of equations for flow in
collapsible tubes in [25] including transonic and supersonic conditions. The system will
provide the wave relations that link the states provided by 1D domains sharing a junction,
as in the case of the classic RP [26].

As pointed out in [24], by solving the JRP we want to obtain coupling conditions
completely consistent with the underlying hyperbolic system of conservation laws, so the
resulting JRP solver can be used in combination with any numerical scheme of arbitrary
order of accuracy. The resulting states will be used to compute numerical fluxes needed
by the explicit scheme to evolve the solution within the 1D domain. In this way, internal
boundary conditions will be prescribed avoiding the use of container-like formulations for
junctions or the use of multidimensional modeling.

The explicit scheme selected in this work to compute the updating fluxes in the cells
within the 1D domain is the first order HLLS solver [27,28], based on the HLL numerical
scheme developed by Harten et al. [29] and extended to deal with discontinuous source
terms [27,30]. The first and third order in time and space HLLS was successfully applied
in [28] to model flow in collapsible tubes with discontinuous mechanical properties includ-
ing collapsed states including subsonic, transonic and supersonic flow under conditions of
extreme vessel collapse and sonic blockage.

The numerical scheme in vessel networks must be completed with two types of
boundary condition: external and internal (the JRP in our case). In both cases the time
evolution of the system is governed by the state in the interior of the vessel and by waves
which enter in the vessel from outside its boundary. Therefore, the definition of external
boundary conditions in inflow or outflow sections is related to the equivalent problem for
merging flows, splitting flows or any other possible combination in a confluence of vessels.
In order to provide a suitable approach to the JRP, it is first necessary to explore boundary
conditions at inflow or outflow sections, and then, extend the resulting conclusions to
formulate the solution of the JRP.
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The rest of this paper is structured as follows. In Sections 2.1 and 2.2 we present the
underlying mathematical model and the numerical framework, based on the finite-volume
method, respectively. The numerical scheme for vessels will be completed with external
boundary conditions considering inflow–outflow sections of the network in Section 2.3.
The solution of the JRP is presented in Section 2.4. First, in Section 3.1, we analyze the
results given by the JRP solver by solving different RPs with discontinuous geometrical and
mechanical properties and with exact solution. JRPs with three and four confluent vessels
are presented in Sections 3.2 and 3.3 respectively. Final remarks are given in Section 4.

2. Materials and Methods
2.1. 1D Mathematical Models in Arteries and Veins

Simplified 1D models in compliant vessels are used to represent the essential physical
features of the propagation of pressure and flow waves. The resulting 1D differential
equations for conservation of mass and momentum balance lead to a first-order and
nonlinear hyperbolic system. The formulation is written as:

∂tU + ∂xF (U) = Gχ, (1)

with U = U(x, t) and

U =

[
A
Q

]
, F (U) =

 Q

κ
Q2

A

, Gχ =

 0

−A
ρ

∂p
∂x
− f

ρ
− gA

∂η

∂x

 =

[
0

Gχ

]
, (2)

where t is the time, x is the axial coordinate along the vessel, A is the local cross-sectional
area, Q = Au is the volume flow rate with u the cross sectional average velocity in the
axial direction, p(x, t) is the average internal pressure over the cross section expressing the
response of the vessel wall deformation to pressure variations. Here, f is the friction force
per unit length acting on the fluid in axial direction and the blood density is referred to as ρ.
A blunt velocity profile is assumed in this work by using κ = 1. Coordinate perpendicular
to Earth surface, η, accounts for the gravitational forces due to the presence of gravity
acceleration g.

2.1.1. Elastic Mechanical Properties of Vessels and Tube Laws

This system of equations is closed with a pressure–area relation of the form

p(x, t)− pe(x, t) = ptr, (3)

where pe is the external pressure, and ptr is the elastic transmural pressure. The elastic
transmural pressure

ptr = ptr(Ko, A, po, Ao, x), (4)

depends on the vessel stiffness Ko = Ko(x), the reference area Ao = Ao(x) and the reference
pressure po = po(x). Following [9], transmural pressure is assumed of the form

ptr = Koσ + po, σ =

(
A
Ao

)m
−
(

A
Ao

)n
= αm − αn, (5)

with α = A/Ao and σ the dimensionless transmural pressure difference. The vessel
stiffness Ko has different formulations for arteries, and exponents in σ are of the form m > 0
and n ∈ [−2, 0]. Ao is the vessel cross-sectional area for which the transmural pressure ptr
is po.

Transmural pressure for arteries is commonly defined setting m = 1/2 and n = 0,
while for veins, m = 10 and n = −3/2 are used, as they are typical values for collapsible
tubes and are derived from considerations made for the collapse of thin-walled elastic
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tubes. When a thin-walled tube collapses, there is a contact region of the internal vessel
walls that divides the cross section into two tubes running in parallel.

2.1.2. Conservation-Law Form

An important feature of the model is that the system cannot be expressed in conservation-
law form when trying to extend the flux function F to involve the transmural pressure
derivative in space [25]. However, if we can consider the vessel mechanical properties
constant across a discontinuity, Ao, co and Ko, we find that:∫ xR

xL

A
ρ

∂ptr

∂x
dx =

∫ AR

AL

(
∂ϕ

∂A

)
∂A
∂x

dx = ϕ(AR)− ϕ(AL) (6)

with

ϕ = Do

(
m

m + 1
αm+1 − n

n + 1
αn+1

)
, Do =

Aoc2
o

m− n
(7)

with co the reference pulse wave velocity (PWV). In general, PWV can be expressed as:

c =

√
A
ρ

∂ptr

∂A
=

√
∂ϕ

∂A
=

√
A
ρ

KoσA =

√
Ko

ρ
(mαm − nαn) (8)

for a given vessel stiffness Ko, or

c2 =
c2

o
(m− n)

(mαm − nαn), co =

√
Ko

ρ
(m− n). (9)

The system of equations can be now expressed using a conservation-law form with

∂tU + ∂xFϕ(U) = Sχ, (10)

where the flux vector and vector of source terms

F =

[
Au

Au2 + ϕ(α)

]
, Sχ =

 0

−A
ρ

∂p
∂x

+
∂ϕ

∂x
− f

ρ
− gA

∂η

∂x

, (11)

that can be written in quasilinear form as follows:

∂U
∂t

+ J(U)
∂U
∂x

= Sχ, (12)

with

J =
[

0 1
c2 − u2 2u,

]
(13)

where matrix J has two eigenvalues, λ1 = u− c and λ2 = u + c, and two real eigenvectors,
e1 =

(
1, λ1)T and e2 =

(
1, λ2)T .

2.2. Numerical Method

All vessels of the domain, a 1D network, are discretized in computational cells of
constant length size ∆x, leading to Nk cells in each k vessel. In k vessel, its local numbering
is i = 1, . . . , Nk. We will call those cells involved in the coupling with internal (junctions)
or external boundary conditions (located at the inflow-outflow sections of the network)
terminal cells, where the local numbering is Ik = 1 or Ik = Nk, with Ik the index of the
computational cell of vessel k linked to the boundary condition. Uniform initial conditions,
Ui = Un

i will be defined at time t = 0 in all computational cells:

Un
i =

1
∆x

∫ ∆x

0
U(x, t = 0)dx. (14)
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The updating of the initial state in each cell, according to the Godunov first order
method, is written as:

Un+1
i = Un

i −
∆t
∆x

[F−
i+ 1

2
− F+

i− 1
2
], (15)

with F±i∓1/2 the numerical fluxes, with F = F(F , Gχ). Following the quasi-steady wave-
propagation algorithm [31], the updating formula in (15) can be rewritten in terms of
fluctuations,

Un+1
i = Un

i −
∆t
∆x

[δM−
i+ 1

2
+ δM+

i−1/2], (16)

denoted here by δM. In this work, we define the following relation between fluxes and
fluctuations as follows:

F−
i+ 1

2
= Fϕ,i + δM−i+1/2, F+

i− 1
2
= Fϕ,i − δM+

i− 1
2
, (17)

with

Fϕ,i = Fϕ(Ui) =

[
Au

Au2 + ϕ(α)

]
i
, ϕi =

(
Aoc2

o
m− n

)
i

(
m

m + 1
αm+1 − n

n + 1
αn+1

)
i
, (18)

where in cases of exact equilibrium δM±i+1/2 = 0.
On the other hand, we will refer to the evolved states over time at the terminal

interfaces in Ik = 1 or Ik = Nk of the k-th vessel as U?
k = [A?

k , Q?
k ]. This state, generated by

the imposition of external boundary conditions or by the solution of the JRP, will be used
to compute the updating fluxes at its respective terminal interface:

F+
i− 1

2
= Fϕ(U?

k ), Ik = 1

F−
i+ 1

2
= Fϕ(U?

k ), Ik = Nk,
(19)

or in fluctuation form as

δM+
i− 1

2
= Fϕ(Ui)− Fϕ(U?

k ), Ik = 1

δM−
i+ 1

2
= Fϕ(U?

k )− Fϕ(Ui), Ik = Nk.
(20)

In this work, we will extend the solution of the classical JRP in junctions for subsonic
flow in order to deal with transonic and supersonic flow conditions.

2.2.1. Numerical Computation of Fluxes at the Inner Interfaces

When geometrical and mechanical properties along the vessel are not constant, the
system of equations cannot be expressed using a conservation-law form. The transforma-
tion of the initial system of equations provides an equivalent system in conservation-law
form, where an approximate flux function can be defined, allowing the application of the
HLLS scheme. Numerical fluxes F±i∓1/2 between each two adjacent cells i and i + 1 (inner
cells of each vessel) will be computed using approximate solutions of the local RP posed
for a time step t ∈ (0, ∆t), defined for the system in (1) as follows:

∂Û
∂t

+
∂F (Û)

∂x
= Gχ, Û(x, 0) =

{
Ui i f x < 0

Ui+1 i f x > 0
(21)

With the independence of the approximate solver used, the Consistency Condition
must be satisfied [32] when applied to the control volume represented in Figure 1. The
control volume is limited by the maximum and minimum wave celerities of the system,
−∆x/2 ≤ λL∆t and ∆x/2 ≥ λR∆t, with λL ≥ λR. Integrating (21) over the control volume
the resulting condition is:
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Figure 1. Integration control volume defined by a time interval [0, ∆t] and a space interval
[−∆x/2, ∆x/2], with λL −∆x/2 ≤ λL∆t and ∆x/2 ≥ λR∆t, with λL ≥ λR.

1
∆x∆t

∫ ∆x
2

− ∆x
2

Û(x, ∆t) dx =
(Ui+1 + Ui)

2∆t
−

δFi+ 1
2

∆x
+

1
∆x∆t

∫ ∆x
2

− ∆x
2

∫ ∆t

0
Gχ dxdt, (22)

where the δ symbol is used to express space difference, δ(·)i+1/2 = (·)i+1 − (·)i. The flux
difference δFi+ 1

2
is written using an approximate Jacobian Ã:

δFi+ 1
2
= Ãi+ 1

2
δUi+ 1

2
, Ãi+1/2 =

(
0 1
−ũ2 2ũ

)
i+1/2

, (23)

involving the Roe average value:

ũi+1/2 =
ui
√

Ai + ui+1
√

Ai+1√
Ai +

√
Ai+1

. (24)

The source term is included in the Riemann solver as a singular source at the discon-
tinuity point x = 0 [33]. Considering that source terms are not necessarily constant over
time, the following time linearization is applied [33,34]:

Gi+1/2 =
1

∆t

∫ ∆x/2

−∆x/2

∫ ∆t

0
Gχ dxdt ≈

 0

−A
ρ
(δp + gρδη)− f̃

ρ
∆x


i+1/2

, (25)

with A a suitable value of vessel area defined depending on the flow conditions [28] and f̃
the integral of the friction force in the control volume. Using a discrete approach of the
speed at the cell edge, c̃i+1/2 [28], the discrete source term Gi+1/2 can be expressed as:

Gi+1/2 = −B̃i+1/2δUi+1/2 + Si+1/2, (26)

with

B̃2,i+1/2 =

[
0 0
c̃2 0

]
i+1/2

, Si+1/2 =

 0

−A
ρ

δpd + c̃2δA− f̃ ∆x
ρ


i+1/2

, (27)

with pd = p + gρη an equivalent pressure generated by the combination of the pressure
and the gravitational force. The integral of the solution in the volume of interest in (22) is
written as: ∫ +∆x/2

−∆x/2
U(x, ∆t) dx =

∆x
2
(Ui + Ui+1)− δMi+1/2∆t, (28)

with
δMi+ 1

2
= (δF −G)i+ 1

2
= J̃i+ 1

2
δUi+ 1

2
− Si+ 1

2
, J̃i+ 1

2
= (Ã + B̃)i+ 1

2
. (29)
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Matrix J̃ is a local matrix that provides a set of two real eigenvalues λ̃1 = ũ− c̃ and
λ̃2 = ũ + c̃ with λ̃1

i+ 1
2
< λ̃2

i+ 1
2
, and two eigenvectors:

ẽ1,2
i+1/2 =

(
1, λ̃1,2

)T

i+1/2
, (30)

and can be presented as the discrete Jacobian matrix of a flux function F̂e defined at each
edge or interface between cells, that satisfies:

δF̂e,i+ 1
2
= F̂e,i+1 − F̂e,i = J̃i+ 1

2
δUi+ 1

2
. (31)

Under this condition, the following approximate semi-discrete RP in conservation-law
form is presented [28]:

∂Û
∂t

+
δF̂e(Û)

∆x
=

1
∆x

Si+ 1
2
, Û(x, 0) =

{
Ui i f x < 0

Ui+1 i f x > 0
(32)

where the new flux function F̂e is defined at each side of the RP as follows:

F̂e,i = F̂e(Ui) = F (Ui) + B̃i+ 1
2
Ui,

F̂e,i+1 = F̂e(Ui+1) = F (Ui+1) + B̃i+ 1
2
Ui+1,

(33)

allowing us to define the fluctuations as:

δMi+ 1
2
= δF̂e,i+ 1

2
− S̄i+ 1

2
, (34)

involving a flux difference and a source term.

2.2.2. The HLLS Solver

The HLLS method can be formulated by appropriately imposing the Rankine-Hugoniot
(RH) conditions over the slowest (λL) and fastest (λR) wave celerities of the RP in (32),
and the RH relation for the steady contact wave, of speed λ0 = 0, at x = 0, leading to the
evolved fluxes F̂−e,i and F̂+

e,i+1 at the left and the right sides of the RP [27,28]:

F̂+
e,i+1 = F̂↓e,i+1/2 +

λR(Si+ 1
2
− λLHi+ 1

2
)

λR − λL
, F̂−e,i = F̂↓e,i+1/2 +

λL(Si+ 1
2
− λRHi+ 1

2
)

λR − λL
, (35)

with

F̂↓e,i+1/2 =
λRF̂e,i − λLF̂e,i+1 + λLλRδUi+ 1

2

λR − λL
, Hi+1/2 = J̃−1

i+ 1
2
Si+ 1

2
. (36)

In order to allow variations in the geometrical and mechanical properties of the vessel,
the inter-cell fluxes F±

i+ 1
2

in the approximate Godunov method in (15) are given by a

combination of functions F̂e and Fϕ:

F−
i+ 1

2
= (F̂−e,i − F̂i) + Fϕ,i = δM−

i+ 1
2
+ Fϕ,i,

F+
i+ 1

2
= (F̂+

e,i+1 − F̂i+1) + Fϕ,i+1 = −δM+
i+ 1

2
+ Fϕ,i+1,

(37)

leading to:

F−i+1/2 =


Fϕ,i i f 0 ≤ λL

(F̂↓e,i+1/2 − F̂e,i) +
λL(Si+1/2−λRHi+1/2)

λR−λL
+ Fϕ,i i f λL ≤ 0 ≤ λR

δF̂e,i+ 1
2
− Si+1/2 + Fϕ,i i f 0 ≥ λR

, (38)
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F+
i+1/2 =


−(δF̂e,i+ 1

2
− Si+1/2 + Fϕ,i+1) i f 0 ≤ λL

(F̂↓e,i+1/2 − F̂e,i+1) +
λR(Si+1/2−λLHi+1/2)

λR−λL
+ Fϕ,i+1 i f λL ≤ 0 ≤ λR

Fϕ,i+1 i f 0 ≥ λR

. (39)

In order to generate the intercell fluxes, it is necessary to compute the speeds λR and λL.
Suitable approximations of λR and λL are discussed in [27,28]. Their analysis is not the
focus of the present work.

2.3. External Boundary Conditions at the Inflow-Outflow Sections of the Network

The definition of external boundary conditions for flow at the inlet or outlet sections in
single vessels is necessary prior the generalization to junctions for merging flows, splitting
flows or other possible combinations in a confluence of vessels. In this section, we will
focus on the resolution of the evolved state U?

k and its limits when defining boundary flow
conditions U?

k = [A?
k , Q?

k ]. Assuming an imposed discharge at the boundary [A?
k , Qbc(t)].

The following auxiliary function is defined depending on the position of the boundary
cell [24]:

gk(Ik) =

{
1, i f Ik = Nk
−1, i f Ik = 1.

(40)

We will distinguish between outflow sections, where flow at the boundary cell leaves
the domain, (gu)n

k > 0, and inflow sections, where flow initially enters at the boundary
cell, (gu)n

k < 0. We also define the following boundary Speed Index (SI):

SIg = gk
uk
ck

. (41)

where when
∣∣SIg

∣∣ < 1 subsonic flow conditions will be defined.

2.3.1. Non-Linear Waves: Shocks and Rarefactions

For any boundary cell, and depending on the sign of the jump between the evolved
state and the initial state for α, dαk = α?k − αn

k , the solution will be a shock if dαk > 0, or
a rarefaction if dαk < 0 [24,25]. To analyze the cases of interest and the possible limits,
we define the celerities of the system as λ1g = uk − gkck and λ2g = uk + gkck. As the
solutions can only be developed in the inner region of each vessel, we will only need to
explore solutions where gkλ?

1g ≤ 0, as shown in Figures 2 and 3, where wave patterns for
rarefactions and shocks are plotted, respectively. Solutions will be analyzed considering
whether they take place in an outflow or inflow section.

Figure 2. Rarefaction waves connecting the data state Un
k with the evolved state U?

k at the boundaries.
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Figure 3. Shock waves connecting the data state Un
k with the evolved state U?

k at the boundaries.

• In the case of a rarefaction in a k vessel, the solution is given by the characteristic
field [24,25],

dαk
1

=
1

Ao,k

dQk
λ1g,k

, (42)

and the jump condition across the rarefaction in invariant form becomes:

u?
k − un

k + gkδW?
k = 0, δW? =

∫ α?

αn

c(a)
a

da, (43)

with the following entropy condition:

gkλn
1g,k < gkλ?

1g,k ≤ 0. (44)

Considering that along the rarefaction waves the vessel area decreases, the equation
in (42) can be written as

dαk = −
(

1
Ao
∣∣λ1g

∣∣
)

k

(g dQ)k < 0, (45)

or written as
dαk = −

(α

c

)
k
(g du)k < 0, (46)

if expressed using variations in u. Both results suggest that velocity and flow variations
must ensure:

(g du)k > 0, (g dQ)k > 0, (47)

and, therefore, during the suction produced by a decompression wave, the vessel
area decreases while flow and velocity increased/decreased for backward/forward
waves, respectively.

• If the solution in a k vessel is a shock of celerity S, that will travel in the−gkx direction,
the Rankine–Hugoniot (RH) condition provides the solution. Solutions for right and
left traveling shock waves can be defined using the following function [24,25]:

u?
k − un

k + gk f ?g = 0, (48)

with

f ?g,k =

(
1

Ao

(
1

αn −
1
α?

)
(ϕ? − ϕn)

) 1
2

k
, (49)

where the shock speed Sk is given by:

Sk = un
k − g

(
ϕ? − ϕn

f ?g An

)
k

, −gkSk > 0, (50)
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under the following entropy conditions:

gkλ?
1g,k < gkSk < gkλn

1g,k. (51)

The RH condition applied to the mass conservation equation in combination with the
direction of the advance of the shock or compression wave, leads to the following
expression:

− gkdQk = |Sk|Ao,kdαk > 0, (52)

and considering that fg > 0 in (48), we find that in boundary cells,

− gkduk = fg > 0. (53)

Therefore, velocity and flow variations must ensure:

(g du)k < 0, (g dQ)k < 0, (54)

and for compression waves, the vessel area increases while flow and velocity are
decreased/increased for backward/forward waves, respectively.

2.3.2. Pulse Wave Velocity in Arteries and Veins

The parameters m and n in the dimensionless transmural pressure difference σ are
different in arteries and veins and have an impact on the variation of the pulse wave
velocity with the vessel deformation. Figure 4 shows the variation of the dimensionless
PWV, c/co, versus the vessel deformation α. While dimensionless PWV for arteries is a
monotonically increasing function, dimensionless PWV for veins is a convex function with
a minimum value of αmin = (n/m)2/(m−n) ≈ 0.72. This property has an interesting effect
when observing the evolution of the solution for the SI in a rarefaction in veins, when the
jump in the vessel deformation α includes αmin. In this case, the maximum value of the SI
appears when α = αmin as shown in Figure 5.
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Figure 4. Dimensionless transmural pressure difference σ (left) and dimensionless PWV, c/co, (right)
versus the vessel deformation α for arteries and veins.
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Figure 5. Solution of a right moving rarefaction wave with α? < αmin < αR in a vein (left). The
maximum value of SI appears when α = αmin (right). Vessel properties are defined by do = 30.500 cm
and co = 118.72 cm/s.

2.3.3. Outflow and Inflow Boundary Conditions in the Subsonic Flow Regime

For any boundary cell, the solution in the subsonic flow regime is defined by the
solution of the non-linear waves (conservation of the invariant in (42) for rarefactions and
the RH condition in (48) for shocks) together with mass conservation at the boundary cells:

E(X) = 0, (55)

with

E(X) =
[

u? − un + gB
gα?u?Ao − gQbc

]
, X =

[
u?

α?,

]
(56)

and

B =

{
dW? if δα ≤ 0

f ?g if δα > 0, (57)

only valid under subsonic flow conditions.
The system of equations in (55) is non-linear and is solved here using Picard iterations

between times t and t + ∆t. In terms of notation, iterations are denoted by superscript m.
The solution at m iteration or the initial solution Xm will be updated as follows:

Xm+1 = Xm + δXm. (58)

In order to find δXm, we first consider the Taylor expansions of the functions in E(X).
If the error terms Oi(δX2) are assumed to be negligible, the system of equations can be
written as follows:

E(Xm+1) = E(Xm) + JE(Xm)δXm, (59)

where JE(X) is an Nx × Nx Jacobian matrix defined over the function vector E(X). Now, all
equations are expressed in linear form, and E(Xm+1) = 0 is imposed and δXm is found to
solve the equation

JE(Xm)δXm = −E(Xm). (60)

The system of equations in (60) can be solved using the Gauss–Jordan elimination
method, and δXm+1 is obtained. Once all variables are updated, we can check if the new
numerical error in Em+1 is under a desired tolerance. Otherwise, the procedure is repeated.

2.3.4. Limitation of Boundary Conditions at Outflow Sections

Considering that we are interested in imposing boundary flow conditions Qbc(t)
at boundary cells, it is useful to define the limits in the variations in the jump in flow
(g (Q? − Qn))k, depending on the resulting wave and on the initial flow conditions,
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subsonic or supersonic. In this section, we first analyze the solutions when imposing
outflow boundary conditions, with gkun > 0.

• Case A1. Decompression waves under initial subsonic conditions, 0 < SIn
g < 1 (Figure 6).

Suction is generated in the outflow section and a rarefaction or decompression wave
appears according to (47). The value of the SIg increases in the gkx direction with
|u?| > |un|. As the solution can be only developed in the inner region of the vessel,
gλ?

1g ≤ 0, the value of the speed index at the boundary, SI?g , must be limited to
conditions of sonic flow:

SI?g =
gku?

c?
=
|u?|
c?
≤ 1. (61)

Therefore, a critical limit in the velocity and flow, uc and Qc, appears when imposing
the boundary condition:

gQbc ≤ gQc, Qc = (ucα?Ao)k, uc,k = gkc?k . (62)

Then, if the limit in (61) is exceeded, the solution is given by the function F1(α) :

F1(α) = gkck − un
k + gkδW?

k , (63)

and the solution for flow is given by Qbc = Q? = Qc.
• Case A2. Decompression waves under initial supersonic conditions, SIn

g > 1 (Figure 7).
For a supersonic initial state, both celerities λ1g and λ2g fall outside the domain
of computation and the limit in (61) has already been exceeded. Further accelera-
tion/deceleration would mean to force the development of the solution outside the
vessel. Under these conditions no information can travel inside the domain and the
initial state cannot change. We cannot specify any boundary conditions [35].

• Case B1. Compression waves under initial subsonic conditions, 0 < SIn
g < 1 (Figure 8).

When the flow is decelerated/accelerated at the boundary in presence of back-
ward/forward wave, the vessel area increases. The value of the SIg decreases in
the gkx direction and sonic conditions cannot be achieved.

• Case B2. Compression waves under initial supersonic conditions, SIn
g > 1 (Figure 9).

For a supersonic initial state, the wave λn
1g falls outside the computational domain.

When the flow is decelerated at the boundary, the shock must satisfy the entropy
condition in (51), ensuring gλ?

1g < 0. Therefore, sonic conditions cannot be achieved.

Figure 6. Case A1. Flow acceleration/deceleration at an outflow boundary condition generated by a
backward/forward rarefaction wave. Initial subsonic state. In this outflow section a rarefaction wave
evolves from xmax = λn

1g∆t to xmin = λ?
1g∆t. Rarefaction is limited by λ?

1g = 0 or xmin = 0.
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Figure 7. Case A2. Flow acceleration/deceleration at an outflow boundary condition. Initial
supersonic state. In this outflow section both λn

1gand λn
2g waves fall outside the computational

domain. The solution can not evolve inside the vessel.

Figure 8. Case B1. Flow deceleration/acceleration generated by a backward/forward shock wave at

an outflow boundary condition. Initial subsonic state. The solution satisfies
∣∣∣λ?

1g

∣∣∣ > ∣∣∣λn
1g

∣∣∣.

Figure 9. Case B2. Flow deceleration/acceleration generated by a backward/forward shock wave at
an outflow boundary condition. Initial supersonic state. A shock wave moving inside the domain is
generated if the imposed boundary condition is able to ensure gλ?

1g ≤ 0 departing form gλn
1g > 0.
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2.3.5. Limitation of Boundary Conditions at Inflow Sections.

In this section, we analyze the limits and constrains that appear in presence of back-
ward and forward compression or decompression waves for inflow sections with gkun < 0.
We define the following cases.

• Case C1. Compression waves under initial subsonic conditions, −1 < SIn
g < 0

(Figure 10).
Under these conditions, the vessel area increases dα > 0 and the solution is a shock or
compression wave moving in the −gkx direction, where

∣∣∣λ?
1g,k

∣∣∣ > ∣∣∣λn
1g,k

∣∣∣.
• Case C2. Compression waves under initial supersonic conditions, SIn

g < −1 (Figure 11).
In the supersonic range, both λn

1g and λn
2g fall inside the domain. Apart from the

prescribed flow, another condition, such as vessel area or total energy must be imposed.
Initial conditions and boundary conditions may satisfy the relation in (51) and entropy
conditions in (48).

• Case D1. Decompression waves under initial subsonic conditions, −1 < SIn
g < 0

(Figure 12).
In the subsonic range, we find that |u?| < |un|. The limiting value of Qbc is given by
gkλ?

1g = 0, or gku? = c?, and represents a condition of reversal flow. When this limit
is exceeded, sonic conditions must be imposed, and the solution is given by function
in (63).

• Case D2. Decompression waves under initial supersonic conditions, SIn
g < −1

(Figure 13).
Again, the limiting state, a condition of reversal flow, is provided by gkλ?

1g = 0 and, if
exceeded, the solution is given by function in (63).

Figure 10. Case C1. Flow deceleration/acceleration, gkdQbc < 0, at an inflow boundary condition
under initial subsonic conditions. In this inflow section a backward/forward shock wave moving
inside the domain is generated.
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Figure 11. Case C2. Flow deceleration/acceleration, gkdQbc < 0, at an inflow boundary condition
under initial supersonic conditions. In this inflow section a backward/forward shock wave moving
inside the domain is generated. Both λn

1g and λn
2g fall inside of the domain. Two boundary conditions

are required.

Figure 12. Case D1. Flow acceleration/deceleration, gkdQbc > 0, at an inflow boundary condition
under initial subsonic conditions. In this inflow section a backward/forward rarefaction wave
appears. The solution evolves from xmax = λn

1g∆t to xmin = λ?
1g∆t. When λ?

1g = 0 the flow velocity
direction is opposite to the initial one.
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Figure 13. Case D2. Flow acceleration/deceleration, gkdQbc > 0, at an inflow boundary condition
under initial supersonic conditions. In this inflow section a backward/forward rarefaction wave can
defined inside the domain as λn

1g falls within the domain. When λ?
1g = 0 the flow velocity direction

is opposite to the initial one.

2.3.6. Outflow and Inflow Boundary Conditions including Subsonic, Sonic and
Supersonic Flow

The previous cases in Sections 2.3.4 and 2.3.5 can be reorganized depending on the
initial flow regime. For subsonic flow,

∣∣∣SIn
g

∣∣∣ < 1, we find that:

• If 0 < SIn
g < 1, at outflow boundary conditions:

1. The acceleration/deceleration of the flow generated by a backward/forward
wave can be imposed provided that the limiting value of flow in (62) is not
exceeded, leading to a decompression wave (case A1).

2. The deceleration/acceleration of the flow generated by a backward/forward
wave can be imposed leading to a compression wave (case B1), and no sonic
limitation appears.

• If −1 < SIn
g < 0, at inflow boundary conditions:

1. Flow deceleration/acceleration, generated by a backward/forward wave can be
imposed leading to a compression wave (case C1).

2. Flow acceleration/deceleration, generated by a backward/forward wave leads
to a decompression wave. Flow at the boundary must by limited by the function
in (63) (case D1).

For supersonic flow:

• If SIn
g > 1, at outflow boundary conditions:

1. The acceleration/deceleration of the flow cannot be imposed, as no information
can arrive to the inner domain of the vessel (case A2), U?

k = [An, Qn]Tk .
2. The deceleration/acceleration of the flow, generated by a backward/forward

wave can be imposed if leading to a compression wave with a suitable value of
celerity (case B2), −gkS > 0.

• If SIn
g < −1, in inflow boundary conditions:

1. The deceleration/acceleration of the flow generated by a backward/forward
wave can be imposed, leading to a compression wave, provided that both flow
and area are imposed (case C2), U?

k = [Abc(t), Qbc(t)]Tk .
2. The deceleration of the flow can be imposed, leading to a decompression wave

(case D2) limited by the function in (63).
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Therefore, we need to provide solutions considering that:

• The target functions in system (55) must be redefined to ensure limitation of sonic
flow in cases A1, D1 y D2.

• Unfeasible acceleration/deceleration, in supersonic outflow sections in case A2 must
be avoided, the target functions in system (55) must be redefined to include this case.

• In case C2, involving a supersonic inflow section, both area and flow rate must be
imposed. In this case, the system of equations in (55) is useless.

In order to limit the possible transitions, the system of equations in (55) is modified.
Now, error function in (55) is written as the sum of two functions:

E(X) = Ea(X) + Eb(X) = 0, (64)

with

Ea(X) =
[

(u• − un + gB)kDw,k
[gDw(α

?Ao u•) + g(1−Dw)Qn]k − gkQ•bc,k

]
, Eb(X) =

[
(u? − un)k(1−Dw,k)
(α? − αn)k(1−Dw,k)

]
. (65)

The first equation in (65), accounting for the solution of non-linear waves, involves
the following velocity

u•k = Rw,k gkc?k + Twu?
k , Tw = 1−Rw, (66)

with

Rw =

{
1 if SI?,m

g < 1 and SI?,m+1
g > 1 and δαm ≤ 0

0 otherwise,
(67)

and δα = (α? − αn)k. Tw is zero when sonic conditions are reached during the iterative
search of a rarefaction solution, resulting in Rw = 1. In this case, u? is no longer an
unknown and the rarefaction waves remain limited by λ?

1g = 0.
The coefficient Dw retains the initial values for velocity and area for those outflow

sections where supersonic conditions are initially defined (case A2) when necessary. Dw is
defined as:

Dw =


0 if SIn

g ≥ 1 and gk(Qbc −Qn)k > 0 or (α? − αn)k < 0
0 if SIn

g ≥ 1 and −gkS < 0
1 otherwise,

(68)

avoiding further acceleration of the flow in supersonic conditions or unphysical shock
wave directions.

Mass conservation in the system of equations in (65) is defined using the following
auxiliary variable

Q•bc,k =
[
TwDwQm

bc,k +RwDw(α
?Ao u•) + (1−Dw)Qn

]
k
, (69)

leading to the initial value of discharge when Dw = 0, to conditions of sonic flow when
Rw = 1 or to the objective value Qm

bc,k if subsonic conditions are retained, TwDw = 1. The
auxiliary flow value Qm

bc approximates Qbc(t) and ensures a smooth convergence to the
solution, will be defined below.

Matrix JE(X) = Ja
E(X) + Jb

E(X), is given by:

Ja
E(X) =

 TwDw

(
Rwg

∂c
∂α

+ g
∂B
∂α

)
Dw

(TwDwgAo)α? (TwDwgAo)u?

, Jb
E(X) =

[
1−Dw 0

(1− Tw)Dw 1−Dw

]
, (70)
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with

∂B
∂α

=


g c?

α?
if δα ≤ 0

∂ fg

∂α
if δα > 0

(71)

and

∂c
∂α = 1

2
c2

o
(m−n)

(m2αm−n2αn)
c α

∂ fg
∂α = 1

2 fg

[(
1

αn − 1
α?

)
(c?)2 + 1

Ao

(
1

α?

)2
(ϕ? − ϕn)

]
. (72)

In this way, when sonic conditions are reached and u? is no longer an unknown, the
numerical method presented here avoids the updating of u?, setting δu? = 0.

Initial Values and Relaxation Parameters

In the first iteration, m = 0, the solution will be defined assuming that:

• if g(Qbc −Qn) ≥ 0, the solution will be a rarefaction,
• if g(Qbc −Qn) < 0, the solution will be a shock.

In order to avoid an excessive variation of α between two steps, we reduce the step
size δXm by using a damping factor γα ≤ 1:

δXm = γα δXm, γα =

{
1 if |δαm| < δαlim

δαlim
|δαm | if |δαm| > δαlim

, (73)

with δαlim a constant value, defined to limit the variation of α.
Next, we also limit the variation in δXm by imposing a constraint in the maximum

variation of the velocity u, δulim, by using the damping factor γu ≤ 1.

δXm = γu δXm, γu =

{
1 if |δum| < δulim

δulim
|δum | if |δum| > δulim

. (74)

In this case, δulim is not a fixed value as δαlim. The variation in δulim is computed
assuming that the increase in SIg from iteration m to m + 1,

∣∣∣δSIm
g

∣∣∣ = ∣∣∣SIm+1
g − SIm

g

∣∣∣, is
small and small enough to control the solution when the solution is in the vicinity of
sonic flow conditions. This is ensured by limiting the increment

∣∣∣δSIm
g

∣∣∣ by a prefixed

constant value, δSIlim, which can be also reduced to avoid sonic conditions when
∣∣SIg

∣∣ = 1,
as follows: ∣∣∣δSIm

g

∣∣∣ = { min(δSIlim,
∣∣∣1− ∣∣∣SIm

g

∣∣∣∣∣∣) if 0 ≤ SIm
g < 1

δSIlim otherwise
. (75)

With this value of
∣∣∣δSIm

g

∣∣∣, the maximum variation of velocity is approximated by:

δulim =
∣∣∣δSIm

g

∣∣∣cm, (76)

as small variations in α have been enforced. The final solution will also be achieved not
directly imposing the value of Qbc in the mass conservation equation, but changing its
value smoothly using the auxiliary variables Qm

bc and δQm
bc, with:

δQm
bc =

{
δulim(α

m Ao) if Qbc −Qm
bc > 0

−δulim(α
m Ao) if Qbc −Qm

bc < 0,
(77)
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untill the final solution for Qbc is achieved, with:

Qm+1
bc =

{
min

(
Qm

bc + δQm
bc, Qbc

)
, i f δQm > 0

max
(
Qm

bc + δQm
bc, Qbc

)
, i f δQm < 0

(78)

limiting the value of Qbc in the mass conservation equation when sonic conditions are
reached. The details of the invariant integration are given in Appendix A.

2.4. Solution of the JRP

The Riemann problem at vertex P or JRP, for NP infinitely long converging vessels
sharing vertex P reads:

∂Uk
∂t

+ J(Uk)
∂Uk
∂x

= 0, Ûk(x, 0) = Ui,k, (79)

for k = 1, ..., NP. To couple the NP vessels, we have to compute the unknown cross-sectional
area A?

k and velocity u?
k for each vessel converging at node P, which means that we have

2NP unknowns. Quantities A?
k and u?

k will be used to compute fluxes at the boundary
interface of the k-th vessel. For the NP boundary cells meeting at the junction, the following
mass conservation equation is written:

NP

∑
k=1

gkQ?
k = 0, (80)

where Q?
k = u?

k A?
k . The solution of the JRP under subsonic flow conditions is next revisited

and later extended to general flow conditions.

2.4.1. Solution of the JRP under Subsonic Flow Conditions

The solution of the JRP under subsonic flow conditions can be defined by a system
of 2NP equations of the form E(X) = 0. The first NP equations are relations for non-
linear waves (conservation of the Riemann Invariants in (42) or shock waves in (48)). The
remaining NP equations, mass conservation in (80) and the NP − 1 equations involving con-
servation of total pressure, pT , are related to the stationary contact discontinuity generated
by variable mechanical and geometrical properties [24]:

E(X) =



(u? − un + gB)1
...

(u? − un + gB)NP

∑
k
(g(αu)?Ao)k

pT,1 − pT,2
...

pT,1 − pT,NP


, X =



u?
1
...

u?
NP

α?1
...

α?NP ,


(81)

with pT = pM + Koσ + 1
2 ρu2, pM = po + pext + ρgη, and B defined in (57), where vessel

k = 1 is used to define the reference value in the energy conservation equation.
The system of equations in (81) can be linearized and solved using Picard iterations

between times t and t + ∆t, using a Jacobian matrix Jm
E defined over the function vector E,

where ffiXm is obtained. In this case, matrix JE is given by:

JE(X) =
[

JE,1 JE,2
JE,3 JE,4

]
(2NP)×(2NP)

, (82)
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where

JE,1 = INP×NP , JE,2 =


(

g ∂B
∂α

)
1

0 0

0
. . . 0

0 0
(

g ∂B
∂α

)
NP


NP×NP

, (83)

and

JE,3 =


(gα?Ao)1 (gα?Ao)2 . . . (gα?Ao)NP(

Ko
∂σ
∂α

)
1
−
(

Ko
∂σ
∂α

)
2

. . . 0
... 0

. . . 0(
Ko

∂σ
∂α

)
1

0 . . . −
(

Ko
∂σ
∂α

)
NP


NP×NP

, (84)

JE,4 =


(gu?Ao)1 (gu?Ao)2 . . . (gu?Ao)NP

ρu?
1 −ρu?

2 . . . 0
... 0

. . . 0
ρu?

1 0 . . . −ρu?
NP


NP×NP

, (85)

with

∂σ

∂α
=

Ko

α
[mαm − nαn]. (86)

2.4.2. Solution of the JRP under Subsonic and Supersonic Flow Conditions

The system of equations for subsonic flow conditions is modified here to deal with
both subsonic and supersonic flow conditions. After each iteration, the variables of the
system in X and a set of dynamic parameters for each vessel will be updated. The new
system of equations is split into two terms:

E(X) = Ea(X) + Eb(X) = 0, (87)

with

Ea =



(u• − un + gB)1Dw,1
...

(u• − un + gB)NPDw,NP

∑
k
[gDw(α

?Ao u•)]k

[p?T − pT,2]Qw,2
...[

p?T − pT,NP

]
Qw,NP


, Eb =



(u? − un)1(1−Dw,1)
...

(u? − un)NP(1−Dw,NP)

∑
k

gk[(1−Dw)(Au)n]k

(α? − αn)1(1−Dw,1)Lw,2 + (α? − αn)2(1−Dw,2)
...

(α? − αn)1(1−Dw,1)Lw,NP + (α? − αn)NP(1−Dw,NP).


. (88)

Eb(X) is defined to impose conservation of the initial value conditions in a k vessel
depending on the dynamic parameter Dw,k. Parameter Dw,k is defined as follows:

Dw =


0 if SIn

g ≥ 1 and gk(Q? −Qn)k > 0 or (α? − αn)k < 0
0 if SIn

g ≥ 1 and −gkS < 0
0 if SIn

g ≥ 1 and −gkλ?
1g,k < 0

1 otherwise

. (89)

It is worth noting that, for outflow sections under supersonic conditions, it becomes zero if
the iterative solution leads to an unphysical solution. Unphysical solutions are associated
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with flow acceleration, to a reduction of the vessel area or to a shock wave traveling in
the wrong direction (analogous to case A2 in the external boundary analysis). In this case,
both the area and the velocity of the vessel are no longer an unknown of the system, and
U?

k = Un
k must be enforced. On the other hand, when Dw,k = 1, the transmission of a

backward wave generated downstream of a convergence point is guaranteed.
When coefficient Dw,k = 1, the error function Ek for vessels k = 1, . . . , Np, reduces to Ea

k
accounting for relations across non-linear waves, involving the auxiliary variable u• in (66).

If sonic flow conditions are reached during the iterative process for vessel k, the
evolved solution for the velocity is gkc?, and this velocity is no longer an unknown of the
problem. When the parameter Dw,k = 0, the error function Ek = Eb

k , expressing that the
initial condition for the velocity must be kept over time, u?

k = un
k .

The definition of the velocity in (66) enables a generic formulation for the flow in a
vessel as follows:

Q?
k = Dw,k(α

?Ao u•)k + (1−Dw,k)Qn
k , (90)

and error function ENP+1 for mass conservation is split in Ea
NP+1 and Eb

NP+1 depending on
the value of Dw,k.

Error functions ENP+1+k for k = 2, . . . , Np are modified to consider that the evolved
state of a vessel may not participate in the energy conservation equation. The reference
value in the energy conservation equation is:

p?T =
NP

∑
k=1
Lw,k pT,k, (91)

with

Lw,k =

{
1 if k = kL
0 otherwise

, kL = min
{

k, Tw,kDk,w = 1
}

, k = 1, . . . , NP. (92)

Coefficient Lw,k is always zero except for in the first eligible vessel where energy con-
servation can be defined and this k vessel will be used as the reference value in the energy
conservation equation. Ineligible vessels do not participate in the energy conservation
equation when Tw,k = 0 (flow limitation) or Dw = 0 (conservation of the initial condition).
Coefficient Qw,k is defined as:

Qw,k = Tw,kDw,k(1−Lw,k), (93)

and may become equal to 0 or 1. In the case that Lw,k = 1, Qw,k becomes zero as this k
vessel will be used as the reference value in the energy conservation equation. Coefficient
Qw,k also becomes zero when the flow reaches sonic conditions in a rarefaction or when
the flow is supersonic and cannot be further accelerated with independence of the gradient
of energy across the junction. In both cases, these ineligible vessels do not participate in
energy conservation equation, as their solution becomes independent of the energy level of
the other vessels.

When for k > 1,Dw,k = 0, the energy conservation equation in Ea
NP+1+k is omitted and

preservation of initial conditions for vessel area, α?k = αn
k , is enforced in Eb

NP+1+k. When
Dw,1 = 0, α?1 = αn

1 is imposed in error function Eb
NP+1+k, with k the first eligible vessel with

Lw,k = 1. This k vessel does not require further equations as it has already been used to
provide the energy reference level.

System of equations in (87) is indirectly solved using the equivalent linear system in (60),
where Jacobian matrix JE(X) is defined as:

JE(X) =
[

JE,1 JE,2
JE,3 JE,4

]
(2NP)×(2NP)

=

 e1,1 . . . e1,2NP
...

. . .
...

e2NP ,1 . . . e2NP ,2NP ,

 (94)
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and matrices JE,1 and JE,2 involve relations for non-linear waves and matrices JE,3 and JE,4
are related to the mass conservation and energy conservation equations.

The Jacobian matrix JE(X) must be carefully constructed to guarantee that the system
of equations provides a suitable solution for ffiXm when ineligible vessels appear, as the
number of unknowns may change along the iterative process. When presenting the new
system of equations in (87), instead of dynamically changing the size of the system of
equations, we have enforced the necessary conditions to retain the original dimensions
of the problem with the help of the dynamic coefficients. The same idea is applied to the
Jacobian matrix JE(X).

In general, the number of unknowns and original equations is reduced to 2NP −
∑kRw,k − 2 ∑k(1−Dw,k). Therefore, the Jacobian will have to deal with two situations,
Dw,k = 0 andRw,k = 1. When Dw,k = 0 for vessel k, the linearized system will ensure that
U?

k = Un
k by returning δuk = 0 and δαk = 0. When Rw,k = 1 for vessel k, the linearized

system will return δuk = 0, as the solution will be provided by α?.
Matrices JE,1 and JE,2 are given by:

JE,1 = INP×NP



1−Dw,1Rw,1
...

1−Dw,kRw,k
...

1−Dw,NPRw,NP

, JE,2 = INP×NP



Dw,1a1
...

Dw,kak
...

Dw,NP aNP

, (95)

with

ak =

(
Rwg

∂c
∂α

+ g
∂B
∂α

)
k
. (96)

When sonic conditions are reached in a k vessel, Rw,k = 1, coefficient ek,k = 0, and δuk is
not any longer an unknown of the system. If Dw,k = 0, ek,k = 1 and ek,NP+k = 0, enforcing
δuk = 0.

Matrix JE,3 is split into two matrices JE,3 = Ja
E,3 + Jb

E,3. Matrix Ja
E,3 is of the form:

Ja
E,3 =


g1 b1 g2 b2 . . . gNP bNP

ρ(Lwu?)1Qw,2 ρ(Lwu?)2Qw,2 . . . ρ(Lwu?)NPQw,2
...

...
...

ρ(Lwu?)1Qw,NP ρ(Lwu?)2Qw,NP . . . ρ(Lwu?)NPQw,NP


NP×NP

, (97)

with
bk = (TwDwα?Ao)k, (98)

where for those ineligible vessels with Dw,kTw,k = 0, coefficients eNP+1,k to e2NP ,k become
zero. Matrix Jb

E,3 is given by:

Jb
E,3 =


0 0 . . . 0

Rw,1Dw,1Lw,2 Rw,2Dw,2 . . . 0
... 0

. . . 0
Rw,1Dw,1Lw,NP 0 . . . Rw,NPDw,NP


NP×NP

, (99)

and is defined to return δuk = 0 for those vessels where sonic conditions are reached. If
Dw,k = 0, the k column in matrix Jb

F,3 becomes null and vessel k does not participate in the
energy error functions.

Matrix JE,4 is decomposed in JE,4 = Ja
E,4 + Jb

E,4 + Jc
E,4,
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Ja
E,4 =



g1 v1 g2 v2 . . . gNP vNP(
LwKo

∂σ
∂α

)
1
Qw,2

(
LwKo

∂σ
∂α

)
2
Qw,2 . . .

(
LwKo

∂σ
∂α

)
NP
Qw,2

...
...

...
...(

LwKo
∂σ
∂α

)
1
Qw,NP

(
LwKo

∂σ
∂α

)
2
Qw,NP . . .

(
LwKo

∂σ
∂α

)
NP
Qw,NP


NP×NP

, (100)

with

vk = (AoDw)k

[
Twu? + gkRw

∂(cα)?

∂α

]
k
, (101)

and, when Qw,k = 0, vessel k does not participate in the energy error functions. The same
applies to matrix Jb

E,4 defined as

Jb
E,4 =


0 0 . . . 0
0
(

Ko
∂σ
∂α

)
2
(Lw,2 − 1)Qw,2 . . . 0

... 0
. . . 0

0 0 . . .
(

Ko
∂σ
∂α

)
NP

(Lw,NP − 1)Qw,NP


NP×NP

. (102)

Matrix Jc
E,4, given by

Jc
E,4 =


0 0 . . . 0

(1−Dw,1)Lw,2 (1−Dw,2) . . . 0
... 0

. . . 0
(1−Dw,1)Lw,NP 0 . . . (1−Dw,NP)


NP×NP

, (103)

is defined to return δα?k = (αn− α?)k for those outflow sections where supersonic conditions
are initially imposed and the solution will not change over time.

The system of equations is solved using the Gauss–Jordan elimination method, and
δXm+1 is obtained. The updating step δXm is corrected by using a damping factor selected
as the minimum among the damping factors γα,k in (73), defined for each k vessel of
the junction:

δXm = γαmin δXm, γαmin = min
{

γα,k
}

. (104)

Next, the updating step δXm is corrected again by using another damping factor, this
time selected as the minimum among the damping factors γu,k in (74),

δXm = γumin δXm, γumin = min
{

γu,k
}

, (105)

where sonic flow conditions are controlled by computing γu,k as in (76).
Once the new value of X is computed, the values ofRw,k, Tw,k and Dw,k are updated,

and the velocity and vessel deformation are defined as

u?
k = u•kDw,k + un

k (1−Dw,k), α?k = α?kDw,k + αn
k (1−Dw,k). (106)

For each k vessel where initial supersonic conditions are imposed, SIn
g ≥ 1, only

flow variations are allowed when Dw,k = 1 in (89), and therefore it becomes necessary to
estimate an initial value of Q? different from Qn at the first iteration. This value is initially
estimated for m = 0, as the sum of the flow participating in the rest of vessels where
SIn

g < 1, as follows:

Q?,m=0
k = gk

− ∑
(SIg)n

i <1
giQn

i

, (SIg)
n
k ≥ 1, (107)
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allowing the transmission of a backward wave through the confluence.

Courant–Friedrichs–Lewy (CFL) Condition

The Godunov scheme in (15) is an explicit numerical scheme where wave celerities
define the maximum allowable time step. Considering that the grid size ∆x is fixed, the time
step ∆t is computed considering the speed of the faster wave, leading to the following limit:

∆t = min
{

∆tmin,i, ∆tmin,JRP
}

CFL, (108)

where ∆tmin,i is the minimum time step among the time steps defined for each cell

∆tmin,i = min{∆ti}, ∆ti =
∆x

max(ci + |u|i),
(109)

and ∆tmin,JRP is the minimum time step among the time steps defined for each boundary
cell involved in a JRP,

∆tmin,JRP = min
{

∆tJRP
}

, ∆tJRP =
∆x

max|Ck|,
(110)

where Ck is the wave speed of the resulting non-linear wave, Sk in (50) if the solution is a
shock or λ?

1g,k in (44) if the solution is a rarefaction. A CFL value equal to 1/2 ensures no
interaction of waves from neighboring Riemann problems [26].

3. Results

In this section, many numerical tests are presented to show the capabilities of the
JRP solver, comparing analytical and numerical solutions under extreme flow conditions
on collapsible tubes, subsonic–supersonic transitions, sonic blockage conditions, and
the transmission of backward waves from downstream vessels through the junction to
upstream supersonic vessels with supersonic conditions. The analytical solutions provided
by the JRP solver are compared with numerical results computed using the JRP at the
junction in combination with the HLLS scheme. The solutions satisfy in all cases the
entropy conditions for shocks or rarefactions.

3.1. JRP with Two Vessels

Prior to analyzing the numerical results for a JRP with multiple vessels or branches, in
this section, we will first compare the exact solutions of a set of RPs with discontinuous
geometrical and mechanical properties, with the analytical solutions provided by the JRP
solver in (87) for the equivalent JRP with two vessels.

The exact solutions of the selected RPs involve non-linear waves and a stationary
contact discontinuity generated by the variation of the mechanical and geometrical proper-
ties [25]. In some RPs, we also will plot the numerical solution of the RP using the Godunov
updating scheme in (15), where the numerical fluxes in all edges will be computed exclu-
sively using the HLLS scheme.

The equivalent JRP is defined assuming that two vessels with different geometrical
and mechanical properties are connected through a junction. An analytical solution for the
JRP is computed using the JRP solver in (87). We will also provide numerical solutions of
the JRP using the Godunov updating scheme in (15). The JRP solver in (87) will provide
the star values U?

k = [A?
k , Q?

k ] at the ending edges of the boundary cells. These start values
will be used to compute fluxes according to equation (19). The HLLS scheme is used to
compute the numerical fluxes at the inner edges of each vessel.

Initial conditions and mechanical and geometrical properties are presented in Table 1
for all the cases. In all cases reported in this work, density is ρ = 1 g/cm3 and friction forces
are not considered, f = 0. In all numerical simulations a CFL number with CFL = 0.5 is
used, setting ∆x = 0.01 cm. Analytical solutions of the JRP in (87) and exact solutions of the
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RP are plotted in a continuous line (—). Numerical solutions for vessels 1 and 2 are plotted
using (− ◦−) and (−�−). External pressure pext is plotted using (−−−).

Table 1. Two-vessel Junction configuration. Test case, number of vessel k, father or daughter vessel
gk, reference diameter do,k (mm), reference pulse wave velocity co,k (cm s−1), reference pressure
po,k (mmHg), external pressure pe,k, initial speed index SIn = un

k /cn
k , initial relative area αn

k and
transmural coefficients m and n.

Test Case k gk do,k co,k po,k pe,k SIn αn m n

2V0 1 1 25.231 299.07 0.0 0.0 0.01 2.400 0.5 0.0
2 −1 22.568 346.41 0.0 5.0 0.01 1.909 0.5 0.0

2V1 1 1 25.231 299.07 0.0 0.0 0.01 2.400 0.5 0.0
2 −1 22.568 346.41 0.0 0.0 0.00 1.125 0.5 0.0

2V2 1 1 25.231 299.07 0.0 0.0 0.00 1.600 0.5 0.0
2 −1 22.568 346.41 0.0 0.0 0.00 1.500 0.5 0.0

2V3 1 1 25.231 299.07 0.0 0.0 0.12 1.600 0.5 0.0
2 −1 22.568 346.41 0.0 0.0 0.00 1.504 0.5 0.0

2V4 1 1 6.000 479.58 0.0 0.0 0.01 1.132 10.0 −1.5
2 −1 6.293 61.91 0.0 0.0 0.29 1.026 10.0 −1.5

2V5 1 1 6.000 61.91 0.0 0.0 0.29 1.026 10.0 −1.5
2 −1 6.148 619.14 0.0 0.0 0.01 1.078 10.0 −1.5

2V6 1 1 6.000 61.91 0.0 0.0 0.33 1.210 10.0 −1.5
2 −1 6.434 391.58 0.0 0.0 −0.02 1.027 10.0 −1.5

2V7 1 1 6.000 61.91 0.0 0.0 −0.21 1.096 10.0 −1.5
2 −1 6.148 339.12 0.0 0.0 0.02 1.044 10.0 −1.5

2V8 1 1 11.284 2.14 0.0 0.0 3.47 0.010 0.5 0.0
2 −1 11.284 1.98 0.0 0.0 3.39 0.012 0.5 0.0

2V9 1 1 11.284 2.14 0.0 0.0 3.47 0.010 0.5 0.0
2 −1 11.284 1.98 0.0 0.0 2.09 0.100 0.5 0.0

SubAtm1 1 1 15.958 107.24 0.0 0.0 0.00 1.000 10.0 −1.5
2 −1 15.958 107.24 0.0 −4.0 0.00 1.000 10.0 −1.5

SubAtm2 1 1 15.958 107.24 0.0 0.0 0.00 1.000 10.0 −1.5
2 −1 15.958 107.24 0.0 −4.9 0.00 1.000 10.0 −1.5

SubAtm3 1 1 15.958 107.24 0.0 0.0 0.00 1.000 10.0 −1.5
2 −1 15.958 107.24 0.0 −10.0 0.00 1.000 10.0 −1.5

Collapse1 1 1 11.284 1.21 0.0 0.0 1.95 0.100 0.5 0.0
2 −1 11.284 1.11 0.0 0.0 14.38 0.012 0.5 0.0

Collapse2 1 1 6.180 0.34 0.0 0.0 −29.49 1.000 10.0 −1.5
2 −1 5.046 3.39 0.0 0.0 0.54 1.500 10.0 −1.5

Collapse3 1 1 2.000 0.36 0.0 0.0 −2.01 2.140 10.0 −1.5
2 −1 2.000 0.36 0.0 0.0 2.01 2.140 10.0 −1.5

Collapse4 1 1 2.000 107.24 0.0 0.0 0.00 1.500 10.0 −1.5
2 −1 2.000 107.24 0.0 0.0 0.00 0.024 10.0 −1.5

In test case 2V0, and in test cases 2V1 to 2V7, we check that the proposed JRP solver
in (87) can recover solutions in the subsonic regime. The analytical solutions provided by
the JRP solver, plotted in Figures 14–21 with a continuous line (—), are exactly equal to
the exact solutions of the equivalent subsonic RPs in all these cases. In RpEnergyCase1
the initial solution is in exact equilibrium and the initial solution is preserved over time
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by the numerical solution, as expected. Test cases 2V1 to 2V7 are suitable combinations of
subsonic compression/decompression backward/forward waves. The numerical solutions
of the JRP also converge to the exact solutions as shown in Figures 14–21. Being the flow
subsonic, in all these cases, conservation of total energy, pT , is observed at the junction.

Test cases 2V8 and 2V9 involve supersonic flow. Figures 22–24 show the exact solutions
and the numerical solutions when the problems are defined as a RP in a single vessel with
discontinuous properties. Being the flow supersonic, the exact solution of RP RpCase8
(Figure 22) is given by a contact wave at x = 0 followed by a BDW (backward compression
wave) and an FDW (forward decompression wave). In RP 2V9, the exact solution, plotted
in Figure 24, is a contact wave at x = 0 followed by an FCW (forward compression wave)
and by an FDW (forward decompression wave). When solving both cases as a JRP using
solver in (87), the analytical solution provided is different, since at most, one non-linear
wave can be defined in each vessel of the confluence.

The analytical solution provided by system in (87) for JRP 2V8 ensures no change of
the solution at the left vessel of the junction, as observed for the exact solution, but in the
right vessel only a supersonic FDW is defined (Figure 25). If we compare the analytical
and the numerical solutions of the JRP, we observe supersonic flow conditions are kept
in the left vessel, while in the right vessel, an FCW not defined in the analytical solution
appears, followed by an FDW.

For test 2V9, the analytical solution of the JRP ensures no change of the solution at the
left vessel of the junction, as in the exact solution, but in the right vessel only a supersonic
FDW is defined. The numerical solution for the JRP is a supersonic flow entering the
confluence, followed by an FCW (not defined analytical solution) followed by an FDW.
It can be observed that, for both exact solutions of the RPs 2V8 and 2V9 total energy,
pT , is preserved, while in JRPs 2V8 and 2V9, only mass conservation is preserved at the
confluence in the analytical solution.
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t = 0.001 s. The solution from vessel 1 to 2 is: a subsonic BCW, and a subsonic FDW, respectively.
Both vessels share the same value of pT at x = 0.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

 α
 

x (cm)

-5

 0

 5

 10

 15

 20

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

Q
(c

m
3 /s

)

x (cm)

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

S
I

x (cm)

 2

 3

 4

 5

 6

 7

 8

 9

 10

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

p T
(m

m
H

g)
 

x (cm)

Figure 20. Section 3.1. JRP 2V6. Comparison between analytical (—) and numerical solutions at
t = 0.001 s. The solution from vessel 1 to 2 is: a subsonic BCW, and a subsonic FCW, respectively.
Both vessels share the same value of pT at x = 0.
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Figure 21. Section 3.1. JRP 2V7. Comparison between analytical (—) and numerical solutions at
t = 0.002 s. The solution from vessel 1 to 2 is: a subsonic BDW, and a subsonic FDW, respectively.
Both vessels share the same value of pT at x = 0.

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

 α
 

x (cm)

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

Q
(c

m
3 /s

)

x (cm)

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

S
I

x (cm)

-0.0042

-0.0041

-0.004

-0.0039

-0.0038

-0.0037

-0.0036

-0.0035

-0.0034

-0.0033

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

p T
(m

m
H

g)
 

x (cm)

Figure 22. Section 3.1. RP 2V8 in a single vessel. Comparison between exact (—) and numerical
solution using HLLS scheme at t = 0.3 s. The solution is a contact wave at x = 0 followed by an FCW
and an FDW.
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Figure 23. Section 3.1. JRP 2V8. Comparison between analytical (—) and numerical solutions at
t = 0.3 s. The solution from vessel 1 to 2 is: a supersonic flow entering the confluence, and a supersonic
FDW, respectively. Total pressure is not preserved at x = 0.

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

 α
 

x (cm)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

Q
(c

m
3 /s

)

x (cm)

 1

 1.5

 2

 2.5

 3

 3.5

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

S
I

x (cm)

-0.0045

-0.004

-0.0035

-0.003

-0.0025

-0.002

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

p T
(m

m
H

g)
 

x (cm)

Figure 24. Section 3.1. RP 2V9 in a single vessel. Comparison between exact (—) and numerical
solution using HLLS scheme at t = 0.2 s. The solution is a contact wave at x = 0 followed by an FCW
and an FDW.
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Figure 25. Section 3.1. JRP 2V9. Comparison between analytical (—) and numerical solutions
at t = 0.2 s. The solution from vessel 1 to 2 is: a supersonic flow entering the confluence, and a
supersonic FDW, respectively. Total pressure is not preserved at x = 0.

In test cases SubAtm1 to SubAtm3, the transition from subsonic flow conditions to
sonic blockage conditions in a vessel is analyzed. To enforce this condition, pressure is
atmospheric on the left side and sub-atmospheric on the right side of the RPs. Mechanical
and geometrical properties and initial conditions are kept constant among experiments
while the external pressure on the left side of the RP is decreased. The analytical solution
of each JRP, equal to the exact solution of the RP, is plotted in Figures 26–28 for test cases
SubAtm1 to SubAtm3, respectively.

The pressure variation in JRP SubAtm1 leads to a subsonic left moving rarefaction
wave and a progressive narrowing of the vessel area. A contact discontinuity appears at
x = 0, leading to an abrupt expansion on the right side of the JRP, where sub-atmospheric
pressure is imposed. In JRP SubAtm2 the suction on the left side of the JRP is increased
and sonic conditions are forced across the contact discontinuity as shown in Figure 27. The
moving rarefaction ends in the narrowest section now achieving sonic conditions. In both
JRPs, SubAtm1 and SubAtm2, total energy is constant across the discontinuity. As sonic
blockage has already been generated in JRP SubAtm2, the increase in the suction on the
right side of the JRP in test case SubAtm3 does not change the analytical solution in the
left vessel. On the other hand, Figures 26–28, show how the numerical solutions of the JRP
reproduce accurately the analytical solutions in all cases.
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Figure 26. Section 3.1. JRP SubAtm1. Comparison between analytical (—) and numerical solutions
at t = 0.005 s. The solution from vessel 1 to 2 is: a subsonic BDW, and a subsonic FCW, respectively.
Both vessels share the same value of pT at x = 0.
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Figure 27. Section 3.1. JRP SubAtm2. Comparison between analytical (—) and numerical solutions
at t = 0.005 s. The solution from vessel 1 to 2 is: a subsonic BDW including sonic limitation, and a
subsonic FCW, respectively. Total pressure is not preserved at x = 0.
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Figure 28. Section 3.1. JRP SubAtm3. Comparison between analytical (—) and numerical solutions
at t = 0.005 s. The solution from vessel 1 to 2 is: a subsonic BDW including sonic limitation, and a
subsonic FCW, respectively. Total pressure is not preserved at x = 0.

The performance of the proposed JRP solver in (87) is checked in situations of vessel
collapse in test cases Collapse1 to Collapse4 in [28]. Figures 29 and 30 show the exact
solution of the RP Collapse1 in an artery. Supersonic initial flow conditions are imposed
in all the vessel. In this RP, the solution remains constant over time on the left side of the
RP. A stationary contact discontinuity is generated by the change in elasticity at x = 0,
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where a constant value of total energy is observed and then, on the right side of the RP, a
supersonic BDW develops leading to an extreme reduction of the vessel area. The vessel
area is recovered along a supersonic FDW wave. When the vessel collapses between the
BDW and the FDW, the value of the PWV increases exponentially against small variations
in area. Although the HLLS solver is capable of generating a suitable solution for flow or
velocity in the collapsed region, the numerical solution for the SI differs from the exact one
since the value reached for the area is not as low as the value reached by the value of the
solution exact.

The solution changes when the JRP solver in (87) is applied to compute analytical
solution for the test case Collapse1. The analytical solution does not change on the left
side of the RP, but now, at the discontinuity, total energy does not remain constant. A
supersonic FCW appears on the right side of the JRP, as only one wave can be defined at
each branch of the confluence. The numerical solution to this JRP retains the exact solution
in the left vessel, while in the right vessel, an FCW not defined in the analytical solution
appears, followed by an FCW.
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Figure 29. Section 3.1. RP Collapse1 in a single vessel. Comparison between exact (—) and numerical
solution using HLLS scheme at t = 0.1 s. The solution is a stationary contact discontinuity at x = 0
and a BDW followed by an FDW.
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Figure 30. Section 3.1. JRP Collapse1. Comparison between analytical (—) and numerical solutions
at t = 0.1 s. The solution from vessel 1 to 2 is: a supersonic flow entering the confluence, and a
supersonic FCW, respectively. Total pressure is not preserved at x = 0.

Test case Collapse2 has supersonic involves initial conditions on the left side and
subsonic ones on the right. When solving this problem as a JRP, the analytical solution
is equal to the exact solution of the equivalent RP in a single vessel, plotted in Figure 31.
Numerical results can accurately reproduce the resulting supersonic BDW on the left and
subsonic FDW on the right.

JRP or equivalent RP Collapse3 is a vacuum problem where initial subsonic conditions
lead to a supersonic BDW and a supersonic FDW, equal in both cases, as shown in Figure 32.
When the solution of the JRM is computed numerically using the Godunov scheme, the
results follow accurately the exact solution.

When solving RP Collapse4, initially at rest, the exact solution, shown in Figure 33,
leads to a supersonic BDW on the left side of the RP. This rarefaction crosses the interface
x = 0, ends on the right side and is followed by a supersonic FCW, as shown in Figure 33.
When solving the problem as JRP the analytical solution leads to a subsonic BDW and a
supersonic FCW on the left and right vessels respectively, as shown in Figure 34. Numerical
solution of the JRP recovers accurately the analytical solution as shown in Figure 34.
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Figure 31. Section 3.1. JRP Collapse2. Comparison between analytical (—) and numerical solutions
at t = 0.02 s. The solution from vessel 1 to 2 is: a supersonic BDW, and a subsonic FDW, respectively.
Both vessels share the same value of pT at x = 0.
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Figure 32. Section 3.1. JRP Collapse3. Comparison between analytical (—) and numerical solutions
at t = 0.01 s. The solution from vessel 1 to 2 is: a supersonic BDW, and a supersonic FDW, respectively.
Both vessels share the same value of pT at x = 0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

 α
 

x (cm)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

Q
(c

m
3 /s

)

x (cm)

 0

 0.5

 1

 1.5

 2

 2.5

 3

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

S
I

x (cm)

-250

-200

-150

-100

-50

 0

 50

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

p T
(m

m
H

g)
 

x (cm)

Figure 33. Section 3.1. RP Collapse4 in a single vessel Comparison between exact (—) and numerical
solution using HLLS scheme at t = 0.001 s. The solution is a supersonic BDW followed by a
supersonic FCW.
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Figure 34. Section 3.1. JRP Collapse4. Comparison between analytical (—) and numerical solutions
at t = 0.001 s. The solution from vessel 1 to 2 is: a subsonic BDW, and a supersonic FCW, respectively.
Both vessels share the same value of pT at x = 0.

3.2. JRP with Three Vessels

In this section, the analytical solution will be compared with the numerical solution
for JRPs with three vessels. Initial conditions and mechanical and geometrical properties
are presented in Table 2 for all the cases. Analytical solutions of the JRP in (87) are plotted
in continuous line (—). Numerical solutions for vessels 1 to 3 are plotted using (− ◦ −),
(−�−) and (−4−), respectively. External pressure pext is plotted using (−−−).

JRPs 3V1 to 3V11 are RPs at junctions where three venous vessels are defined, one
at the left side of the RP, and two at the right side. Initial conditions and mechanical and
geometrical properties are equal at the right side of the RP. The analytical solution will be
compared with the numerical solution for JRPs with three vessels.

In JRPs 3V1 to 3V3, vessel areas on the right side are larger than the vessel area on the
left side. Initial conditions include zero velocity in all the domain. In absence of an external
pressure, the variation in energy produced by the vessel deformation would generate a
flow from the right vessels to the left vessel. However, in these cases the suction generated
in the left side of the problem ensures a flow in the opposite direction, from the right vessel
to the left vessels. Analytical solutions for the proposed JRP solver in (87) to test cases 3V1
to 3V3 are plotted in Figures 35–37 respectively, and they show the evolution of the JRP
when suction is increased in the right vessels. While in test case 3V1 a subsonic rarefaction
is generated in the left vessel, in test case 3V2 conditions of sonic blockage have achieved.
Further suction in JRP 3V3 is unable to generate a large value of flow and solutions for
JRPs 3V2 and 3V3 are equal. Numerical solutions of the JRPs using the Godunov updating
scheme in (15) reproduce the solution accurately for these three cases.

In test case 3V4, the initial conditions for velocity in JRP 3V3 are modified and flow
conditions close to the sonic regime are imposed in all vessels. The effect of the suction
combined with the initial velocity generates again sonic blockage but now, in the right
vessels, supersonic conditions are achieved along the FDW, as shown in Figure 38. Even
the jump conditions in the FDW are subsonic, when the solution crosses by αPWV,min the
minimum value of PWV is defined, and a maximum value of SI appears.
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Table 2. Three vessel confluence configuration. Test case, number of vessel k, father or daughter
vessel gk, reference diameter do,k (mm), reference pulse wave velocity co,k (cm s−1), reference pressure
po,k (mmHg), external pressure pe,k, inital speed index SIn = un

k /cn
k , initial relative area αn

k and
transmural coefficients m and n.

Test Case k gk do,k co,k po,k pe,k SIn αn m n

3V1 1 1 27.000 119.27 0.0 0.0 0.00 0.500 10.0 −1.5
2 −1 19.092 125.04 0.0 −10.0 0.00 1.000 10.0 −1.5
3 −1 19.092 125.04 0.0 −10.0 0.00 1.000 10.0 −1.5

3V2 1 1 27.000 119.27 0.0 0.0 0.00 0.500 10.0 −1.5
2 −1 19.092 125.04 0.0 −40.0 0.00 1.000 10.0 −1.5
3 −1 19.092 125.04 0.0 −40.0 0.00 1.000 10.0 −1.5

3V3 1 1 27.000 119.27 0.0 0.0 0.00 0.500 10.0 −1.5
2 −1 19.092 125.04 0.0 −100.0 0.00 1.000 10.0 −1.5
3 −1 19.092 125.04 0.0 −100.0 0.00 1.000 10.0 −1.5

3V4 1 1 27.000 119.27 0.0 0.0 0.95 0.500 10.0 −1.5
2 −1 19.092 125.04 0.0 −100.0 0.90 1.000 10.0 −1.5
3 −1 19.092 125.04 0.0 −100.0 0.90 1.000 10.0 −1.5

3V5 1 1 27.000 119.27 0.0 0.0 1.00 0.500 10.0 −1.5
2 −1 19.092 125.04 0.0 −10.0 0.00 1.000 10.0 −1.5
3 −1 19.092 125.04 0.0 −10.0 0.00 1.000 10.0 −1.5

3V6 1 1 27.000 119.27 0.0 0.0 1.20 0.500 10.0 −1.5
2 −1 19.092 125.04 0.0 −10.0 0.00 1.000 10.0 −1.5
3 −1 19.092 125.04 0.0 −10.0 0.00 1.000 10.0 −1.5

3V7 1 1 27.000 119.27 0.0 0.0 0.60 1.000 10.0 −1.5
2 −1 19.092 125.04 0.0 0.0 0.90 1.000 10.0 −1.5
3 −1 19.092 125.04 0.0 0.0 0.90 1.000 10.0 −1.5

3V8 1 1 27.000 119.27 0.0 0.0 0.90 1.200 10.0 −1.5
2 −1 19.092 125.04 0.0 0.0 1.10 1.000 10.0 −1.5
3 −1 19.092 125.04 0.0 0.0 1.10 1.000 10.0 −1.5

3V9 1 1 27.000 119.27 0.0 0.0 0.00 1.200 10.0 −1.5
2 −1 19.092 125.04 0.0 0.0 0.00 0.200 10.0 −1.5
3 −1 19.092 125.04 0.0 0.0 0.00 0.200 10.0 −1.5

3V10 1 1 27.000 119.27 0.0 0.0 1.10 1.000 10.0 −1.5
2 −1 19.092 125.04 0.0 0.0 1.10 1.000 10.0 −1.5
3 −1 19.092 125.04 0.0 0.0 1.10 1.000 10.0 −1.5

3V11 1 1 27.000 119.27 0.0 0.0 −1.10 1.000 10.0 −1.5
2 −1 19.092 125.04 0.0 0.0 −1.10 1.000 10.0 −1.5
3 −1 19.092 125.04 0.0 0.0 −1.10 1.000 10.0 −1.5

In JRPs 3V5 and 3V6, test case 3V1 is modified and sonic conditions, SI = 1, and
super-sonic conditions, SI = 1.2, are imposed, respectively. As shown in Figures 39 and 40,
in both cases the initial condition does not change over time in the left vessel, resulting in
a supersonic outflow boundary condition at the junction, while an FCW appears in the
right vessels.

In test case 3V7 the vessel area is equal to the reference vessel area in all vessels, α = 1,
and subsonic flow conditions are imposed in all vessels (Figure 41). The resulting solution
produces a subsonic-supersonic transition at the junction with the same value of total
energy for the right vessels, with a subsonic BDW in the left vessel and a supersonic FDW
in the right vessels. Numerical solutions do not converge to this solution, leading to a
two-wave pattern in the right side vessels.
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Subsonic and supersonic initial conditions in the left and right side of the JRP in test
case 3V8 generate a subsonic BDW including sonic limitation and subsonic FCW. As plotted
in Figure 42, the numerical solution generates a different level of energy in the vicinity of
the junction if compared with the analytical solution. Therefore, it does not converge to
the analytical solution and generates a BCW in the left vessel and an identical FCW for the
right vessels.

A large pressure gradient is forced in test case 3V9 by imposing a large variation in
the vessel deformation between the left vessel and the right vessels. The analytical solution
in Figure 43 is a subsonic BDW in the left vessel, and a supersonic FCW in the right vessels,
which share the same level of energy at the junction.

Initial supersonic conditions are imposed in all vessels in test case 3V10, as plotted in
Figure 44. The analytical solution is a supersonic flow entering the confluence from the
left vessel, and a supersonic FDW in the outlet vessels. Supersonic left vessel conditions
remain unaltered over time and therefore left vessel only takes part in the mass conservation
equation at the junction. Right vessels, experience the supersonic conditions at the junctions
too, and share the same level of energy. The numerical solution reproduces the main
features of the solution, although a small perturbation is visible at the vicinity of the
junction. In test case 3V11, the flow moves in the opposite direction, from right to left,
and again all vessels have initial supersonic conditions. Now initial conditions remain
unaltered over time in the right vessels, and they only take part in mass conservation,
whereas a supersonic BCW appears in the right vessel (Figure 45).
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Figure 35. Section 3.2. Test 3V1. Comparison between analytical (—) and numerical solutions at
t = 0.005 s. The solution from vessel 1 to 3 is: a subsonic BDW, a subsonic FCW, and a subsonic FCW,
respectively. All vessels share the same value of pT at x = 0.



Symmetry 2021, 13, 1658 40 of 66

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

 α
 

x (cm)

 0

 20

 40

 60

 80

 100

 120

 140

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

Q
(c

m
3 /s

)

x (cm)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

S
I

x (cm)

-40

-35

-30

-25

-20

-15

-10

-5

 0

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

p T
(m

m
H

g)
, p

ex
t(m

m
H

g)

x (cm)

Figure 36. Section 3.2. Test 3V2. Comparison between analytical (—) and numerical solutions at
t = 0.005 s. The solution from vessel 1 to 3 is: a subsonic BDW including sonic limitation, a subsonic
FCW, and a subsonic FCW, respectively. Vessels 2, and 3 share the same value of pT at x = 0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

 α
 

x (cm)

 0

 20

 40

 60

 80

 100

 120

 140

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

Q
(c

m
3 /s

)

x (cm)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

S
I

x (cm)

-100

-80

-60

-40

-20

 0

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

p T
(m

m
H

g)
, p

ex
t(m

m
H

g)

x (cm)

Figure 37. Section 3.2. Test 3V3. Comparison between analytical (—) and numerical solutions at
t= 0.005 s. The solution from vessel 1 to 3 is: a subsonic BDW including sonic limitation, a subsonic
FCW, and a subsonic FCW, respectively. Vessels 2, and 3 share the same value of pT at x = 0.
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Figure 38. Section 3.2. Test 3V4. Comparison between analytical (—) and numerical solutions at
t = 0.003 s. The solution from vessel 1 to 3 is: a subsonic BDW including sonic limitation, a subsonic
FDW, and a subsonic FDW, respectively. Vessels 2, and 3 share the same value of pT at x = 0.
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Figure 39. Section 3.2. Test 3V5. Comparison between analytical (—) and numerical solutions at
t = 0.004 s. The solution from vessel 1 to 3 is: a supersonic flow entering the confluence, a subsonic
FCW, and a subsonic FCW, respectively. Vessels 2, and 3 share the same value of pT at x = 0.
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Figure 40. Section 3.2. Test 3V6. Comparison between analytical (—) and numerical solutions at
t = 0.004 s. The solution from vessel 1 to 3 is: a supersonic flow entering the confluence, a subsonic
FCW, and a subsonic FCW, respectively. Vessels 2, and 3 share the same value of pT at x = 0.
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Figure 41. Section 3.2. Test 3V7. Comparison between analytical (—) and numerical solutions at
t = 0.003 s. The solution from vessel 1 to 3 is: a subsonic BDW, a subsonic FDW, and a subsonic FDW,
respectively. All vessels share the same value of pT at x = 0.
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Figure 42. Section 3.2. Test 3V8. Comparison between analytical (—) and numerical solutions at
t = 0.001 s. The solution from vessel 1 to 3 is: a subsonic BDW including sonic limitation, a subsonic
FCW, and a subsonic FCW, respectively. Vessels 2, and 3 share the same value of pT at x = 0.
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Figure 43. Section 3.2. Test 3V9. Comparison between analytical (—) and numerical solutions at
t = 0.003 s. The solution from vessel 1 to 3 is: a subsonic BDW, a supersonic FCW, and a supersonic
FCW, respectively. All vessels share the same value of pT at x = 0.
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Figure 44. Section 3.2. Test 3V10. Comparison between analytical (—) and numerical solutions at
t = 0.003 s. The solution from vessel 1 to 3 is: a supersonic flow entering the confluence, a supersonic
FDW, and a supersonic FDW, respectively. Vessels 2, and 3 share the same value of pT at x = 0.
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Figure 45. Section 3.2. Test 3V11. Comparison between analytical (—) and numerical solutions
at t = 0.003 s. The solution from vessel 1 to 3 is: a supersonic BCW, a supersonic flow entering
the confluence, and a supersonic flow entering the confluence, respectively. Total pressure is not
preserved at x = 0.

3.3. JRP with Four Vessels

In the following test cases the analytical solution and the numerical solutions for RPs
at junctions with four vessels are presented. In all test cases, the four vessels have the same
mechanical and geometrical properties, listed in Tables 3–5, with two vessels on the left
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and the other two on the right of the junction. Analytical solutions of the JRP in (87) are
plotted in continuous line (—). Numerical solutions for vessels 1 to 4 are plotted using
(− ◦−), (−�−), (−4−) and (−5−), respectively. External pressure pext is plotted using
(−−−).

Table 3. Confluence configuration with four vessels. Test case, number of vessel k, father or daughter
vessel gk, reference diameter do,k (mm), reference pulse wave velocity co,k (cm s−1), reference pressure
po,k (mmHg), external pressure pe,k, initial speed index SIn = un

k /cn
k , initial relative area αn

k and
transmural coefficients m and n.

Test Case k gk do,k co,k po,k pe,k SIn αn m n

4V1 1 1 30.500 511.00 0.0 0.0 0.00 1.200 10.0 −1.5
2 1 30.500 511.00 0.0 0.0 0.00 1.100 10.0 −1.5
3 −1 30.500 511.00 0.0 −40.0 0.00 0.900 10.0 −1.5
4 −1 30.500 511.00 0.0 −80.0 0.00 0.800 10.0 −1.5

4V2 1 1 30.500 511.00 0.0 −40.0 0.00 0.900 10.0 −1.5
2 1 30.500 511.00 0.0 −80.0 0.00 0.800 10.0 −1.5
3 −1 30.500 511.00 0.0 0.0 0.00 1.200 10.0 −1.5
4 −1 30.500 511.00 0.0 0.0 0.00 1.100 10.0 −1.5

4V3 1 1 30.500 118.72 0.0 −40.0 0.00 0.900 10.0 −1.5
2 1 30.500 118.72 0.0 −40.0 0.00 0.800 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 0.00 1.200 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 0.00 1.100 10.0 −1.5

4V4 1 1 30.500 118.72 0.0 −40.0 0.00 0.900 10.0 −1.5
2 1 30.500 118.72 0.0 −80.0 0.00 0.800 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 0.00 1.200 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 0.00 1.100 10.0 −1.5

4V5 1 1 30.500 118.72 0.0 0.0 0.00 1.200 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 0.00 1.100 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 0.00 0.200 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 0.00 0.300 10.0 −1.5

4V6 1 1 30.500 118.72 0.0 0.0 0.00 0.200 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 0.00 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 0.00 1.200 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 0.00 1.100 10.0 −1.5

4V7 1 1 30.500 118.72 0.0 0.0 0.00 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 0.00 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 0.00 1.200 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 0.00 1.100 10.0 −1.5

4V8 1 1 30.500 118.72 0.0 0.0 −1.10 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 −0.90 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 0.00 1.200 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 0.00 1.100 10.0 −1.5

4V9 1 1 30.500 118.72 0.0 0.0 0.00 1.200 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 0.00 1.100 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 1.10 0.100 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 0.90 0.300 10.0 −1.5

4V10 1 1 30.500 118.72 0.0 0.0 1.10 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 0.90 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 0.00 1.200 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 0.00 1.100 10.0 −1.5
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Table 4. Confluence configuration with four vessels. Test case, number of vessel k, father or daughter
vessel gk, reference diameter do,k (mm), reference pulse wave velocity co,k (cm s−1), reference pressure
po,k (mmHg), external pressure pe,k, initial speed index SIn = un

k /cn
k , initial relative area αn

k and
transmural coefficients m and n.

Test Case k gk do,k co,k po,k pe,k SIn αn m n

4V11 1 1 30.500 118.72 0.0 0.0 0.00 1.200 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 0.00 1.100 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 −1.10 0.100 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 −0.90 0.300 10.0 −1.5

4V12 1 1 30.500 118.72 0.0 0.0 −1.10 1.200 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 −1.20 1.100 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 −1.10 0.100 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 −1.20 0.300 10.0 −1.5

4V13 1 1 30.500 118.72 0.0 0.0 1.10 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 1.20 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 1.10 1.200 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 1.20 1.100 10.0 −1.5

4V14 1 1 30.500 118.72 0.0 0.0 −1.10 1.200 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 −0.90 1.100 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 −1.10 0.100 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 −1.20 0.300 10.0 −1.5

4V15 1 1 30.500 118.72 0.0 0.0 −1.10 1.200 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 −1.20 1.100 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 −0.90 0.100 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 −1.20 0.300 10.0 −1.5

4V16 1 1 30.500 118.72 0.0 0.0 1.10 1.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 1.20 1.300 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 1.10 0.600 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 0.90 0.500 10.0 −1.5

4V17 1 1 30.500 118.72 0.0 0.0 0.90 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 1.20 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 1.10 0.600 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 1.20 0.200 10.0 −1.5

4V18 1 1 30.500 118.72 0.0 0.0 0.90 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 1.20 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 1.10 0.600 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 0.90 0.200 10.0 −1.5

4V19 1 1 30.500 118.72 0.0 0.0 −0.90 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 −1.20 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 −1.10 0.600 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 −0.90 0.200 10.0 −1.5

4V20 1 1 30.500 118.72 0.0 0.0 −0.90 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 1.20 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 1.10 0.600 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 −0.90 0.200 10.0 −1.5
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Table 5. Confluence configuration with four vessels. Test case, number of vessel k, father or daughter
vessel gk, reference diameter do,k (mm), reference pulse wave velocity co,k (cm s−1), reference pressure
po,k (mmHg), external pressure pe,k, initial speed index SIn = un

k /cn
k , initial relative area αn

k and
transmural coefficients m and n.

Test Case k gk do,k co,k po,k pe,k SIn αn m n

4V21 1 1 30.500 118.72 0.0 0.0 −1.10 0.600 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 0.90 0.200 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 0.90 0.100 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 −1.20 0.300 10.0 −1.5

4V22 1 1 30.500 118.72 0.0 0.0 1.10 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 −1.20 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 1.10 1.200 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 −1.20 1.100 10.0 −1.5

4V23 1 1 30.500 118.72 0.0 0.0 1.10 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 0.00 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 −30.0 1.10 1.200 10.0 −1.5
4 −1 30.500 118.72 0.0 −40.0 1.20 1.100 10.0 −1.5

4V24 1 1 30.500 118.72 0.0 0.0 1.10 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 0.00 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 −30.0 1.10 0.100 10.0 −1.5
4 −1 30.500 118.72 0.0 −40.0 1.20 0.200 10.0 −1.5

4V25 1 1 30.500 118.72 0.0 0.0 0.90 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 1.10 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 −30.0 −1.20 0.100 10.0 −1.5
4 −1 30.500 118.72 0.0 −40.0 −0.90 0.200 10.0 −1.5

4V26 1 1 30.500 118.72 0.0 0.0 1.10 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 30.0 0.90 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 −0.80 0.100 10.0 −1.5
4 −1 30.500 118.72 0.0 −40.0 −1.20 0.200 10.0 −1.5

4V27 1 1 30.500 118.72 0.0 0.0 −1.10 0.100 10.0 −1.5
2 1 30.500 118.72 0.0 0.0 −0.90 0.300 10.0 −1.5
3 −1 30.500 118.72 0.0 0.0 0.80 0.100 10.0 −1.5
4 −1 30.500 118.72 0.0 0.0 1.20 0.200 10.0 −1.5

In this JRP, 4V1, all vessels are initially at rest, each one with a different level of
deformation, α (Figure 46). While in left vessels 1 and 2 the deformation parameter α > 1,
in right vessels 3 and 4 we impose α < 1. The pressure discontinuity distribution is
enlarged by the suction in right vessels 3 and 4 and generates a sonic BDW and a subsonic
BDW for vessels 1 and 2, and subsonic FCWs for vessels 3 and 4. In vessel 1, sonic limitation
is observed at the junction. Vessel 1 also exhibits the greatest level of energy at the junction,
while vessels 2 to 4, provide the same level of energy at the confluence.

In test case 4V2, the initial conditions are switched to generate the same exact wave
pattern, but in the opposite direction, u ≤ 0, involving again sonic flow limitation in
one vessel (Figure 47). The JRP solver presented in this work converges to the expected
physically based solution.

In JRP 4V3 (Figure 48), the mechanical properties in 4V2 are changed by decreasing
the PWV in all vessels. The same level of suction is prescribed for vessels 1 and 2. Now,
the vessels are more easily deformable and, despite the level of suction has been reduced
if compared with test case 4V2, sonic blockage appears in vessels 3 and 4 at the junction.
Only vessels 1 and 2 share the same level of energy at the junction, where a subsonic BCW
appears in each branch.
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In test case 4V4 (Figure 49), the suction in vessel 2 is increased. Now vessels 1, 3 and 4
contribute to the flow mass towards vessel 2 (Figure 49). As sonic blockage for vessels 1, 3
and 4 is produced, they exhibit different values of total energy at the junction. The solution
for vessel 2 is a subsonic BCW.

In test case 4V5 (Figure 50), the large jump in the deformation parameter, α = 1.2 at the
left and α = 0.2 at the right, generates a BDW for vessels 1 (ending in sonic limitation) and
2, and a supersonic FCW and a subsonic FCW for vessels 3 and 4, respectively. Subsonic
vessels 2 and 4 retain the same value of energy at the junction shared by the supersonic
FCW in inflow vessel 3.

When the jump in pressure in test case 4V5 is inverted, the solution, in test case 4V6
(Figure 51) is exactly equal, but in the opposite direction, u ≤ 0.

Test case 4V7 (Figure 52) is defined by reducing the minimum value of the deformation
parameter to α = 0.1 in test case 4V6. The solution for vessels 3 and 4, on the right side of
the junction, remains unaltered. The flow distribution changes on the right side generating
a supersonic and a subsonic BCW for vessels 1 and 2, respectively. Except in vessel 3, where
sonic limitation is produced, all vessels share the same value of energy being subsonic
or supersonic.

In test case 4V8 (Figure 53), supersonic and subsonic conditions for inflow vessels 1
and 2 are prescribed. Rest conditions are imposed the right side of the JRP. The solution
generates a subsonic FDW for vessel 4 and supersonic BDW for vessels 1 and 2, all of them
connected by the same level of energy at the junction. Vessel 3, experiencing sonic blockage,
participates in mass conservation but not in the energy state at the junction.

In test case 4V9 (Figure 54), the initial conditions are modified to generate the same
solution as the one generated in test case 4V9, with u > 0.

In test case 4V10 (Figure 55), maximum deformation values are found at the right side
of the JRP together with zero velocity. Minimum deformation values involving sonic and
supersonic conditions are found at the left side of the JRP. Right vessels 3 and 4 develop a
BDW, while vessels 1 and 2 experience the generation of subsonic BCW. The solution at
x = 0 is subsonic for all branches, exhibiting the value of energy at the junction.

Maximum deformation values together with rest conditions are prescribed at the left
side of the JRP in test case 4V11 (Figure 56). Supersonic and subsonic conditions with u < 0
are imposed on the right side. The jump in pressure generates a positive flow, restrained
by the initial flow conditions in the right vessels. In right vessels 3 and 4 a subsonic FCW is
developed, while in vessels 1 and 2 a subsonic BDW is generated. The solution at x = 0 is
subsonic for all vessels.

Supersonic initial conditions are initially imposed on all vessels in test case 4V12
(Figure 57) with u < 0, retaining maximum deformation values at the left and minimum
deformation values at the right. The solution generates supersonic BDWs for vessels 1 and
2. Initial conditions in vessels 3 and 4 do not change over time. Even the flow is supersonic
at x = 0 for vessels 1 and 2; they share the same level of pT at this point.

In test case 4V13 (Figure 58) ,supersonic initial conditions are initially imposed to
define the same wave pattern as in test case 4V12, but in the opposite direction.

Supersonic initial conditions are imposed in outflow vessels 3 and 4 in test case 4V14
(Figure 59), where now the minimum vessel area has been defined, retaining their initial
state over time, and therefore only contributing to the mass balance at the junction. Vessels
1 and 2 develop supersonic BDWs. They share the same level of energy at the junction
despite ending at x = 0 in supersonic and subsonic conditions, respectively.

Subsonic initial conditions for vessel 3 and supersonic initial conditions for vessels 1,
2 and 4 are imposed in test case 4V15 (Figure 60). Vessels 1, 2, and 3 share the same value of
pT at x = 0, and an FCW and two BDWs are generated for vessels 1, 2, and 3 respectively.
Flow in vessel 4 does not change over time.

In 4V16 (Figure 61) supersonic initial conditions are initially imposed in vessels 1 and
2. While for vessel 2 the solution remains invariant over time, it can be seen how for vessel
1, a BCW is developed, allowing transmission of the information downstream the junction.
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Vessels 1, 3 and 4 shares the same level of energy at x = 0. In vessels 3 and 4, a subsonic
FCW is observed.

Collapsed and partially collapsed initial vessel areas are imposed in test cases 4V17
to 4V21, 0.1 ≤ α ≤ 0.6. In test case 4V17 (Figure 62) supersonic conditions are imposed
in vessels 2 to 4. While vessel 2 preserves its initial condition, the rest of the vessels
accommodate their solutions to share a constant level of energy at the junction.

In test case 4V18 (Figure 63), subsonic/supersonic initial conditions are imposed in
vessels 1,4/2,3, respectively. In the solution, while merging-flow vessel 2 preserves its
initial condition, the rest of the vessels share a constant level of energy at the junction under
conditions of subsonic flow.

Subsonic/supersonic initial conditions are imposed in vessels 1,4/2,3, respectively, in
test case 4V19 (Figure 64), but with setting u < 0. Vessel 3 preserves its supersonic initial
condition and does not participate in the energy level at the junction. The rest of the vessels
share a constant level of energy at the junction under conditions of subsonic flow.

In test case 4V20 (Figure 65), the flow in vessels 1 and 4 is initially subsonic with u > 0,
while the flow in vessels 2 and 3 is initially supersonic with u < 0. Flow in vessel 2 does
not change over time. A supersonic BCW is generated in vessel 1 departing from subsonic
conditions. A supersonic FDW and a subsonic FCW appear in vessels 3 and 4 respectively.
Vessels 1, 3 and 4, even showing different conditions for the SI at x = 0, share the same
level of energy at the junction.

The flow in vessels 1 and 4 is initially supersonic with u < 0, while the flow in vessels
2 and 3 is initially subsonic with u > 0, in test case 4V21 (Figure 66). Subsonic conditions
for vessels 1 and 2 and supersonic conditions for vessel 3 are generated at the junction,
under the same level of pT . The flow in Vessel 4 remains unaltered over time.

In test case 4V22 (Figure 67), supersonic initial conditions are imposed in all vessels,
leading to a supersonic BCW and supersonic FDW for vessels 1 and 2 respectively, sharing
the same level of pT at x = 0. Vessels 1 and 4 remain unaltered over time.

Zero velocity conditions are prescribed in vessel 2, while supersonic conditions are
imposed in vessels 1,2 and 4, in test case 4V23 (Figure 68) . Solution in vessel 2, a BDW,
generates sonic flow conditions at the junction, while supersonic initial flow conditions
in vessel 1 remains unaltered over time. Both vessels 1 and 2 provide mass to vessels 3
and 4, where suction has been initially imposed. Flow in vessels 3 and 4 evolves from
supersonic to subsonic conditions along an FDW and they share the same level of energy
at the junction. It can also be clearly seen that for vessels 3 and 4, the SI does not show
a monotonically decreasing variation between the initial and the solution region. The
maximum value of SI appears when the vessel deformation becomes equal to αmin during
the expansion fan.

Test cases 4V24 to test case 4V27 are cases where collapsed areas are imposed in
all vessels. Test case 4V23 is modified by imposing collapsed areas for vessels 3 and 4,
leading to JRP 4V24 (Figure 69). Solutions for vessel 1 and 2, supersonic flow entering the
confluence and a subsonic BDW including flow limitation, do not participate in the energy
conservation equation. The initial conditions of the JRP generate an FDW for both vessels 3
and 4, and share the same level of pT at x = 0 under conditions of subsonic flow.

Initial conditions in test case 4V25 (Figure 70) ensure that all vessels are flow merging
vessels. The solution is a supersonic flow entering the confluence for vessels 2 and 3
(unaltered over time), a subsonic BDW including sonic limitation for vessel 1 and a subsonic
FCW for vessels 4, where a large jump in vessel area is observed. As a consequence, all
vessels provide a different value of total pressure preserved at x = 0.

Again, all vessels are flow merging vessels in test case 4V26 (Figure 71). The solution
is a supersonic flow entering the confluence for vessels 1 and 4 (unaltered over time), a
subsonic BDW including sonic limitation for vessel 2 and a subsonic FCW for vessels 3,
where now an expansion in vessel area is present. Total pressure is not preserved at x = 0.
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Initial conditions in test case 4V27 (Figure 72) generate a vacuum state in the neigh-
borhood of the junction. All solutions are decompression waves ending in a subsonic state
at x = 0, where all vessels share the same value of total pressure at x = 0.
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Figure 46. Section 3.3. Test 4V1. Comparison between analytical (—) and numerical solutions at
t = 0.0007 s. The solution of test case 4V1 from vessels 1 to 4 is: a subsonic BDW including sonic
limitation, a subsonic BDW, a subsonic FCW, and a subsonic FCW, respectively. Vessels 2, 3, and
4 share the same value of pT at x = 0.
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Figure 47. Section 3.3. Test 4V2. Comparison between analytical (—) and numerical solutions at
t = 0.0007 s. The solution of test case 4V2 from vessels 1 to 4 is: a subsonic BCW, a subsonic BCW, a
subsonic FDW including sonic limitation, and a subsonic FDW, respectively. Vessels 1, 2, and 4 share
the same value of pT at x = 0.
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Figure 48. Section 3.3. Test 4V3. Comparison between analytical (—) and numerical solutions at
t = 0.003 s. The solution of test case 4V3 from vessels 1 to 4 is: a subsonic BCW, a subsonic BCW, a
subsonic FDW including sonic limitation, and a subsonic FDW including sonic limitation, respectively.
Vessels 1, and 2 share the same value of pT at x = 0.
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Figure 49. Section 3.3. Test 4V4. Comparison between analytical (—) and numerical solutions at
t = 0.003 s. The solution of test case 4V4 from vessels 1 to 4 is: a subsonic BDW including sonic limita-
tion, a subsonic BCW, a subsonic FDW including sonic limitation, and a subsonic FDW including
sonic limitation, respectively. Total pressure is not preserved at x = 0.
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Figure 50. Section 3.3. Test 4V5. Comparison between analytical (—) and numerical solutions at
t = 0.003 s. The solution of test case 4V5 from vessels 1 to 4 is: a subsonic BDW including sonic
limitation, a subsonic BDW, a supersonic FCW, and a subsonic FCW, respectively. Vessels 2, 3, and 4
share the same value of pT at x = 0.
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Figure 51. Section 3.3. Test 4V6. Comparison between analytical (—) and numerical solutions at
t = 0.003 s. The solution of test case 4V6 from vessels 1 to 4 is: a supersonic BCW, a subsonic BCW, a
subsonic FDW including sonic limitation, and a subsonic FDW, respectively. Vessels 1, 2, and 4 share
the same value of pT at x = 0.
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Figure 52. Section 3.3. Test 4V7. Comparison between analytical (—) and numerical solutions at
t = 0.003 s. The solution of test case 4V7 from vessels 1 to 4 is: a supersonic BCW, a subsonic BCW, a
subsonic FDW including sonic limitation, and a subsonic FDW, respectively. Vessels 1, 2, and 4 share
the same value of pT at x = 0.
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Figure 53. Section 3.3. Test 4V8. Comparison between analytical (—) and numerical solutions at
t = 0.001 s. The solution of test case 4V8 from vessels 1 to 4 is: a supersonic BCW, a supersonic BCW,
a subsonic FDW including sonic limitation, and a subsonic FDW, respectively. Vessels 1, 2, and 4
share the same value of pT at x = 0.
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Figure 54. Section 3.3. Test 4V9. Comparison between analytical (—) and numerical solutions at
t = 0.001 s. The solution of test case 4V9 from vessels 1 to 4 is: a subsonic BDW including sonic
limitation, a subsonic BDW, a supersonic FCW, and a supersonic FCW, respectively. Vessels 2, 3, and
4 share the same value of pT at x = 0.
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Figure 55. Section 3.3. Test 4V10. Comparison between analytical (—) and numerical solutions at
t = 0.003 s. The solution of test case 4V10 from vessels 1 to 4 is: a subsonic BCW, a subsonic BCW, a
subsonic FDW, and a subsonic FDW, respectively. All vessels share the same value of pT at x = 0.
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Figure 56. Section 3.3. Test 4V11. Comparison between analytical (—) and numerical solutions at
t = 0.003 s. The solution of test case 4V11 from vessels 1 to 4 is: a subsonic BDW, a subsonic BDW, a
subsonic FCW, and a subsonic FCW, respectively. All vessels share the same value of pT at x = 0.
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Figure 57. Section 3.3. Test 4V12. Comparison between analytical (—) and numerical solutions at
t = 0.001 s. The solution of test case 4V12 from vessel s1 to 4 is: a supersonic BDW, a supersonic
BDW, a supersonic flow entering the confluence, and a supersonic flow entering the confluence,
respectively. Vessels 1 and 2 share the same value of pT at x = 0.
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Figure 58. Section 3.3. Test 4V13. Comparison between analytical (—) and numerical solutions
at t = 0.001 s. The solution of test case 4V13 from vessels 1 to 4 is: a supersonic flow entering the
confluence, a supersonic flow entering the confluence, a supersonic FDW, and a supersonic FDW,
respectively. Vessels 3 and 4 share the same value of pT at x = 0.
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Figure 59. Section 3.3. Test 4V14. Comparison between analytical (—) and numerical solutions at
t = 0.001 s. The solution of test case 4V14 from vessels 1 to 4 is: a supersonic BDW, a subsonic BDW, a
supersonic flow entering the confluence, and a supersonic flow entering the confluence, respectively.
Vessels 1 and 2 share the same value of pT at x = 0.
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Figure 60. Section 3.3. Test 4V15. Comparison between analytical (—) and numerical solutions at
t = 0.001 s. The solution of test case 4V15 from vessels 1 to 4 is: a supersonic BDW, a supersonic BDW,
a subsonic FCW, and a supersonic flow entering the confluence, respectively. Vessels 1, 2, and 3 share
the same value of pT at x = 0.
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Figure 61. Section 3.3. Test 4V16. Comparison between analytical (—) and numerical solutions at
t = 0.002 s. The solution of test case 4V16 from vessels 1 to 4 is: a subsonic BCW, a supersonic flow
entering the confluence, a subsonic FCW, and a subsonic FCW, respectively. Vessels 1, 3, and 4 share
the same value of pT at x = 0.
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Figure 62. Section 3.3. Test 4V17. Comparison between analytical (—) and numerical solutions at
t = 0.002 s. The solution of test case 4V17 from vessels 1 to 4 is: a subsonic BCW, a supersonic flow
entering the confluence, a supersonic FDW, and a supersonic FDW, respectively. Vessels 1, 3, and 4
share the same value of pT at x = 0.
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Figure 63. Section 3.3. Test 4V18. Comparison between analytical (—) and numerical solutions at
t = 0.003 s. The solution of test case 4V18 from vessels 1 to 4 is: a subsonic BCW, a supersonic flow
entering the confluence, a supersonic FDW, and a subsonic FCW, respectively. Vessels 1, 3, and 4
share the same value of pT at x = 0.
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Figure 64. Section 3.3. Test 4V19. Comparison between analytical (—) and numerical solutions at
t = 0.001 s. The solution of test case 4V19 from vessels 1 to 4 is: a supersonic BCW, a supersonic BDW,
a supersonic flow entering the confluence, and a subsonic FCW, respectively. Vessels 1, 2, and 4 share
the same value of pT at x = 0.
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Figure 65. Section 3.3. Test 4V20. Comparison between analytical (—) and numerical solutions at
t = 0.001 s. The solution of test case 4V20 from vessels 1 to 4 is: a supersonic BCW, a supersonic flow
entering the confluence, a supersonic FDW, and a subsonic FCW, respectively. Vessels 1, 3, and 4
share the same value of pT at x = 0.
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Figure 66. Section 3.3. Test 4V21. Comparison between analytical (—) and numerical solutions at
t = 0.001 s. The solution of test case 4V21 from vessels 1 to 4 is: a supersonic BDW, a subsonic BCW,
a supersonic FCW, and a supersonic flow entering the confluence, respectively. Vessels 1, 2, and 3
share the same value of pT at x = 0.
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Figure 67. Section 3.3. Test 4V22. Comparison between analytical (—) and numerical solutions
at t = 0.001 s. The solution of test case 4V22 from vessels 1 to 4 is: a supersonic flow entering the
confluence, a supersonic BCW, a supersonic FDW, and a supersonic flow entering the confluence,
respectively. Vessels 2 and 3 share the same value of pT at x = 0.
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Figure 68. Section 3.3. Test 4V23. Comparison between analytical (—) and numerical solutions
at t = 0.001 s. The solution of test case 4V23 from vessels 1 to 4 is: a supersonic flow entering the
confluence, a subsonic BDW including sonic limitation, a supersonic FDW, and a supersonic FDW,
respectively. Vessels 3 and 4 share the same value of pT at x = 0.
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Figure 69. Section 3.3. Test 4V24. Comparison between analytical (—) and numerical solutions
at t = 0.001 s. The solution of test case 4V24 from vessels 1 to 4 is: a supersonic flow entering the
confluence, a subsonic BDW including sonic limitation, a supersonic FDW, and a supersonic FDW,
respectively. Vessels 3 and 4 share the same value of pT at x = 0.
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Figure 70. Section 3.3. Test 4V25. Comparison between analytical (—) and numerical solutions at
t = 0.007 s. The solution of test case 4V25 from vessels 1 to 4 is: a subsonic BDW including sonic
limitation, a supersonic flow entering the confluence, a supersonic flow entering the confluence, and
a subsonic FCW, respectively. Total pressure is not preserved at x = 0.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

 α
 

x (cm)

-300

-200

-100

 0

 100

 200

 300

 400

 500

 600

 700

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

Q
(c

m
3 /s

)

x (cm)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

S
I

x (cm)

-40

-30

-20

-10

 0

 10

 20

 30

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

p T
(m

m
H

g)
, p

ex
t(m

m
H

g)

x (cm)

Figure 71. Section 3.3. Test 4V26. Comparison between analytical (—) and numerical solutions at
m. The solution of test case 4V26 from vessels 1 to 4 is: a supersonic flow entering the confluence,
a subsonic BDW including sonic limitation, a subsonic FCW, and a supersonic flow entering the
confluence, respectively. Total pressure is not preserved at x = 0.
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Figure 72. Section 3.3. Test 4V27. Comparison between analytical (—) and numerical solutions at
t = 0.001 s. The solution of test case 4V27 from vessels 1 to 4 is: a supersonic BDW, a subsonic BDW, a
subsonic FDW, and a supersonic FDW, respectively. All vessels share the same value of pT at x = 0.

4. Conclusions

In the current work, a methodology for the solution of the Junction Riemann Problem
for 1D hyperbolic balance laws in networks of elastic vessels has been proposed. The
solver presented can deal with all possible transitions of flow, including flow limitation and
supersonic flow conditions on elastic collapsible tubes. Solutions are based on rarefaction
waves or shock waves that are completely consistent with the underlying hyperbolic
system of conservation laws. The resulting JRP solver can be used in combination with any
numerical scheme of an arbitrary order of accuracy.

The methodology has been illustrated in test cases with discontinuous variations of
mechanical and geometrical properties of vessels and compared with exact solutions in
junctions with two vessels, showing the expected limitations of the JRP solver presented in
this work, where solutions in each branch of the confluence only contain at most one type of
wave. The solutions satisfy, in all cases, the entropy conditions for shocks or rarefactions for
both subsonic and supersonic conditions. The solver has also been tested in junctions with
three and four vessels, considering merging flows, splitting flows or any other possible
combination in a confluence of vessels under subsonic and supersonic conditions.

The solution method is based on an iterative search of the solution, and the compu-
tational details used in this work have been detailed. Convergence to suitable solutions
has been assessed in a variety of cases. In all cases, analytical solutions of the proposed
JRP solver and numerical solutions generated by combining the JRP methodology with
the HLLS are presented. In all cases, convergence to the solution is guaranteed, including
cases with collapsed states, subsonic–supersonic transitions, sonic blockage conditions,
and the transmission of backward waves from downstream vessels through the junction to
upstream supersonic vessels with supersonic conditions.
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Appendix A. Invariant Integration

When a rarefaction wave appears, the integral δW?,m in (43) must be computed.
In arteries invariant integration of the exact solution can be derived analytically as the
coefficient n in (5) is zero. In this case

δW? =
2
m
[c? − cn]. (A1)

In veins, numerical integration becomes necessary. The integral in δW?,m is expressed
here as:

δW? =
∫ α?

αn

c(α)
α

dα =
co√

m− n

∫ α?

αn
f (α) dα, f (α) =

(mαm − nαn)
1
2

α
. (A2)

The steps followed to provide an accurate value of the invariant are:

1. The domain of integration in δW? is divided in nd divisions, of lenght h = (α? −
αn)/nd

δW? =
co√

m− n

nd

∑
j=1

∫ αj+h

αj

f (α) dα, αj = αn + h(j− 1). (A3)

Over each division, a Gauss-Legendre quadrature is used to approximate the solution.
In the Gauss quadrature rule, the most common domain of integration is taken as
[−1, 1], so the rule is stated as

∫ 1

−1
f (x)dx =

nq

∑
q=1

wq f (xq), (A4)

which is exact for polynomials of degree 2nq − 1 or less. If a fifth order is selected
(nq = 3), three integration points are required

x1 = −
√

3/5, x2 = 0, x3 =
√

3/5, (A5)

with their respective weights

w1 = 5/9, w2 = 8/9, w3 = 5/9. (A6)

The integral over [−1, 1] must be changed into an integral over a general interval
[αj, αj + h] for α when applying the Gaussian quadrature rule, leading to

δW? =

(
h
2

co√
m− n

) nd

∑
j=1

[ nq

∑
i=q

wq f (αq)

]
, αq =

1
2
(xq + 1)h + αj. (A7)

2. Once an initial evaluation of δW? is performed, δW?
l , the number of divisions nd is

doubled and the procedure is repeated to obtain new evaluation of δW?
l+1. If the

difference between these two approximations is sufficiently small,∣∣δW?
l+1 − δW?

l

∣∣∣∣δW?
l

∣∣ < ε, (A8)
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we assume that the last value is accurate enough and we proceed with the resolution
of the system of equations. Otherwise, the number of divisions is doubled until the
tolerance ε is reached.
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