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Abstract: When modelling the absorption in semiconductor nanowire (NW) arrays for solar cell and
photodetector applications, the array is typically assumed to be infinitely periodic such that a single
unit cell suffices for the simulations. However, any actual array is of a finite extent and might also
show varying types of localized defects such as missing or electrically non-contacted individual NWs.
Here, we study InP NWs of 2000 nm in length and 180 nm in diameter, placed in a square array of
400 nm in period, giving a rather optimized absorption of sunlight. We show that the absorption
in the center NW of a finite N × N array converges already at N = 5 close to the value found for
the corresponding infinite array. Furthermore, we show that a missing NW causes an enhanced
absorption in neighboring nanowires, which compensates for 77% of the absorption loss due to
the missing NW. In other words, an electrically non-contacted NW, which absorbs light but cannot
contribute to the external short-circuit current, is a four times worse defect than a missing NW.

Keywords: periodic array; finite array; nanowires; absorption

1. Introduction

III–V semiconductor nanowire (NW) arrays have shown promise for applications
where light is absorbed such as solar cells and photodetectors [1–5]. The absorption in
an NW array of a given material depends on the geometrical parameters including the
length and diameter of the NWs and the array period [4,6–9]. The optical properties of NW
arrays can be optimized through electromagnetic optics modelling where the scattering
and absorption of incident light is described with the Maxwell equations [9]. In such
modelling, the nanowire array is usually assumed to be perfectly periodic and thus of
an infinite extent in the transverse x-y plane [9]. It is then sufficient to model a single
unit cell of the periodic system and repeat this unit cell periodically thanks to the discrete
translational symmetry. Such a highly symmetric problem gives typically a low numerical
burden for the simulations, allowing the scanning of a large range of varying geometry
configurations [9].

However, in experiments, any NW array is finite. Arrays with a noticeably limited
number of NWs might be considered in order to save fabrication time especially if the
NW array pattern is created with a serial process such as electron-beam lithography. An
important question then is how well the optical properties of the finite array correspond
with those modelled for the infinitely periodic array. Even though nanowire array fabrica-
tion is a developed research field [10,11], it is not uncommon for defects to be present in
a large-area array in the form of missing NWs. Therefore, it is of practical importance to
know how such missing NWs affect the overall absorption of the array.

Here, we focus on InP NWs of 2000 nm in length and 180 nm in diameter, placed in a
square array of 400 nm in period, which is known to give a rather optimized absorption
of sunlight [9]. We consider the absorption in (1) arrays of a finite number of NWs with
N rows and N columns of NWs in an N × N array and (2) in an infinite NW array with a
single NW missing.
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We find that the absorption in the center NW of the finite array shows already
for N = 5 values close to those in the corresponding infinite array. We show that a missing
NW causes an enhanced absorption in neighboring nanowires, which compensates for
77% of the absorption lost due to the missing NW. Therefore, a defect in the form of an
electrically non-contacted NW, which absorbs light but cannot contribute to the external
short-circuit current [12], is a four times worse defect than a missing NW. Thus, from the
optics point of view, it appears to be more important to optimize the contacting of each
NW than to perfect the nanowire pattern in terms of minimizing the number of missing
NWs. Finally, we consider the case of clusters of M ×M missing NWs. We show that the
absorption compensation effect diminishes rapidly with an increasing M.

2. Materials and Methods

We consider InP nanowires of D = 180 nm in diameter and L = 2000 nm in length,
placed in a square array of p = 400 nm in period on top of an InP substrate (see Figure 1).
For the finite array, we consider NWs arranged in N rows and N columns, giving N2

NWs in total, which we term an N × N array (see Figure 1a for a schematic). We wish to
investigate the absorption in the center NW and hence limit the study to an odd N. When
studying the effect of a missing NW in the array, we consider a supercell consisting of
14 × 14 NWs, which is periodically repeated. In this supercell, the center NW is missing
(see Figure 1b for a schematic).
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Figure 1. Schematics of (a) a finite 15 × 15 NW array and (b) 14 × 14 NWs in a supercell with the center NW missing. Note
that the supercell in (b) is repeated periodically in the x-y plane in the modelling.

For InP, we use tabulated values [13] for the refractive index, n, and for the surrounding
air, n = 1 is used. We model the absorption of light with the finite element method (FEM)
in the software suite Comsol Multiphysics (version 5.6, with the Wave Optics Module);
see [14] for an additional description of the method. We consider the case of normally
incident light from the top side; that is, light that propagates in a direction parallel to the
nanowire axis. This case of normally incident light toward the NW array showing the C2v
symmetry is a highly symmetric problem that can be easily symmetry reduced [14]. We
can speed up the simulations by using the x-z and y-z mirror planes through the center
NW to reduce the simulation domain to 1

4 of the original size [14]. We model the results for
x-polarized incident light. The x-z mirror plane is then set to a perfect magnetic conductor
(PMC) and the y-z mirror plane to a perfect electric conductor (PEC) [14]. For the finite
array (Figure 1a), we terminate the simulation domain in the x-y plane outside of the
NW array with perfectly matched layers (PMLs). For the supercell with the missing NW
(Figure 1b), we use PEC and PMC boundary conditions at the edges of the simulation
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domain in the x-y plane to give, for the normally incident light, a periodic repetition of the
supercell [14].

2.1. FEM Simulation Settings

In the FEM simulations, we use a background-field-scattered-field formulation for the
electric field E in the frequency domain formulation. That is, in a single simulation, we
solve E(x, y, z, λ) at a pre-defined (free-space, vacuum) wavelength, λ. For the background-
field, we use the analytical solution Einc(x, y, z, λ) for the electric field in the single-interface
system consisting of air and the substrate (which can be obtained, for example, from the
Fresnel coefficients). For convenience, we set |Einc| = 1 V/m. When solving the scattered-
field, we add the NWs to the geometry. We use quadratic discretization for the electric
field and the iterative BiCGStab solver with standard settings from Comsol Multiphysics
including geometric multigrids. For the geometry, we include a 500 nm thick air layer on
top of the NWs and a 300 nm thick substrate below the NWs. These air and substrate layers
are continued with 300 nm thick PMLs in the z-direction. For the case of the finite NW
array, we include a 100 nm thick air layer in the x-y plane outside of the outermost NWs
and a 300 nm thick PML. We use PMLs of a cartesian type with polynomial stretching, a
PML stretching factor of 1 and a PML scaling curvature parameter of 1. For the meshing,
we use free tetrahedral elements with a 100 nm and 50 nm maximum mesh element size in
the air and InP regions, respectively. The other settings for controlling the meshing are set
as follows: a minimum element size of 18.9 nm, a maximum element growth rate of 1.5, a
curvature factor of 0.6 and a resolution of narrow regions of 0.5.

2.2. Absorption Cross-Section and Short-Circuit Current

From the resulting E(x, y, z, λ), we can calculate the spatially resolved absorption
in each NW [15]. By integrating this absorption over the volume of a given NW, we
obtain Pabs,m(λ), the total absorbed power in the nanowire, where m indicates the mth NW.
The incident intensity of the normally incident plane wave in the simulation is given by

Iinc,sim = cnincε0|Einc|2
2 , with c being the speed of light in a vacuum, ε0 the permittivity of the

vacuum and ninc = 1 as we consider incident light from air. The absorption cross-section
of the mth NW is then given by σabs,m(λ) = Pabs,m(λ)/Iinc,sim [15]. Due to the symmetry of
the problem, we obtain the results for y-polarized incident light by a 90◦ rotation around
the z axis through the center NW for the modelled x-polarized light. Finally, we average the
results for x- and y-polarized incident light for each NW to model the unpolarized sunlight.

The short-circuit current Isc,m generated in the mth NW is obtained from:

Isc,m = q
∫ λbg

λlow

Isolar(λ)σabs,m(λ)

2πhc/λ
dλ. (1)

Here, q is the elementary charge, c is the speed of light in a vacuum, h is the re-
duced Planck constant and Isolar(λ) is the incident intensity for which we use the AM1.5D
900 W/m2 direct and circumsolar spectrum [16]. For the lower limit, λlow, in the integra-
tion, we use 300 nm, below which the incident photon flux is negligible (Figure 2a). For the
upper limit, we use the bandgap wavelength λbg = 925 nm, assuming a bandgap energy
of 1.34 eV for the InP [17]. Note that in Equation (1), we thus assume that each absorbed
above-bandgap photon contributes one electric charge carrier to the short-circuit current.
Note that we focus here on absorption in the NWs without taking into account a possible
contribution to the photocurrent from absorption in the substrate. Such an approach is
motivated by the typically small contribution to the photocurrent from absorption in the
substrate in NW array solar cells with an optimized diode configuration [18,19].
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3. Results

For the NWs in the infinite array, the upper limit on σabs is given by P2 [15], the area of
the unit cell (which is marked by the dashed black line in Figure 2b,c). When σabs(λ) = P2,
the array absorbs all the incident light at that wavelength; i.e., the absorptance A(λ) is
equal to one [15]. When we use in Equation (1) the σabs for the NWs in the infinite periodic
NW array (black line in Figure 2b), we find Isc = 45.8 pA. This Isc corresponds to a short-
circuit current density of jsc = Isc/P2 = 28.6 mA/cm2, close to the maximum value of
31.1 mA/cm2 for InP, which is obtained when σabs(λ) = P2 for 300 < λ < 925 nm.

We start by considering the absorption in the center NW in the finite array. For the
case of the single NW (N = 1, red line in Figure 2b), σabs(λ) > P2 in the whole range
300 < λ < 925 nm considered for Equation (1). At λ = 900 nm, σabs = 5.1P2. This peak
in σabs originates from absorption through a strong coupling of incident light into the
fundamental HE11 waveguide mode in the NW, as detailed in [15]. The peak drops to
σabs = 2.6P2 at N = 3 and, at N = 5, the highest σabs is equal to 1.1P2 at λ = 710 nm. As
seen from Figure 2b, the single NW absorbs light much stronger than the NW in the infinite
array, but already, at N = 5, the center NW shows absorption characteristics close to those
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of the NWs in the infinite array. This fast convergence of the absorption in the center NW
with an increasing N is seen also in the Isc (red squares in Figure 3). At N = 1, the center
NW shows Isc = 116 pA, which decreases to 55.9 pA at N = 3. At N = 5, Isc = 47.3 pA
for the center NW, which is just 3% (relative) higher than the 45.8 pA of the NWs in the
infinite array.
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Figure 3. Isc in NWs of a finite N × N array. We show here the value for the center NW in the
finite array (red circles), the average of all the NWs in the array (magenta circles), an NW at the
center of one of the four edges of the array (grey diamonds) and an NW at the corner of the array
(blue squares); there are four equivalent edge-centers and corners in the symmetric square array.
For N = 1, there is only one NW in the array and these four values therefore coincide. We show also
the corresponding value for an NW in the corresponding infinite periodic array (dashed black line).

We next study the absorption of one of the four symmetry-equivalent corner NWs.
For N = 1, there is only one NW in the array and hence by definition the center and corner
NWs coincide. Thus, for N = 1, the corner NW shows the above strong peak in σabs(λ)
at λ = 900 nm (Figure 2c). For the corner NW, the σabs(λ) drops when moving to N = 3
(blue line in Figure 2c), showing a peak value of 2.1P2. However, with a further increase of
N, σabs stays rather constant. For 300 < λ < 920 nm, σabs(λ) > P2. Thus, the corner NW
absorbs much stronger than the center NW and the absorption of the corner NW converges
fairly well already at N = 3. This fast convergence is seen also in the Isc of the corner NW
(blue squares in Figure 3): The Isc drops from 116 pA for N = 1 to 71.7 pA at N = 3 and
oscillates between 71.0 pA and 71.1 pA for the larger N considered. As a comparison, the
Isc for an NW at the center of an edge of the array (grey diamonds in Figure 3) converges
toward the value of 55.0 pA, which is, as expected, in between the values of 45.8 pA of the
center NW and 71.0 pA of the corner NW. Thus, the NW at the center of the edge shows
a noticeably higher Isc than the center NW thanks to fewer neighboring NWs that could
compete for the absorption [15]. Similarly, the corner NW shows an even higher Isc thanks
to further reduced competition with neighboring NWs.

For an overview of which NWs are affected by the finite size of the array, we show
in Tables A1–A3 in Appendix A the Isc of each NW for N = 3, 5 and 15, respectively. Note
that for N = 1, Isc = 116 pA as discussed above. As expected, we find that the corner
NWs show the largest increase in Isc compared to the 45.8 pA of the infinite array. The
other, non-corner, NWs at the edges of the array show Isc ≈ 55 pA and the increase in Isc is
virtually negligible when moving two NWs away from the edge. Thus, for a large N, as the
number of NWs in the two rows closest to the edge scale as N while the total number of
NWs scale as N2, we expect the overall absorption in the array to converge toward that of
the infinite array with an increasing N. Indeed, when we look at the average Isc of all the
NWs in the array (magenta circles in Figure 3), we find a value of 48.8 pA at N = 15, just 7%
(relative) higher than the 45.8 pA of the infinite array.
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We then consider the case of a missing NW in the array (see Figure 1b for a schematic).
We find that the NWs around the missing NW show a noticeable increase in their absorption
(see Table A4 in Appendix A for the Isc in each NW). The increase in the Isc in all the
neighboring NWs is 35.2 pA compared to the case of the array without the missing NW.
The increased absorption occurs predominantly in the four closest neighbors to the missing
NW with an increase in Isc by 6.9 pA in each of them and hence these four NWs contribute
27.6 pA of the increase, which is 78% of the total increase of 35.2 pA. The increase in Isc is
virtually negligible when moving more than two NWs away from the missing NW (see
Table A4: this fast convergence toward the values of the infinite array shows that our
choice to use the supercell with 14 × 14 NWs is large enough to avoid the effects from a
finite-sized supercell). Thus, we see a redistribution of absorption to neighboring NWs, an
effect that is seen also when designing aperiodic NW arrays for absorption [20,21].

Thus, the loss in Isc due to the missing NW is 45.8–35.2 = 10.6 pA, which is 23% of the
Isc of 45.8 pA that would be generated in the NW if it was not missing. In other words, the
neighboring NWs manage to compensate for 77% of the expected Isc drop. On the other
hand, if the missing NW is still present but electrical contacting to it failed, the NW would
absorb sunlight corresponding to 45.8 pA but the NW would not be able to generate any
short-circuit current from it. Hence, we conclude that a non-contacted NW is, from the
optics point of view, a four times more severe defect for Isc than a missing NW.

To better understand how the neighboring NWs compensate for the missing NW, we
show in Figure 4 the electric field distribution at two selected wavelengths, λ = 500 and
900 nm. At both these wavelengths, it is evident how |E|2 decreases when moving toward
the substrate at the position of the missing NW, thanks to the increased absorption by the
neighboring NWs.
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NWs and for the even M, we use a supercell with 15 × 15 NWs. 

Figure 4. |E|2 in the x-z plane through the center of the missing nanowire in (a,c) as well as corresponding results for the
array without the missing NW in (b,d). (a,b) are for λ = 500 nm and (c,d) are for λ = 900 nm. Here, we show results for
x-polarized light; that is, for light with the incident electric field parallel to the x-direction. For the incident electric field,
|Einc|2 = 1 [(V/m)2]. Note that the spatially resolved absorption in the NWs is proportional to |E|2 (see, for example, [15]).

To further elucidate the robustness of NW arrays to missing NWs, we model the
effect from M × M missing NWs (Figure 4): for the odd M, we use the supercell with
14 × 14 NWs and for the even M, we use a supercell with 15 × 15 NWs.

We note that for a large M, the NWs at the edge of the cluster of the missing NWs
should behave as the NWs at the edge of the finite array. Therefore, we can derive an
estimate from the enhanced absorption in the center row (or column) of the finite array
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in Table A3 (that is, from the eight NWs marked by grayed out cells in Table A3). For
these eight NWs, the increased absorption corresponds to Isc,compensate = 11.0 pA. The
number of such edge NWs is 4M around the cluster of M2 missing NWs (neglecting
possible differences in the NWs closest to the corners of the cluster). The compensa-
tion in Isc is then given by 4MIsc,compensate and the fraction of compensation is given by
4MIsc,compensate/

(
M2 Isc,inf

)
with Isc,inf = 45.8 pA, the above-stated current in each NW of

the infinite array without defects. From Figure 5, we see that this estimate works very well
already for M ≥ 3 and thus explains quantitatively the drop in the compensation with an
increasing M.
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Figure 5. The compensation of the drop in short-circuit current by increased absorption in neigh-
boring NWs in an NW array with a cluster of M ×M missing NWs; that is, M2 missing NWs (red
squares). We show here also the estimate 4MIsc,compensate/

(
M2 Isc,inf

)
, obtained from the absorption

response of a finite NW array (black circles).

Importantly, we see that due to this decreasing compensation with an increasing M,
it is worse to have a cluster of 2 × 2 NWs missing compared to having 4 NWs missing
at 4 separate positions. Thus, when assessing the quality of a given array, we urge the
identification of missing NWs as individual NWs or as connected clusters.

4. Discussion

In the related system consisting of a periodic array of plasmonic nanoparticles, thanks
to weak absorption, neighboring particles can couple strongly to each other diffractively;
that is, through scattering of light [22,23]. Such coupling can give rise to collective lattice
resonances with a high quality factor, the value of which depends on the exact number
of particles in a finite array [22,23]. In contrast, as we consider here semiconductor NWs
optimized for broadband absorption, diffractive coupling between neighboring NWs is
not a major effect. Instead, the main effect from neighboring NWs is that they compete
for absorbing incident light as detailed in [15] and, by placing the NWs close enough, the
array can absorb the majority of the incident light in a broad spectral range. Therefore, it is
not completely surprising that we found above a modification of the absorption properties
only in a local surrounding of the termination of the periodicity. More than two NWs away
from the edge of a finite array or from the missing NW, the absorption recovers to values
very close to those in the infinite array.

Note that if we move to consider the sub-bandgap wavelength range where absorp-
tion seizes, strong diffractive coupling between neighboring NWs can appear. Lattice
resonances can then also appear in NW arrays with possibly sharp resonant peaks in trans-
mission and reflection [24]. The finite size of NW arrays could then cause additional optical
effects compared to those seen in the strongly absorbing regime studied here. Similarly,
if working with a nanowire array geometry that is far from a design that gives strong
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broadband absorption, we recommend to perform a dedicated study of the effect from the
finite array size and missing NWs on that particular geometry.
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Appendix A

Table A1. Isc in pA for each NW in a finite 3 × 3 NW array; that is, N = 3. The column and row index
of a cell in this table correspond with the position of the respective NW in the array. For convenience,
the center NW is marked in bold and underlined.

71.7 56.6 71.7

56.6 55.9 56.6

71.7 56.6 71.7

Table A2. Isc in pA for each NW in a finite 5 × 5 NW array; that is, N = 5. The column and row index
of a cell in this table correspond with the position of the respective NW in the array. For convenience,
the center NW is marked in bold and underlined.

71.1 55.6 55.6 55.6 71.1

55.6 49.4 47.4 49.4 55.6

55.6 47.4 47.3 47.4 55.6

55.6 49.4 47.4 49.4 55.6

71.1 55.6 55.6 55.6 71.1

Table A3. Isc in pA for each NW in a finite 15 × 15 NW array; that is, N = 15. The column and row
index of a cell in this table correspond with the position of the respective NW in the array. Note
the eight-fold symmetry due to the mirroring around the horizontal line, the vertical line and both
diagonals that go through the center NW. For convenience, the center NW is marked in bold and
underlined. The grayed-out cells mark the NWs that are used for the calculation of Isc,compensate in
Figure 5.

71.0 55.5 55.3 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.3 55.5 71.0

55.5 48.9 46.9 47.2 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.2 46.9 48.9 55.5

55.3 46.9 46.2 46.2 46.0 46.1 46.0 46.0 46.0 46.1 46.0 46.2 46.2 46.9 55.3

55.0 47.2 46.2 46.2 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.2 46.2 47.2 55.0

55.0 47.0 46.0 46.0 45.8 45.9 45.8 45.9 45.8 45.9 45.8 46.0 46.0 47.0 55.0

55.0 47.0 46.1 46.0 45.9 45.9 45.9 45.9 45.9 45.9 45.9 46.0 46.1 47.0 55.0

55.0 47.0 46.0 46.0 45.8 45.9 45.8 45.9 45.8 45.9 45.8 46.0 46.0 47.0 55.0

55.0 47.0 46.0 46.0 45.9 45.9 45.9 45.9 45.9 45.9 45.9 46.0 46.0 47.0 55.0

55.0 47.0 46.0 46.0 45.8 45.9 45.8 45.9 45.8 45.9 45.8 46.0 46.0 47.0 55.0
55.0 47.0 46.1 46.0 45.9 45.9 45.9 45.9 45.9 45.9 45.9 46.0 46.1 47.0 55.0

55.0 47.0 46.0 46.0 45.8 45.9 45.8 45.9 45.8 45.9 45.8 46.0 46.0 47.0 55.0

55.0 47.2 46.2 46.2 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.2 46.2 47.2 55.0

55.3 46.9 46.2 46.2 46.0 46.1 46.0 46.0 46.0 46.1 46.0 46.2 46.2 46.9 55.3

55.5 48.9 46.9 47.2 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.2 46.9 48.9 55.5

71.0 55.5 55.3 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.3 55.5 71.0
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Table A4. Isc in pA for each NW in a 14 × 14 NW supercell; that is, N = 14. The center nanowire
is missing, see Figure 1b for a schematic (we show here a repeat of the nanowires at the edge of
the supercell in both the x and the y-direction, giving 15 × 15 values for the table). The column
and row index of a cell in this table correspond with the position of the respective NW in the array.
For convenience, the missing center NW is grayed out. Note the eight-fold symmetry due to the
mirroring around the horizontal line, the vertical line and both diagonals that go through the missing
center NW.

45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8

45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8

45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8

45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.9 45.8 45.8 45.8 45.8 45.8 45.8 45.8

45.8 45.8 45.8 45.8 45.8 45.8 45.9 45.9 45.9 45.8 45.8 45.8 45.8 45.8 45.8

45.8 45.8 45.8 45.8 45.8 45.9 46.0 46.5 46.0 45.9 45.8 45.8 45.8 45.8 45.8

45.8 45.8 45.8 45.8 45.9 46.0 46.9 52.7 46.9 46.0 45.9 45.8 45.8 45.8 45.8

45.8 45.8 45.8 45.9 45.9 46.5 52.7 0 52.7 46.5 45.9 45.9 45.8 45.8 45.8

45.8 45.8 45.8 45.8 45.9 46.0 46.9 52.7 46.9 46.0 45.9 45.8 45.8 45.8 45.8

45.8 45.8 45.8 45.8 45.8 45.9 46.0 46.5 46.0 45.9 45.8 45.8 45.8 45.8 45.8

45.8 45.8 45.8 45.8 45.8 45.8 45.9 45.9 45.9 45.8 45.8 45.8 45.8 45.8 45.8

45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.9 45.8 45.8 45.8 45.8 45.8 45.8 45.8

45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8

45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8

45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8
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