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Abstract

:

The commuting graph of a finite non-abelian group G with center    Z ( G )   , denoted by     Γ c   ( G )    , is a simple undirected graph whose vertex set is    G ∖ Z ( G )   , and two distinct vertices x and y are adjacent if and only if    x y = y x   . Alwardi et al. (Bulletin, 2011, 36, 49-59) defined the common neighborhood matrix    C N ( G )    and the common neighborhood energy     E  c n    ( G )     of a simple graph   G  . A graph   G   is called CN-hyperenergetic if     E  c n    ( G )  >  E  c n    (  K n  )    , where    n = | V ( G ) |    and    K n    denotes the complete graph on n vertices. Two graphs   G   and   H   with equal number of vertices are called CN-equienergetic if     E  c n    ( G )  =  E  c n    ( H )    . In this paper we compute the common neighborhood energy of     Γ c   ( G )     for several classes of finite non-abelian groups, including the class of groups such that the central quotient is isomorphic to group of symmetries of a regular polygon, and conclude that these graphs are not CN-hyperenergetic. We shall also obtain some pairs of finite non-abelian groups such that their commuting graphs are CN-equienergetic.
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1. Introduction


Let   G   be a simple graph whose vertex set is    V  ( G )  =  {  v 1  ,  v 2  , ⋯ ,  v n  }    . The common neighborhood of two distinct vertices    v i    and    v j   , denoted by    C (  v i  ,  v j  )   , is the set of vertices adjacent to both    v i    and    v j    other than    v i    and    v j   . The common neighborhood matrix of   G  , denoted by    C N ( G )   , is a matrix of size n whose    ( i , j )   th entry is 0 or    | C (  v i  ,  v j  ) |    according as    i = j    or    i ≠ j   . The common neighborhood matrix is a symmetric matrix, hence all its eigenvalues are real. The common neighborhood eigenvalues are symmetric with respect to the origin for some special class of graphs. There is a nice relation between    C N ( G )    and    A ( G )   , the adjacency matrix of   G  . More precisely, if    i ≠ j    then the    ( i , j )   th entry of    C N ( G )    is same as the    ( i , j )   th entry of    A   ( G )  2    , which is the number of 2-walks between the vertices    v i    and    v j   . Further, the    ( i , i )   th entry of    C N ( G )    is equal to the degree of    v i   . Hence,    C N  ( G )  = A   ( G )  2  − D  ( G )    , where    D ( G )    is the degree matrix of   G  . Let    CN-spec ( G )    be the spectrum of    C N ( G )   . Then    CN-spec ( G )    is the set of all the eigenvalues of    C N ( G )    with multiplicities. If     α 1  ,  α 2  , ⋯ ,  α k     are the distinct eigenvalues of    C N ( G )    with multiplicities     a 1  ,  a 2  , ⋯ ,  a k    , respectively, then we write    CN-spec  ( G )  =  {  α 1  a 1   ,  α 2  a 2   , ⋯ ,  α k  a k   }    . The common neighborhood energy (abbreviated as CN-energy) of the graph   G   is given by


    E  c n    ( G )  =  ∑  i = 1  k   a i   |  α i  |  .   











The study of CN-energy of graphs was introduced by Alwardi et al. in [1]. Various properties of CN-energy of a graph can also be found in [1,2]. The motivation of studying     E  c n    ( G )     comes from the study of    E ( G )   , which is well-known as energy of   G  , a notion introduced by Gutman [3]. Many results on    E ( G )   , including some bounds and chemical applications, can be found in [4,5,6,7,8,9,10,11,12,13,14,15]. It is worth recalling that    E ( G )    is the sum of the absolute values of the eigenvalues of the adjacency matrix of   G  . It is also interesting to note that    E ( G )    can be obtained if     E  c n    ( G )     is known for some classes of graphs. For instance,    E  (  K n  )  =  E  c n    (  K n  )  /  ( n − 2 )     and    E  (  K  m , n   )  =    E  c n    (  K  m , n   )  + 2  ( n + n )      , where    K n    is the complete graph on n vertices and    K  m , n     is the complete bipartite graph on    ( m + n )    vertices. A graph   G   is called CN-hyperenergetic if     E  c n    ( G )  >  E  c n    (  K n  )    , where    n = | V ( G ) |   . It is still an open problem to produce a CN-hyperenergetic graph or to prove the non-existence of such graph (see [1] (Open problem 1)). In this paper we give an attempt to answer this problem by considering commuting graphs of finite groups.



The commuting graph of a finite non-abelian group G with center    Z ( G )    is a simple undirected graph whose vertex set is    G ∖ Z ( G )    and two vertices x and y are adjacent if and only if    x y = y x   . We write     Γ c   ( G )     to denote this graph. In [16,17,18,19,20,21,22,23], various aspects of     Γ c   ( G )     are studied. In Section 2 of this paper, we derive an expression for computing CN-energy of a particular class of graphs and list a few already known results. In Section 3, we compute CN-energy of commuting graph of certain metacyclic group, dihedral group (which is the group of symmetries of a regular polygon), quasidihedral group, generalized quarternion group, Hanaki group etc. We also consider some generalizations of dihedral group and generalized quarternion group. Two graphs   G   and   H   with equal number of vertices are called CN-equienergetic if     E  c n    ( G )  =  E  c n    ( H )    . In Section 3, we shall also obtain some pairs of finite non-abelian groups such that their commuting graphs are CN-equienergetic. As consequences of our results, in Section 4, we show that     Γ c   ( G )     for all G considered in Section 3 are not CN-hyperenergetic. We also identify some positive integers n such that     Γ c   ( G )     is not CN-hyperenergetic if G is an n-centralizer group. It is worth mentioning that CN-spectrums of     Γ c   ( G )     for certain classes of finite groups have been computed in [24] recently. However, the method adopted here, in computing CN-energy of     Γ c   ( G )     for various families of finite groups, is independent of    CN-spec (  Γ c   ( G )  )   .



Recall that an n-centralizer group G is a group such that    | Cent ( G ) | = n   , where    Cent  ( G )  = {  C G   ( w )  : w ∈ G }    and     C G   ( w )  =  { v ∈ G : v w = w v }     is the centralizer of w (see [25,26]). We also identify some    r ∈   Q   > 0      such that     Γ c   ( G )     is not CN-hyperenergetic if    Pr ( G ) = r   . Also recall that the commutativity degree of G, denoted by    Pr ( G )   , is the probability that a randomly chosen pair of elements of G commute.



Readers may review [27,28,29,30,31,32] for the background and various results regarding this notion. Further, we show that     Γ c   ( G )     is not CN-hyperenergetic if     Γ c   ( G )     is not planar or toroidal. Note that a graph is planar or toroidal according as its genus is zero or one respectively. Finally, we conclude the paper with a few conjectures.




2. A Useful Formula and Prerequisites


We write    G =  G 1  ⊔  G 2     to denote that   G   has two components namely    G 1    and    G 2   . Also,    l  K m     denotes the disjoint union of l copies of the complete graph    K m    on m vertices. We begin this section with the following two key results of Alwardi et al. [1].



Theorem 1 

([1] Proposition 2.4). If    G =  G 1  ⊔  G 2  ⊔ ⋯ ⊔  G m     then     E  c n    ( G )  =   ∑ m   i = 1    E  c n    (  G i  )  .   





Lemma 1 

([1] Example 2.1). If    K n    denotes the complete graph on n vertices then


    E  c n    (  K n  )  = 2  ( n − 1 )   ( n − 2 )  .   













Now we derive a formula for CN-energy of graphs which are disjoint unions of some complete graphs. The following theorem is very useful in order to compute CN-energy of commuting graphs of finite groups.



Theorem 2.

Let    G =  l 1   K  m 1   ⊔  l 2   K  m 2   ⊔ ⋯ ⊔  l k   K  m k     , where     l i   K  m i      denotes the disjoint union of    l i    copies of the complete graphs    K  m i     on    m i    vertices for    1 ≤ i ≤ k   . Then


    E  c n    ( G )  = 2  ∑  i = 1  k   l i   (  m i  − 1 )   (  m i  − 2 )  .   













Proof. 

By Theorem 1 we have


    E  c n    ( G )  =  ∑  i = 1  k   l i   E  c n    (  K  m i   )  .   











Therefore, the result follows from Lemma 1. □





We conclude this section with the following useful results from [17,18].



Lemma 2.

Let G be a finite group with center    Z ( G )   . If    G  Z ( G )     is isomorphic to





	1.

	
The Suzuki group    S z ( 2 )   , presented by    〈 u , v :  u 5  =  v 4  = 1 ,  v  − 1   u v =  u 2  〉   , then     Γ c   ( G )  = 5  K  3 | Z ( G ) |   ⊔  K  4 | Z ( G ) |     .




	2.

	
    Z p  ×  Z p    , for any prime p, then     Γ c   ( G )  =  ( p + 1 )   K  ( p − 1 ) | Z ( G ) |     .




	3.

	
The dihedral group    D  2 m       ( m ≥ 2 )   , presented by    〈 u , v :  u m  =  v 2  = 1 , v u  v  − 1   =  u  − 1   〉   , then     Γ c   ( G )  =  K  ( m − 1 ) | Z ( G ) |   ⊔ m  K  | Z ( G ) |     .







Lemma 3.

Let G be a non-abelian group. If G is isomorphic to





	1.

	
A group of order    p q   , where p and q are primes with    p ∣ ( q − 1 )   , then     Γ c   ( G )  =  K  q − 1   ⊔ q  K  p − 1     .




	2.

	
The quasidihedral group    Q  D  2 n        ( n ≥ 4 )   , presented by    〈 u , v :  u  2  n − 1    =  v 2  = 1 , v u  v  − 1   =  u   2  n − 2   − 1   〉   , then     Γ c   ( G )  =  K   2  n − 1   − 2   ⊔  2  n − 2    K 2    .




	3.

	
   P S L ( 2 ,  2 k  )   , the projective special linear group for    k ≥ 2   , then     Γ c   ( G )  =  2  k − 1    (  2 k  − 1 )   K  2 k   ⊔  (  2 k  + 1 )   K   2 k  − 1   ⊔  2  k − 1    (  2 k  + 1 )   K   2 k  − 2     .




	4.

	
   G L ( 2 , q )   , the general linear group where    q =  p n  > 2    and p is a prime, then     Γ c   ( G )  =   q ( q − 1 )  2   K   q 2  − q   ⊔   q ( q + 1 )  2   K   q 2  − 3 q + 2   ⊔  ( q + 1 )   K   q 2  − 2 q + 1     .







Lemma 4.

Let G be a non-abelian group. If G is isomorphic to





	1.

	
The Hanaki group    A ( n , σ )      ( n ≥ 2 )    of order    2  2 n     given by


    U  ( x , y )  =     1   0   0     x   1   0     y    σ ( x )    1     : x , y ∈ F  ,   











under matrix multiplication where    F = G F (  2 n  )    and    σ ∈ A u t ( F )    given by    σ  ( u )  =  u 2    , then     Γ c   ( G )  =  (  2 n  − 1 )   K  2 n     .




	2.

	
The Hanaki group    A ( n , p )    of order    p  3 n     given by


    V  ( x , y , z )  =     1   0   0     x   1   0     y   z   1     : x , y , z ∈ F  ,   











under matrix multiplication where    F = G F (  p n  )    and p is a prime, then     Γ c   ( G )  =  (  p n  + 1 )   K   p  2 n   −  p n      .








3. CN-Energy of Commuting Graphs


In this section, we compute     E  c n    (  Γ c   ( G )  )     for several classes of finite non-abelian groups.



Theorem 3.

Let G be a finite group with center    Z ( G )   . If    G  Z ( G )     is isomorphic to





	1.

	
The Suzuki group    S z ( 2 )   , then


    E  c n    (  Γ c   ( G )  )  =   2 ( 61 | Z  ( G )  |  2   − 57 | Z  ( G )  | + 12 ) .    












	2.

	
    Z p  ×  Z p    , then


    E  c n    (  Γ c   ( G )  )  = 2  ( p + 1 )   (  ( p − 1 )  | Z  ( G )  | − 1 )   (  ( p − 1 )  | Z  ( G )  | − 2 )  .   












	3.

	
The dihedral group    D  2 m       ( m ≥ 2 )   , then


    E  c n    (  Γ c   ( G )  )   = 2 (   (  m 2  − m + 1 )   | Z   ( G )    |  2  −  ( 6 m − 3 )   | Z   ( G )   | + 2 m + 2 )  .   















Proof. 

By Lemma 2 and Theorem 2 we have


    E  c n    (  Γ c   ( G )  )  =      2 ( 4 | Z ( G ) | − 1 ) ( 4 | Z ( G ) | − 2 ) + 10 ( 3 | Z ( G ) | − 1 ) ( 3 | Z ( G ) | − 2 ) ,          if   G  Z ( G )   ≅ S z  ( 2 )        2 ( p + 1 ) ( ( p − 1 ) | Z ( G ) | − 1 ) ( ( p − 1 ) | Z ( G ) | − 2 ) ,         if   G  Z ( G )   ≅  Z p  ×  Z p        2 ( ( m − 1 ) | Z ( G ) | − 1 ) ( ( m − 1 ) | Z ( G ) | − 2 )         + 2 m  ( | Z  ( G )  | − 1 )   ( | Z  ( G )  | − 2 )  ,   if   G  Z ( G )   ≅  D  2 m   .        











Hence, the result follows on simplification. □





We have the following two corollaries of Theorem 3.



Corollary 1.

Let G be isomorphic to one of the following groups





	1.

	
    Z 2  ×  Q 8  ,   




	2.

	
    Z 2  ×  D 8  ,   




	3.

	
    Z 4  ⋊  Z 4  =  〈 u , v :  u 4  =  v 4  = 1 , v u  v  − 1   =  u  − 1   〉  ,   




	4.

	
    M 16  =  〈 u , v :  u 8  =  v 2  = 1 , v u v =  u 5  〉  ,   




	5.

	
   S G  ( 16 , 3 )  =  〈 u , v :  u 4  =  v 4  = 1 , u v =  v  − 1    u  − 1   , u  v  − 1   = v  u  − 1   〉  ,   




	6.

	
    D 8  *  Z 4  =  〈 u , v , w :  u 4  =  v 2  =  w 2  = 1 , u v = v u , u w = w u , v w =  u 2  w v 〉 .    







Then     E  c n    (  Γ c   ( G )  )  = 36 .   



Proof. 

If G is isomorphic to one of the above listed group then it is of order 16. Therefore,    | Z ( G ) | = 4    and so     G  Z ( G )   ≅  Z 2  ×  Z 2    . Hence, putting    p = 2    in Theorem 3 (2) we get the required result. □





Corollary 2.

Let G be a non-abelian group.





	1.

	
If G is of order    p 3   , for any prime p, then


    E  c n    (  Γ c   ( G )  )  = 2  ( p + 1 )   (  p 2  − p − 1 )   (  p 2  − p − 2 )  .   












	2.

	
If G is the metacyclic group    M  2 m n       ( m ≥ 3 )   , presented by    〈 u , v :  u m  =  v  2 n   = 1 , v u  v  − 1   =  u  − 1   〉   , then


    E  c n    (  Γ c   ( G )  )  =      2 (  (  m 2  − m + 1 )   n 2  −  ( 6 m − 3 )  n + 2 m + 2 ) ,      if  m  is  odd       2 (  (  m 2  − 2 m + 4 )   n 2  −  ( 6 m − 6 )  n + m + 2 ) ,      if  m  is   even .         












	3.

	
If G is the dihedral group    D  2 m       ( m ≥ 3 )   , then


    E  c n    (  Γ c   ( G )  )  =      2 ( m − 2 ) ( m − 3 ) ,      if  m  is  odd       2 ( m − 3 ) ( m − 4 ) ,      if  m  is   even .         












	4.

	
If G is the generalized quaternion group    Q  4 n       ( n ≥ 2 )   , presented by    〈 u , v :  v  2 n   = 1 ,  u 2  =  v n  , u v  u  − 1   =  v  − 1   〉   , then


    E  c n    (  Γ c   ( G )  )  = 2  ( 2 n − 3 )   ( 2 n − 4 )  .   















Proof. 

If G is of order    p 3    then    | Z ( G ) | = p    and     G  Z ( G )   ≅  Z p  ×  Z p    . Hence the result follows from Theorem 3 (2).



(2) We have


    | Z   (  M  2 m n   )   | =       n ,      if  m  is  odd       2 n ,      if  m  is  even       and    M  2 m n    Z (  M  2 m n   )   ≅       D  2 m   ,      if  m  is  odd        D m  ,      if  m  is   even .         











Hence, the result follows from Theorem 3 (3).



(3) Follows from part (2), considering    n = 1   .



(4) Follows from Theorem 3 (3), since    | Z (  Q  4 n   ) | = 2    and      Q  4 n    Z (  Q  4 n   )   ≅  D  2 n     . □





In the following theorems we compute     E  c n    (  Γ c   ( G )  )     for more families of groups.



Theorem 4.

Let G be a non-abelian group.





	1.

	
If G is of order    p q   , where p and q are primes with    p ∣ ( q − 1 )   , then


    E  c n    (  Γ c   ( G )  )  = 2  (  q 2  +  p 2  q − 5 p q + q + 6 )  .   












	2.

	
If G is the quasidihedral group    Q  D  2 n        ( n ≥ 4 )   , then


    E  c n    (  Γ c   ( G )  )  = 2  (  2  n − 1   − 3 )   (  2  n − 1   − 4 )  .   












	3.

	
If    G = P S L ( 2 ,  2 k  )    then


    E  c n    (  Γ c   ( G )  )  =  2  4 k + 1   − 4 ·  2  3 k + 1   +  2  2 k + 1   + 6 ·  2  k + 1   + 12 .   












	4.

	
If    G = G L ( 2 , q )    then


    E  c n    (  Γ c   ( G )  )  = 2  q 6  − 6  q 5  − 2  q 4  + 10  q 3  + 6  q 2  + 2 q .   















Proof. 

(1) If G is of order    p q    then, by Lemma 3 (1) and Theorem 2, we have


    E  c n    (  Γ c   ( G )  )  = 2  (  ( q − 2 )   ( q − 3 )  + q  ( p − 2 )   ( p − 3 )  )  .   











This gives the required result on simplification.



(2) Follows from Lemma 3 (2) and Theorem 2.



(3) By Lemma 3 (3) and Theorem 2 we have


           E  c n    (  Γ c   ( G )  )   2  =  (  2 k  + 1 )   (  2 k  − 2 )   (  2 k  − 3 )  +  2  k − 1    (  2 k  + 1 )   (  2 k  − 3 )   (  2 k  − 4 )                                                                     +  2  k − 1    (  2 k  − 1 )   (  2 k  − 1 )   (  2 k  − 2 )  ,      








which gives the required result.



(4) By Lemma 3 (4) and Theorem 2 we have


         E  c n    (  Γ c   ( G )  )  = q  ( q + 1 )   (  q 2  − 3 q + 1 )   (  q 2  − 3 q )  + q  ( q − 1 )   (  q 2  − q − 1 )   (  q 2  − q − 2 )                                                                    + 2  ( q + 1 )   (  q 2  − 2 q )   (  q 2  − 2 q − 1 )  ,      








which gives the required result on simplification. □





Theorem 5.

Let G be a non-abelian group.





	1.

	
If G is the Hanaki group    A ( n , σ )    then


    E  c n    (  Γ c   ( G )  )  = 2   (  2 n  − 1 )  2   (  2 n  − 2 )  .   












	2.

	
If G is the Hanaki group    A ( n , p )    then


    E  c n    (  Γ c   ( G )  )  = 2  (  p n  + 1 )   (  p  2 n   −  p n  − 1 )   (  p  2 n   −  p n  − 2 )  .   















Proof. 

The result follows from Lemma 4 and Theorem 2. □





Note that all the groups considered above are abelian centralizer group (in short, AC-group). Now we present a result on     E  c n    (  Γ c   ( G )  )     if G is a finite AC-group.



Theorem 6.

Consider that an AC-group G has distinct centralizers     X 1  , ⋯ ,  X n     of non-central elements of G. Then     E  c n    (  Γ c   ( G )  )  = 2   ∑ n   i = 1    ( |   X i   | − | Z  ( G )  | − 1 ) ( |   X i   | − | Z  ( G )  | − 2 ) .    





Proof. 

We have     Γ c   ( G )  =   ⊔  i = 1   n   K   |   X i   | − | Z  ( G )  |      , by [17] (Lemma 1). Therefore, by Theorem 2, the result follows. □





Corollary 3.

Let K be a finite abelian group and H be a finite non-abelian AC-group. If    G ≅ H × K    then


       E  c n    (  Γ c   ( G )  )  = 2   ∑ n   i = 1    ( |   Y i   | | K |  −  | Z  ( H )  | | K |  −  1 ) ( |   Y i   | | K | − | Z  ( H )  | | K | − 2 ) ,       








where    Cent  ( H )  =  { H ,  Y 1  , ⋯ ,  Y n  }    .





Proof. 

Clearly    Z ( H × K ) = Z ( H ) × K    and    Cent  ( H × K )  =  { H × K ,  Y 1  × K ,  Y 2  × K , ⋯ ,  Y n  × K }    . Hence,    H × K    is an AC-group and so, by Theorem 6, the result follows. □





We shall conclude this section by obtaining some pairs of finite non-abelian groups such that their commuting graphs are CN-equienergetic.



Proposition 1.

The commuting graphs of    D  4 k     and    Q  4 k     for    k ≥ 2    are CN-equienergetic.





Proof. 

The result follows from parts (3) and (4) of Corollary 2. □





Using Corollary 2 (parts (3) and (4)) and Theorem 4 (2) we also have the following result.



Proposition 2.

The commuting graphs of    D  2 k    ,    Q  2 k     and    Q  D  2 k      for    k ≥ 4    are pairwise CN-equienergetic.






4. Some Consequences


In this section we derive some consequences of the results obtained in Section 3.



Theorem 7.

Let G be a finite group with center    Z ( G )   . If    G  Z ( G )     is isomorphic to    S z  ( 2 )  ,  Z p  ×  Z p     or    D  2 m     (where p is any prime and    m ≥ 2   ) then     Γ c   ( G )     is not CN-hyperenergetic.





Proof. 

If     G  Z ( G )   ≅ S z  ( 2 )     then, by Theorem 3 (1), we have


    E  c n    (  Γ c   ( G )  )  =   2 ( 61 | Z  ( G )  |  2   − 57 | Z  ( G )  | + 12 ) .    











Since    | V (  Γ c   ( G )  ) | = 19 | Z  ( G )  |   , by Lemma 1 we have


    E  c n    (  K  19 | Z ( G ) |   )  =  2 ( 19 | Z   ( G )   | − 1 ) ( 19 | Z   ( G )   | − 2 )  =  2 ( 361 | Z   ( G )    |  2   − 57 | Z   ( G )   | + 2 )  .   











Clearly,      361 | Z  ( G )  |  2  + 2 > 61   | Z  ( G )  |  2  + 12    which gives     E  c n    (  K  19 | Z ( G ) |   )  >  E  c n    (  Γ c   ( G )  )    .



If     G  Z ( G )   ≅  Z p  ×  Z p     then, by Theorem 3 (2), we have


    E  c n    (  Γ c   ( G )  )  = 2  ( p + 1 )   (  ( p − 1 )  | Z  ( G )  | − 1 )   (  ( p − 1 )  | Z  ( G )  | − 2 )  .   











Since     | V   (  Γ c   ( G )  )   | =   (  p 2  − 1 )   | Z  ( G )  |    , by Lemma 1 we have


    E  c n    (  K   (  p 2  − 1 )   | Z  ( G )  |    )   = 2 (   (  p 2  − 1 )   | Z   ( G )   | − 1 ) (   (  p 2  − 1 )   | Z   ( G )   | − 2 )  .   











Clearly


             (   (  p 2  − 1 )   | Z   ( G )   | − 1 ) (   (  p 2  − 1 )   | Z   ( G )   | − 2 )            > (   (  p 2  − 1 )   | Z   ( G )   | −   ( p + 1 )   ) (   (  p 2  − 1 )   | Z   ( G )   | − 2  ( p + 1 )  )           > ( p + 1 ) ( ( p − 1 ) | Z ( G ) | − 1 ) ( ( p − 1 ) | Z ( G ) | − 2 .      











Thus     E  c n    (  K   (  p 2  − 1 )   | Z  ( G )  |    )  >  E  c n    (  Γ c   ( G )  )    .



If     G  Z ( G )   ≅  D  2 m      then we have


    E  c n    (  Γ c   ( G )  )   = 2 (   (  m 2  − m + 1 )   | Z   ( G )    |  2  −  ( 6 m − 3 )   | Z   ( G )   | + 2 m + 2 )  ,   








by Theorem 3 (3). Since    | V (  Γ c   ( G )  ) | =  ( 2 m − 1 )  | Z  ( G )  |   , by Lemma 1 we have


       E  c n    (  K  ( 2 m − 1 ) | Z ( G ) |   )      = 2 ( 2 m | Z ( G ) | − | Z ( G ) | − 1 ) ( 2 m | Z ( G ) | − | Z ( G ) | − 2 )          = 2 (  ( 4  m 2  − 4 m + 1 )  | Z  ( G )   | 2  −  ( 6 m − 3 )  | Z  ( G )  | + 2 ) .      











Clearly     ( 4  m 2  − 4 m + 1 )   | Z   ( G )    |  2  >  (  m 2  − m + 1 )    | Z  ( G )  |  2  + 2 m   . Therefore,



    E  c n    (  K   (  p 2  − 1 )   | Z  ( G )  |    )       >  E  c n    (  Γ c   ( G )  )    . This completes the proof. □





We have the following two corollaries.



Corollary 4.

If G is isomorphic to one of the groups listed in Corollary 1, then     Γ c   ( G )     is not CN-hyperenergetic.





Proof. 

Since    G  Z ( G )     is isomorphic to     Z 2  ×  Z 2    , the result follows from Theorem 7 considering    p = 2   . □





Corollary 5.

Let G be a non-abelian group. If G is isomorphic to     M  2 m n   ,  D  2 m   ,  Q  4 n      or a group of order    p 3    then     Γ c   ( G )     is not CN-hyperenergetic.





Proof. 

If G is isomorphic to     M  2 m n   ,  D  2 m      or    Q  4 n     then    G  Z ( G )     is isomorphic to some dihedral groups. If G is isomorphic to a group of order    p 3    then    G  Z ( G )     is isomorphic to     Z p  ×  Z p    . Hence, by Theorem 7, the result follows. □





We have the following results regarding commuting graphs of finite n-centralizer groups.



Theorem 8.

If G is a finite 4-centralizer group then     Γ c   ( G )     is not CN-hyperenergetic.





Proof. 

We have     G  Z ( G )   ≅  Z 2  ×  Z 2    , by [25] (Theorem 2). Hence, using Theorem 7 for    p = 2   , the result follows. □





Theorem 9.

Let G be a finite    ( p + 2 )   -centralizer p-group. Then     Γ c   ( G )     is not CN-hyperenergetic.





Proof. 

We have     G  Z ( G )   ≅  Z p  ×  Z p    , by [33] (Lemma 2.7). Hence, by Theorem 7, the result follows. □





Theorem 10.

If G is a finite 5-centralizer group then     Γ c   ( G )     is not CN-hyperenergetic.





Proof. 

We have     G  Z ( G )   ≅  Z 3  ×  Z 3     or    D 6   , by [25] (Theorem 4). Hence, by Theorem 7, the result follows. □





As a corollary to Theorems 8 and 10 we have the following result.



Corollary 6.

Let G be a finite non-abelian group and    {  x 1  ,  x 2  , ⋯ ,  x r  }    be a set of pairwise non-commuting elements of G having maximal size. Then     Γ c   ( G )     is not CN-hyperenergetic if    r = 3 , 4   .





Proof. 

By [34] (Lemma 2.4), we have that G is a 4-centralizer or a 5-centralizer group according as    r = 3    or 4. Hence the result follows from Theorems 8 and 10. □





Theorem 11.

Let G be a non-abelian group. If G is isomorphic to    Q  D  2 n     ,    P S L ( 2 ,  2 k  )   ,    A ( n , σ )   ,    G L ( 2 , q )   ,    A ( n , p )    or a group of order    p r   , where p and r are primes with    p ∣ ( r − 1 )    and    q =  p m  > 2   , then     Γ c   ( G )     is not CN-hyperenergetic.





Proof. 

If G is isomorphic to    Q  D  2 n      then, by Theorem 4, we have     E  c n    (  Γ c   ( G )  )  = 2  (  2  n − 1   − 3 )   (  2  n − 1   − 4 )  .    Since     | V   (  Γ c   ( G )  )   | =   2 n  − 2   , by Lemma 1 we have


    E  c n    (  K   2 n  − 2   )  = 2  (  2 n  − 3 )   (  2 n  − 4 )  .   











Clearly,     (  2 n  − 3 )   (  2 n  − 4 )  >  (  2  n − 1   − 3 )   (  2  n − 1   − 4 )    . Hence,     E  c n    (  K   2 n  − 2   )  >  E  c n    (  Γ c   ( G )  )    .



If G is isomorphic to    P S L ( 2 ,  2 k  )    then, by Theorem 4 (3), we have


    E  c n    (  Γ c   ( G )  )  =  2  4 k + 1   − 4 ·  2  3 k + 1   +  2  2 k + 1   + 6 ·  2  k + 1   + 12 .   











Since     | V   (  Γ c   ( G )  )   | =   2 k   (  2  2 k   − 1 )  − 1 =  2  3 k   −  2 k  − 1   , by Lemma 1 we have


       E  c n    (  K   2  3 k   −  2 k  − 1   )      = 2  (  2  3 k   −  2 k  − 1 )   (  2  3 k   −  2 k  − 3 )           =  2  6 k + 1   − 2 ·  2  4 k + 1   − 3 ·  2  3 k + 1   +  2  2 k + 1   + 5 ·  2  k + 1   + 12 .      











Therefore,


       E  c n    (  K   2  3 k   −  2 k  − 1   )  −  E  c n    (  Γ c   ( G )  )      =  2  6 k + 1   − 3 ·  2  4 k + 1   +  2  3 k + 1   −  2  k + 1            =  2  4 k + 1    (  2  2 k   − 3 )  +  2  k + 1    (  2  2 k   − 1 )  .      











Since     2  2 k   − 3 > 0    and     2  2 k   − 1 > 0    we have     E  c n    (  K   2  3 k   −  2 k  − 1   )  −  E  c n    (  Γ c   ( G )  )     is positive. Hence, the result follows.



If G is isomorphic to    G L ( 2 , q )    then, by Theorem 4 (4), we have


    E  c n    (  Γ c   ( G )  )  = 2  q 6  − 6  q 5  − 2  q 4  + 10  q 3  + 6  q 2  + 2 q .   











Since     | V   (  Γ c   ( G )  )   | =   (  q 2  − 1 )   (  q 2  − q )  −  ( q − 1 )  =  q 4  −  q 3  −  q 2  + 1   , by Lemma 1 we have


    E  c n    (  K   q 4  −  q 3  −  q 2  + 1   )  = 2  (  q 4  −  q 3  −  q 2  )   (  q 4  −  q 3  −  q 2  − 1 )  = 2  q 8  − 4  q 7  − 2  q 6  + 4  q 5  + 2  q 3  + 2  q 2  .   











Therefore,


       E  c n    (  K   q 4  −  q 3  −  q 2  + 1   )  −  E  c n    (  Γ c   ( G )  )      = 2  q 8  − 4  q 7  − 4  q 6  + 10  q 5  + 2  q 4  − 8  q 3  − 4  q 2  − 2 q          = 2  q 6   (  q 2  − 2 q − 2 )  + 2  q 2   ( 5  q 3  − 4 q − 2 )  + 2 q  (  q 3  − 2 )  .      











We have     q 2  − 2 q − 2 = q  ( q − 2 )  − 2 > 0   ,    5  q 3  − 4 q − 2 = q  ( 5  q 2  − 4 )  − 2 > 0    and     q 3  − 2 > 0    since    q =  p m  > 2    for some prime p. Therefore,     E  c n    (  K   q 4  −  q 3  −  q 2  + 1   )  −  E  c n    (  Γ c   ( G )  )     is positive and hence the result follows.



If G is isomorphic to    A ( n , σ )    then, by Theorem 5 (1), we have     E  c n    (  Γ c   ( G )  )  = 2   (  2 n  − 1 )  2   (  2 n  − 2 )  .    Since     | V   (  Γ c   ( G )  )   | =   2 n   (  2 n  − 1 )  =  2  2 n   −  2 n    , by Lemma 1 we have


    E  c n    (  K   2  2 n   −  2 n    )  = 2  (  2  2 n   −  2 n  − 1 )   (  2  2 n   −  2 n  − 2 )  .   











Clearly,     2  2 n   −  2 n  − 1 >  2  2 n   − 2 ·  2 n  − 1 =   (  2 n  − 1 )  2     and     2  2 n   −  2 n  − 2 >  2 n  − 2   . Therefore,     E  c n    (  K   2  2 n   −  2 n    )  >  E  c n    (  Γ c   ( G )  )    .



If    G ≅ A ( n , p )    then, by Theorem 5 (2), we have     E  c n    (  Γ c   ( G )  )  = 2  (  p n  + 1 )   (  p  2 n   −  p n  − 1 )   (  p  2 n   −  p n  − 2 )  .    Since     | V   (  Γ c   ( G )  )   | =   (  p n  + 1 )   (  p  2 n   −  p n  )    , by Lemma 1 we have


    E  c n    (  K   (  p n  + 1 )   (  p  2 n   −  p n  )    )  = 2  (  (  p n  + 1 )   (  p  2 n   −  p n  )  − 1 )   (  (  p n  + 1 )   (  p  2 n   −  p n  )  − 2 )  .   











We have


             (  p n  + 1 )   (  p  2 n   −  p n  − 1 )   (  p  2 n   −  p n  − 2 )           <  (  p n  + 1 )   (  p  2 n   −  p n  − 1 )   (  p n  + 1 )   (  p  2 n   −  p n  − 2 )           =  (  (  p n  + 1 )   (  p  2 n   −  p n  )  −  (  p n  + 1 )  )   (  (  p n  + 1 )   (  p  2 n   −  p n  )  − 2  (  p n  + 1 )  )           <  (  (  p n  + 1 )   (  p  2 n   −  p n  )  − 1 )   (  (  p n  + 1 )   (  p  2 n   −  p n  )  − 2 )  .      











Hence,     E  c n    (  Γ c   ( G )  )  <  E  c n    (  K   (  p n  + 1 )   (  p  2 n   −  p n  )    )    .



If G is isomorphic to a non-abelian group of order    p r    then, by Theorem 4 (1), we have


    E  c n    (  Γ c   ( G )  )  = 2  (  r 2  +  p 2  r − 5 p r + r + 6 )  .   











Since    | V (  Γ c   ( G )  ) | = p r − 1   , by Lemma 1 we have


    E  c n    (  K  p r − 1   )  = 2  ( p r − 2 )   ( p r − 3 )  = 2  (  p 2   r 2  − 5 p r + 6 )  .   











Since    r + 1 ≤ 2  ( r − 1 )  <  p 2   ( r − 1 )     we have     r 2  +  p 2  r + r <  p 2   r 2    . Hence,     E  c n    (  K  p r − 1   )  >  E  c n    (  Γ c   ( G )  )    . This completes the proof. □





It is already mentioned that    Pr ( G )   , the commutativity degree of a group G, is the probability that a randomly chosen pair of elements of G commute. Therefore, it measures the abelianness of a group. For any finite group G, its commutativity degree can be computed using the formula


   Pr  ( G )  =  1   | G |  2    ∑  w ∈ G    |  C G   ( w )  |   or  Pr  ( G )  =   k ( G )   | G |   ,   








where    k ( G )    is the number of conjugacy classes in G. In finite group theory, it is an interesting problem to find all the rational numbers    r ∈ ( 0 , 1 ]    such that    Pr ( G ) = r    for some finite group G. Over the decades, many values of such r have obtained and characterized finite groups such that    Pr ( G ) = r   . In the following theorem we list some values of r such that     Γ c   ( G )     is not CN-hyperenergetic if    Pr ( G ) = r   .



Theorem 12.

If    Pr  ( G )  ∈  {  5 14  ,  2 5  ,  11 27  ,  7 16  ,  1 2  ,  5 8  }     then     Γ c   ( G )     is not CN-hyperenergetic.





Proof. 

If    Pr  ( G )  ∈  {  5 14  ,  2 5  ,  11 27  ,  7 16  ,  1 2  ,  5 8  }     then    G  Z ( G )     is isomorphic to the groups in    {  D 14  ,  D 10  ,  D 8  ,       D 6  ,  Z 2  ×  Z 2  ,  Z 3  ×  Z 3   }     (by [35] (p. 246) and [36] (p. 451)). Hence, the result follows from Theorem 7. □





Theorem 13.

Let G be a finite group and    Pr  ( G )  =    p 2  + p − 1   p 3     , where p is the smallest prime divisor of    | G |   . Then     Γ c   ( G )     is not CN-hyperenergetic.





Proof. 

We have     G  Z ( G )   ≅  Z p  ×  Z p    , by [37] (Theorem 3). Hence the result follows from Theorem 7. □





Theorem 14.

If G is a finite non-solvable group and    Pr  ( G )  =  1 12     then     Γ c   ( G )     is not CN-hyperenergetic.





Proof. 

We have    G ≅  A 5  × K    for some abelian group K, by [27] (Proposition 3.3.7). It can be seen that     Γ c   ( G )  = 5  K  3 | K |   ⊔ 10  K  2 | K |   ⊔ 6  K  4 | K |     . Therefore, by Theorem 2, we have


       E  c n    (  Γ c   ( G )  )      = 2 ( 5 ( 3 | K | − 1 ) ( 3 | K | − 2 ) + 10 ( 2 | K | − 1 ) ( 2 | K | − 2 ) ) + 6 ( 4 | K | − 1 ) ( 4 | K | − 2 ) )          = 2 ( 181 | K  | 2  − 177 | K | + 42 ) .      











Additionally, by Lemma 1, we have     E  c n    (  K  59 | K |   )  =   2 ( 3481 | K |  2   − 177 | K | + 2 )    . Therefore


    E  c n    (  K  59 | K |   )  −  E  c n    (  Γ c   ( G )  )  =   2 ( 3300 | K |  2   − 40 ) > 0 .    











This completes the proof. □





The following three theorems show that     Γ c   ( G )     is not CN-hyperenergetic if     Γ c   ( G )     is planar/toroidal or the complement of     Γ c   ( G )     is planar.



Theorem 15.

Let G be a finite non-abelian group. If     Γ c   ( G )     is planar then     Γ c   ( G )     is not CN-hyperenergetic.





Proof. 

If    G ≅  D 12    ,     D 10  ,  D 8  ,  D 6    ,    Q 8    or    Q 12    then, by Corollary 5, we have that     Γ c   ( G )     is not CN-hyperenergetic.



If G is isomorphic to one of the groups listed in Corollary 1 then, by Corollary 4, it follows that     Γ c   ( G )     is not CN-hyperenergetic. If    G ≅  A 4     then it can be seen that     Γ c   ( G )  =  K 3  ⊔ 4  K 2    . Using Theorem 2, we have     E  c n    (  Γ c   ( G )  )  = 4   . Also, by Lemma 1, we have     E  c n    (  K 11  )  = 180   . Therefore,     Γ c   ( G )     is not CN-hyperenergetic. If    G ≅ S z ( 2 )    then     G  Z ( G )   ≅ S z  ( 2 )    . Therefore, by Theorem 7, it follows that     Γ c   ( G )     is not CN-hyperenergetic. If    G ≅ S L ( 2 , 3 )    then it can be seen that     Γ c   ( G )  = 3  K 2  ⊔ 4  K 4    . Therefore, by Theorem 2, we have     E  c n    (  Γ c   ( G )  )  = 48   . Also, by Lemma 1, we have     E  c n    (  K 22  )  = 840   . Therefore,     Γ c   ( G )     is not CN-hyperenergetic.



We have    P S L  ( 2 , 4 )  ≅  A 5    . Therefore, if    G ≅  A 5     then it follows that     Γ c   ( G )     is not CN-hyperenergetic (follows from Theorem 11).



If    G ≅  S 4     then the characteristic polynomial of    C N (  Γ c   ( G )  )    is given by     x 8    ( x − 3 )  2    ( x + 1 )  11   (  x 2  − 5 x − 30 )     and so


   CN-spec  (  Γ c   ( G )  )  =   0 8  ,  3 2  ,   ( − 1 )  11  ,     5 +  145   2   1  ,     5 −  145   2   1   .   











Therefore,     E  c n    (  Γ c   ( G )  )  = 17 +  145    . Additionally, by Lemma 1, we have     E  c n    (  K 23  )  = 924   . Therefore,     Γ c   ( G )     is not CN-hyperenergetic. Hence, the result follows from [38] (Theorem 2.2). □





Theorem 16.

Let G be a finite non-abelian group. If     Γ c   ( G )     is toroidal then     Γ c   ( G )     is not CN-hyperenergetic.





Proof. 

If    G ≅  D 14  ,  D 16     or    Q 16    then by Corollary 5 it follows that     Γ c   ( G )     is not CN-hyperenergetic. If    G ≅ Q  D 16     then, by Theorem 11, we have that     Γ c   ( G )     is not CN-hyperenergetic. If G is isomorphic to     Z 7  ⋊  Z 3     then     Γ c   ( G )     is not CN-hyperenergetic, follows from Theorem 11 considering    p = 3    and    r = 7   . If    G ≅  D 6  ×  Z 3     then     G  Z ( G )   ≅  D 6    . Therefore, by Theorem 7,     Γ c   ( G )     is not CN-hyperenergetic. If    G ≅  A 4  ×  Z 2     then it can be seen that     Γ c   ( G )  =  K 6  ⊔ 4  K 4    . Therefore, by Theorem 2, we have     E  c n    (  Γ c   ( G )  )  = 2  ( 5 · 4 + 4 · 3 · 2 )  = 88   . Also, by Lemma 1, we have     E  c n    (  K 22  )  = 2 · 21 · 20 = 840   . Hence,     Γ c   ( G )     is not CN-hyperenergetic. Hence, the result follows from [39] (Theorem 6.6). □





We also have the following result.



Theorem 17.

Let G be a finite non-abelian group. If the complement of     Γ c   ( G )     is planar then     Γ c   ( G )     is not CN-hyperenergetic.





Proof. 

The result follows from [40] (Proposition 2.3) and Corollary 5. □





In view of the above results we conclude this paper with a few conjectures.



Conjecture 1.

A planar or toroidal graph is not CN-hyperenergetic.





Conjecture 2.

    Γ c   ( G )     is not CN-hyperenergetic.





Conjecture 3.

If    G =  l 1   K  m 1   ⊔  l 2   K  m 2   ⊔ ⋯ ⊔  l k   K  m k     , where     l i   K  m i      denotes the disjoint union of    l i    copies of the complete graphs    K  m i     on    m i    vertices for    1 ≤ i ≤ k   , then it is not CN-hyperenergetic.
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