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Abstract: Dynamical similarities are non-standard symmetries found in a wide range of physical
systems that identify solutions related by a change of scale. In this paper, we will show through
a series of examples how this symmetry extends to the space of couplings, as measured through
observations of a system. This can be exploited to focus on observations that can be used to distinguish
between different theories and identify those which give rise to identical physical evolutions. These
can be reduced into a description that makes no reference to scale. The resultant systems can be
derived from Herglotz’s principle and generally exhibit friction. Here, we will demonstrate this
through three example systems: the Kepler problem, the N-body system and Friedmann–Lemaître–
Robertson–Walker cosmology.

Keywords: shape dynamics; scale symmetry; dynamical similarity; contact geometry; Herglotz
action; friction

1. Introduction: Poincaré’s Dream

In Science and Method [1], Poincaré invites the reader to consider a world in which
the length of all physical objects had been increased a thousandfold, noting that “What was
a meter long would now be a kilometer”. Reasoning that an observer could only use the
objects that he found within the world as a reference point, he came to the conclusion that
the observer would be unable to discern whether such a transformation had taken place at
all. It is interesting to note that at the time of Poincaré’s writing, the length of a meter was
defined with respect to a platinum-iridium rod being held at the melting point of ice, and
that as such this rod would also be rescaled in their transformation. Thus, what previously
had the length of a meter would still have this length, as distances would be measured
intrinsically. Nonetheless, Poincaré’s reasoning was that relative to some absolute scale the
sizes of objects could have changed. This line of reasoning was challenged by, among others,
Delboeuf [2], who argued that the world we inhabit is not scale invariant. Delboeuf noted
that a man whose height measured over a kilometer would lack the strength to be able to
walk. A similar counterargument had been previously advocated by Galileo [3], stating
that “. . . we can demonstrate by geometry that the large machine is not proportionately
stronger than the small”.

Despite the counterarguments appearing conclusive, Poincaré’s dream can be rescued
by allowing not only the physical dimensions of the world to be altered but also the
physical constants that determine, for example, the couplings. Let us consider the ratio
of the gravitational force, FG, acting on the man to that which can be exerted by their
muscles, FM. Following Delboeuf’s argument, we will take FM to be proportional to the
cross-sectional area of the muscle and hold the densities of all objects fixed. Thus, increasing
all length scales by a factor µ, we see:

FG =
GMm

r2 → µ6GMm
µ2r2 = µ4FG Fm = kA→ kµ2 A = µ2FM (1)

Thus, per Delboeuf, increasing length scales would sufficiently result in FG exceeding FM.
However, if we also extend the scaling to also act on G by G → µ−2G, then the ratio of the
two forces remains unchanged.
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It is important to emphasize that this change would constitute not only a change of
scale within a physical system but also a change of the physical laws themselves. As such,
we would not expect any given solution to the theory to be scale invariant, but rather that
equivalent descriptions of the same system can be formulated between which the absolute
scale of any object would change.

To provide an example of such transformations, let us consider a simple toy model in
which two particles in a plane interact subject to a Hooke potential with coupling k (force
proportional to separation, r) and a Newton potential with coupling G (force inversely
proportional to separation squared). As the forces are central, the angular momentum
J = r2θ̇ is a constant. The equation of motion for the separation of the particles is:

r̈− J
r3 +

G
r2 + kr = 0 (2)

Suppose (r(t) and θ(t)) satisfy this equation for couplings G, k. Then, we can construct

r̃(t) = λr(
t
λ
) θ̃(t) = θ(

t
λ
) (3)

which will also satisfy the equation for couplings G̃ = λG and k̃ = k
λ2 . Thus, an observer

who plotted the shape orbit traced out by the particle would be unable to detect any change
if r, G and k were changed in this manner. At this point, one might object to the rescaling
in the time-one system, as it would evolve more slowly in t than the other. However, this
time must also be read from a physical device; if we equip our observer with a pendulum

clock, for example, with time period T = 2π
√

l
g , to follow Poincaré, we must set l̃ = λl

for all lengths to be affected equally, and g derives from the radius of the Earth, its mass
and the Newton potential. Rescaling all of these (keeping the density of the Earth fixed),
we see that the clock would now have the time period T̃ = λT. Thus, the angular distance
covered in one tick of the pendulum clock would be unchanged.

The example above is quite simple to generalize to include more general couplings.
We can express a general potential in the form

V(r, θ) = ∑
i

CiriVi(θ) (4)

in which case, we find an analogous rescaling holds if the couplings Ci are allowed to be
rescaled to C̃i = λ−iCi. Furthermore, it is a straightforward exercise generalization to the
case where we let r̃ = λr( t

λn ), θ̃ = θ( t
λn ) and those where we introduce more particles.

A natural question to ask at this point is that given that such transformations are
undetectable to an observer, can we formulate our models to work only in terms of entities
which are invariant? Such a move is at the heart of shape dynamics [4–7], which aims to
describe physical phenomena without ever referring to scale. Surprisingly, it turns out
that this is indeed possible. In doing so, we replace the usual symplectic geometry of
Hamiltonian systems with ‘contact geometry’ [8–12]. Further, we will see that we can
derive the dynamics of these observables from an action principle that is expressed only in
terms of the invariants themselves.

Symmetries from this general set are referred to as Dynamical Similarities [12–14]. It
has been shown that such symmetries are commonplace in physical systems and have
particularly important philosophical and mathematical implications in the cosmological
sector [15–18]. In previous work [12], we have dealt with the case where a single force
was acting and chosen the appropriate symmetry that kept the coupling of the relevant
potential fixed. In this paper, we will lay out the general case in which multiple forces are
acting on any number of particles and show how this further applies to homogeneous,
isotropic cosmological systems with multiple matter sources present.

Throughout this work, we will use superscripts to denote powers of objects, and
all indexing labels will be subscripts, regardless of the mathematical object in question.
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This goes somewhat against the usual convention of denoting elements of the tangent
bundle or cotangent bundle differently with the upper of lower indices but will help
disambiguate between, for example, the n-th momentum element of a set, pn and the n-th
power of momentum, pn. The paper is laid out as follows: in Section 2, we introduce the
reader to the Herglotz descriptions of physical systems, starting from the usual Lagrangian
description as a reference point. In Section 3, we show how the Kepler problem can be
described in these terms. Following this, in Section 4, we show how this generalizes to
an arbitrary number of forces with differing couplings acting on a two-particle system.
Section 5 further shows how the n-body system can be treated in this manner, and Section
6 demonstrates the application to Friedmann–Lemaître–Robertson–Walker cosmology.
Finally, the general implications of this work are given in Section 7.

2. Lagrangian and Herglotz Mechanics

Let us recapitulate the usual scheme of Lagrangian mechanics and contrast with the
generalizations provided by Herglotz. (In this paper, we will restrict ourselves to the case
of Lagrangians that are time independent and depend only on positions and their first
derivatives. This can all be generalized to include time dependence and higher derivatives,
but to do so would introduce unnecessary clutter to our presentation.) In this section, we
will only present a brief account of the standard results, full proofs of which can be found in
[19–22]. We consider a physical system defined on the tangent bundle over a configuration
space, M = TC, which is typically written in terms of positions qi and their velocities, q̇i.
Physical trajectories are those which extremize an action across a set of curves through
the space of qi, q̇i, where the action is the integral over time of a Lagrangian, L, which is a
function of these positions and velocities.

S =
∫ t f

ti

L(q, q̇)dt (5)

Extremization means that δS = 0, and after a textbook calculation, we arrive at the
usual Euler–Lagrange equations

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0 (6)

Given such a Lagrangian, we can construct the HamiltonianH, a function on phase
space, the cotangent bundle M′ = T∗C, through a Legendre transform. Supposing ∂2L

∂q̇i∂q̇j
is

positive definite, then we can uniquely set pi =
∂L
∂q̇i

and renderH:

H = ∑
i

pi q̇i −L (7)

from which we find Hamilton’s equations: q̇i =
∂H
∂pi

and ṗi = − ∂H
∂qi

, and a straightforward
calculation shows thatH is a constant:

dH
dt

= ∑
i

(
∂H
∂qi

q̇i +
∂H
∂pi

ṗi

)
= ∑

i
( ṗi q̇i − q̇i ṗi) = 0 (8)

In Equation (7), we introduced the symplectic potential, θ = ∑i pidqi, the exterior derivative
of which is the symplectic form. On phase space, the symplectic form, ω = ∑i dpi ∧ dqi,
can be used to form a ‘natural’ measure, Ω = ω∧n, where n is the dimension of the
configuration space [22–24]. This is the basis of much of statistical mechanics in the
Hamiltonian formalism. A key result is Liouville’s theorem: ω is constant in time. The
phase space volume occupied by a set of solutions as measured by Ω thus does not change
as the system evolves. Thus, time-independent Hamiltonians (and their associated actions)
describe conservative systems.
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Let us now consider the generalization of these systems to include the action, S, as
part of the Lagrangian LH(q, q̇, S); hence, LH is a function on TM×R. These were first
considered by Herglotz as a way to introduce non-conservative terms and have found
a variety of applications [25–30] across applied mathematics. Hence, we shall call these
‘Herglotz Lagrangians’. Extremizing the action, we find equations of motion similar to
the standard Euler–Lagrange Equation (6) and reduce to them in the case where LH is
independent of S:

d
dt

(
∂LH

∂q̇i

)
− ∂LH

∂qi
− ∂LH

∂S
∂LH

∂q̇i
= 0 (9)

The important distinction here is the extra ‘frictional’ effect introduced by the ∂LH

∂S term.
We refer to this as being frictional as it is the origin of the non-conservative terms; consider
the Hamiltonian formed following a Legendre transformation per Equation (7), again
introducing pi = ∂LH

∂q̇i
. This is a function on the contact manifold, T∗M × R, an odd

dimensional space, and we shall refer to such Hamiltonians as ‘contact Hamiltonians’.
Given a contact Hamiltonian,Hc, the equations of motion are:

q̇i =
∂Hc

∂pi
ṗi = −

∂Hc

∂qi
− pi

∂Hc

∂S
Ṡ = pi

∂Hc

∂pi
−Hc (10)

From these equations, the frictional nature of such systems becomes more readily apparent;
a direct calculation following Equation (8) reveals:

dHc

dt
= ∑

i

(
∂Hc

∂qi

∂Hc

∂pi
− ∂Hc

∂pi

∂Hc

∂qi
− pi

∂Hc

∂S
∂Hc

∂pi
+ pi

∂Hc

∂S
∂Hc

∂pi
−Hc ∂Hc

∂S

)
= −Hc ∂Hc

∂S
(11)

The counterpart to the symplectic potential on a contact manifold is the contact
form, η = −dS + ∑i pidqi. Since the contact manifold is odd dimensional, we cannot
form a measure on it simply by using powers of the equivalent of the symplectic form, dη.
However, Θ = η∧ dη∧n is a volume form on contact space. We can see the non-conservative
nature of contact Hamiltonians and their Herglotz descriptions from the evolution of η:

η̇ = −∂Hc

∂S
η → Θ̇ = −(n + 1)

∂Hc

∂S
Θ (12)

This means that the volume on the contact manifold occupied by a set of solutions is not
conserved through evolution but rather undergoes focussing/spreading. This allows us
understanding the apparent contradictions found in measures on spaces of inflationary
cosmological solutions, as the observables form a contact manifold—see [23,24,31,32]
for details.

To illustrate the results above, let us consider the description of a damped harmonic
oscillator. The Herglotz–Lagrangian is similar to the Lagrangian of a simple harmonic
oscillator but with a term linearly proportional to the action added:

Lh =
mẋ2

2
− kx2

2
− µS

m
(13)

from which the Herglotz–Lagrange Equation (9) is:

mẍ + µẋ + kx = 0 (14)

which is the equation of motion of a damped harmonic oscillator. The extra term, µẋ, arises
as a result of the action term in Lh and gives rise to energy dissipation in the evolution
of the system. The contact Hamiltonian, Hc, follows from the Legendre transform, with
p = mẋ:

Hc =
p2

2m
+

kx2

2
+

µS
m

(15)
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which has equations of motion

ẋ =
p
m

ṗ = −kx− µp
m

Ṡ =
p2

2m
− kx2

2
− µS

m
(16)

equivalent to Equation (14). Either by direct calculation from the equations of motion
or from Equation (11), we can see that the rate of energy loss is dHc

dt = − µHc

m . This is
unsurprising as solutions to the equations of motion show that the system asymptotes
towards a stationary point at the origin. Physically, we see that the frictional terms remove
mechanical energy from the system, leaving the oscillator to tend towards resting at the
minimum of its potential, x = 0.

To highlight the dissipative nature of the system, let us examine the evolution of the
volume form Θ = −dS ∧ dp ∧ dx. Again from direct calculation (an informative exercise
for the reader) or from Equation (12), we see that:

Θ̇ = −2µ

m
Θ (17)

and hence, the volume of the contact space occupied by a set of solutions will reduce
over time. On the space of solutions, this can be understood as all solutions asymptote
towards the same endpoint; hence, the volume they occupy on the contact space should
contract to that point. From a physical perspective, this is simply the friction leading all
such oscillators to the same resting point.

3. The Kepler Problem

Let us consider a dynamical system consisting of a two-body system with a Newtonian
central force. This we will treat as a toy model in which we demonstrate the mathematical
tools that allow for our analysis and present the logic behind our arguments. Our ultimate
goal is to express the behaviour of systems purely in terms of measurable quantities. A step
in this is to demonstrate the representational redundancies in expressing the behaviour of
a bound pair of particles as measured by an observer using a second such (approximately
isolated) pair as a rod and clock. Initially, however, we will avoid the associated mathemat-
ical clutter by a single two-body system in reduced variables and show how the system
can be expressed in these terms.

The solutions to the two-body system are known to be conic sections—circles, ellipses,
parabolas and hyperbolas. We will focus on bound systems—ellipses and circles—as
hyperbolas and parabolas will not work well as rods and clocks. Since we will be interested
in using a pair of particles as a measuring apparatus, we will posit that the separation of the
particles, r, is not directly measurable. The angle θ will be treated as directly observable, as
it may be thought of as being measured against some fixed background of stars, which, for
our purposes, are taken to be at an unmeasurable distance—the role of the stars is simply
to give us access to measuring the angle θ. Therefore, a complete solution is expressed in
terms of the eccentricity of the orbit, i.e., the angle of the major axis. Further, in comparing
two such ellipses, the phase of the orbit would be observable. Thus, the space of such
solutions is three dimensional, and the product of a circle and the unit disk is S1 × D2.
(Note that the interval can be replaced by R+ by working in q = e

1−e , for example; it is only
really the topology of the space of solutions that is important.)

For simplicity, we will set the masses of the particles to unity and work in the centre
of the mass frame. The Lagrangian for such a setup is:

L =
ṙ2

2
+

r2θ̇2

2
+

C
r

(18)

This gives rise to two second-order differential equations in r and θ. Thus, in order to
determine a solution, one must specify five pieces of information; the values of r, ṙ, θ, θ̇
and C. This over-describes the space of solutions, if as per our setup, we consider that
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θ(t) is our only direct observable. To see this, consider the transformation r → λr, C →
λ3C. Under such a change, if θ(t) is a solution of the equations of motion, it remains a
solution. Therefore, from observations of θ and time alone, we could not determine r
and C independently. The question then arises as to whether these redundancies can be
removed at the level of the dynamical system. Can we describe the system purely in terms
of quantities that describe distinct solutions?

The dynamics is derived from an action principle, the minimization of which provides
the equations of motion. We must further specify the value of the constant C and the
initial conditions. As we have noted previously, however, under transformations D in
which D : S→ λS, the equations of motion for the invariants of D are unchanged, as the
minimization of the action is unaffected by the transformation. In other words, if δS = 0,
then δDS = λδS = 0. Hence, a transformation that leaves the observables unchanged, but
under which L → λL has indistinguishable solutions. In this case, we will want D to leave
angles and the eccentricity unchanged.

In previous work, we have considered the case where D acts only on the tangent
bundle of the configuration space through altering r and ṙ (or in the Hamiltonian case, the
cotangent bundle through scaling r and Pr). Here, we will extend this analysis to also allow
transformations that alter the interaction strength C. Our motivation is that ultimately all
such interactions must be measured through the experiment. As such, the value of C is
to be determined by observations of r and θ (and possibly t, which, in turn, should be a
function of the observables). Hence, a sympathetic transformation that alters not only r and
t but also C in such a way that the relational motion is unaffected should not be apparent
to an observer.

If we consider a direct scaling, D : (θ, r, t, C)→ (θ, αr, βt, γC), we see that the require-
ment that we rescale the Lagrangian reduces to α2 = β2γ. The case in which we kept
C constant is apparent when we fix γ = 1, and the invariance of the system under time
reversal is reflected by the fact that β appears squared; choosing ±β is indistinguishable.
We can parametrize most of the space of transformations purely in terms of α, which sets
β = αχ and γ = α2−2χ, for any real number χ. There are three special choices. χ = 0
fixes the rate of time of the system but alters the size and the coupling C. χ = 1 fixes the
coupling C and rescales both size and time. Finally, a third choice is to fix α = 1, in which
case the transformations are given γ = β−2, which keeps the size fixed and alters the time
and coupling. We note here that since we leave the angle θ invariant, both the kinetic terms
have the same scaling.

We can equivalently express our systems in terms of a Hamiltonian, H, which is
a function on the cotangent bundle, and the symplectic form ω. Following a Legendre
transformation, these are given

0 := H =
P2

r
2

+
P2

θ

2r2 −
C
r
− E ω = dPr ∧ dr + dPθ ∧ dθ (19)

Since the Hamiltonian is a constant in this set-up, we have introduced the total energy of
the system, E, and hence, the system evolves on the constraint surfaceH = 0. The space of
possible solutions to this systemM is the product of the cotangent bundle T∗Q with two
copies of the positive reals (one each for E and C) subject to the constraint. Choosing initial
conditions and specifying a value of C uniquely determines E. We can characterise the
transformations D in terms of a vector field D onM, which leaves the constraint surface
unchanged. In other words, the action of D on the r, t and C is equivalent to the action of
D onM as both map between equivalent descriptions of the same solution.

It is our goal to first establish what transformations D can act onM such that they
preserve the observables, and then to remove the redundancy in description that such
transformations represent. Thus, we will first examine the action of D on the constraint and
then establish the set of variables that are invariant under such transformations. Finally,
we will express our system purely in terms of these invariants, eliminating the redundancy.



Symmetry 2021, 13, 1639 7 of 19

To determine D, we express a general form for a vector onM in terms of the a basis with
coefficients ai:

D = aPr

∂

∂Pr
+ ar

∂

∂r
+ aPθ

∂

∂θ
+ aθ

∂

∂θ
+ aC

∂

∂C
+ aE

∂

∂E
(20)

As θ is directly observable in our setup, we cannot let it change; hence, aθ = 0. Further, since
the Hamiltonian is a polynomial in the variables Pr, r, Pθ , C and E, to retain the functional
form, each ai must be a product of a real number ai and the variable along which the basis
vector points. Equivalently put, this means that D is a linear combination of logarithmic
derivatives, D = ∑i aixi

∂
∂xi

, along each of the variables, xi ∈ {Pr, r, Pθ , C, E}.
To retain the dynamics, these transformations can only act on the symplectic form

by linear rescaling. For simplicity, we normalize the length of D such that LDω = ω.
Furthermore, the form of constraint surface must be conserved, so LDH = ΛH for positive
real Λ. Together, these are enough to reduce the possibilities for the coefficients ai and
determine the possible forms of D. We will label such transformations in terms of the
scaling effect they have upon the length r:

Dζ := Pθ
∂

∂Pθ
+ ζr

∂

∂r
+ (1− ζ)Pr

∂

∂Pr
+ (2− ζ)C

∂

∂C
+ (2− 2ζ)E

∂

∂E
(21)

We see LDζ
H = (2− 2ζ)H. Note that by the construction, Dζ leaves invariant angles θ,

and it is easy to verify that the eccentricity is also unchanged (LDζ
e = 0). We again note

that there are special choices that can be made here: ζ = 0 leaves the length scale r fixed,
ζ = 1 fixes the energy, and ζ = 2 leaves the coupling fixed. Using these fields, we can
move along the constraint surface without altering the observable quantities. This can be
useful in translating between conventions; we could choose our solutions to be those on
which C = 1 and E = −1, for example, and thus, we can take any solution and Lie-drag
it along D1 until C = 1 and then along D2 until E = −1. We start with a six-dimensional
spaceM. Imposing the constraint H = 0 reduces this by one, and D1 and D2 move in a
two-dimensional plane within this surface. Thus, we are again left with a three-dimensional
space of distinguishable solutions.

Let us now turn our attention to describing dynamics in terms of these distinguishable
variables. Since moving along any of the Dζ does not change the observables, we will work
with the set of invariants of one of these; for the sake of simplicity, we pick D1. We will first
use D2 to fix E = −1, and we work with variables x for which LD1 x = 0. These form an
algebra on the basis A = Pr, θ, B = Pθ

r and µ = C
r . It was shown in [12] that the dynamics

of a Hamiltonian system with such a symmetry is equivalent to that derived from a contact
Hamiltonian. In this case, the contact Hamiltonian and contact structure are:

0 =: Hc =
A2

2
+

B2

2
− µ + 1 η = −dA + Bdθ + µdz (22)

From this and the definition in Equation (A9), we see that the Reeb vector field is R = ∂
∂A .

Since µ is composed of both a constant piece (C) and a piece that varies in time (r), it is
dynamical. In our system, this dynamical evolution is accounted for by promoting µ to
being a momentum on an extended contact manifold. In other words, we have taken µ and
considered it as the momentum conjugate to a dummy configuration variable, z. We do
this to illustrate the equations of motion more simply. As we shall see below, µ actually
plays a role that is similar to the constant energy in a symplectic system. As we show in
Equation (11), had we set the constraintHc to a non-zero value, this value would evolve in
time, and the equation of motion for this is precisely that of µ. The equations of motion can
be found from Equation (10)

θ′ = B B′ = −AB µ′ = −Aµ A′ =
B2

2
− A2

2
+ 1 (23)
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Under the identification x′ = rẋ, we see that this system encapsulates the same dynamics
as that described by Equation (19). However, for a complete solution here, we need to only
specify three pieces of information at a given event: θ, A, B, together with the constraint,
uniquely determine µ at this point and thus can be used to integrate the system. Let us
now explicitly solve this system. First, we note that the equations of motion for B and µ
allow us to note that:

dB
dµ

=
B′

µ′
=

B
µ
→ B = λµ (24)

for some constant λ. Then, we can express the motion in terms of θ to see:

d2B
dθ2 = λ− B A = −dB

dθ
(25)

and hence
B = B0 cos(θ − θ0) + λ A = −B0 sin(θ − θ0) (26)

and the Hamiltonian constraint gives:

B2
0 = λ2 − 2 (27)

and we arrive at a description of the system in terms of the eccentricity, e = B0√
B2

0+2
and the

angle to perihelion, θ0. It is a simple exercise to show that had we chosen to take the total
energy of the system, as described in Equation (19), to be non-negative, we would have
found the equivalent result for parabolic/hyperbolic trajectories.

Let us briefly recapitulate the information that we have required to solve our system.
To solve the system in the usual Hamiltonian (or Lagrangian) formulation, we would have
to specify numerical values for the radial momentum, the angular momentum, an initial
radial displacement, an initial angle and the strength of the Newtonian coupling. Upon
solving the system, we would see that the observable quantities under-determine this
data; we would need further input from the measuring apparatus (a rod and a clock, for
instance) to determine these. We could have judiciously chosen to set our initial conditions
at a specific event (for example, the vanishing of radial momentum at aphelion), but we
would still require external inputs to solve our system. Thus, by initially eliminating the
redundancy under dynamical similarity, we arrive at a more parsimonious description
of physics, which crucially only relies upon distinguishable, observable quantities. This
system is autonomous; it needs no further external inputs to be fully integrated. Once
integrated, we can choose to introduce a scale by giving the separation of the particles some
value at a given event and solve for the evolution of this scale by quadrature to recover the
usual description of dynamics. However, we reiterate that this is not necessary to find the
complete set of observables.

We can recover the original Hamiltonian symplectic system from the contact system
through symplectification [22]. The contact form is defined up to a multiplicative factor,
which we will, with foresight, label R. Let us promote this factor to a coordinate on the
configuration space. Then, we arrive at a symplectic form ωs defined by:

ωs = d(Rη) = dA ∧ dR + d(RB) ∧ dθ + d(Rµ) ∧ dz. (28)

Taking ωs to be a canonical symplectic form following dΠ ∧ dq for momenta Π and coordi-
nates q, this sets

ΠR = A Πθ = RB Πz = Rµ. (29)

Rendered in these variables, the contact Hamiltonian (from Equation (22)) is:

Hc =
Π2

R
2

+
Π2

θ

2R2 −
Πz

R
− 1 (30)
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which, in turn, is the usual symplectic system given in Equation (19), with the constant
C promoted to a momentum that the equations of motion leave constant. Thus, we see
that the usual symplectic system is just the symplectification of the underlying contact
system. For this reason, the symplectic system must necessarily be under-determined. The
observable quantities were all described by the contact system, and in symplectification,
we introduce a choice of the scale given by R.

As advertised, the contact system described in Equation (22) has a Lagrangian equiva-
lent described by the following Herglotz’ principle. The dynamics can be derived from an
action principle that can be stated as “Extremize A subject to A′ = θ′2

2 −
A2

2 + 1 given the
initial conditions for θ, θ′ and A.” Since A =

∫
A′dτ, the equation of motion for A′ plays

the role of a Lagrangian. We show in Appendix A how the equations of motion for θ can
be explicitly derived from this principle. Herein, we see that the complete system is only
described in terms of a three-dimensional set. From extremizing A, we find the equation
of motion for θ : θ′′ = −Aθ′. Treating A′ as a Lagrangian, we find that the associated
Hamiltonian is exactly that given by Equation (22).

4. Generalization of the Kepler Problem

Let us now consider a more general scenario than that of the Kepler system above. We
will allow for potentials that have general power laws in r and also an angular dependence.
The more general form of potentials allows us to prepare for multiple interacting bodies
since the forces acting on a particle will depend not only on its separation from other
particles but also the relative locations of those particles. Including different power laws in
r addresses the case of multiple forces acting. Likewise, this encompasses models in which
we approximate a complex object (such as an atom) as a particle and expand the potential
experienced by another particle in terms of a multipole expansion.

We consider a Lagrangian of the form:

L =
ṙ2

2
+

r2θ̇2

2
− ∑

i:Vi 6=0
CiVi(θ)ri (31)

in which the sum is taken over i such that the corresponding Vi is non-zero. Hereafter,
we shall drop the angular dependence in Vi. It is displayed above so that the explicit
form of the general potential can be seen. The Ci are coupling coefficients. This does
introduce a degeneracy into our description as rescaling both the angular component of the
potential and its associated coupling in reciprocal would not change the functional form
of the Lagrangian. To fix this, we are free to impose any normalization condition on the
angular part of the potential, such as setting the coefficient of the lowest non-zero term in
the Fourier series to unity. As an example, we could set V−2 = cos(θ) to model the effects
of a dipole moment.

The Hamiltonian of this system is:

H =
P2

r
2

+
P2

θ

2r2 + ∑
i:Vi 6=0

CiViri (32)

and we can combine the total energy of the system into C0 with the appropriate choice
of a constant term in V0. As noted in the Kepler example, we consider H to live on the
product of the phase-space of the system with one copy of the positive reals for each
non-zero coupling constant; M = T∗Q × Rk

+. There is an important distinction to be
made as although we will see that transformations D can move between systems with
differing coupling constants, these transformations respect the sign of each coupling. This
should be apparent in the Kepler case, as the solutions in which the coupling is attractive,
repulsive and simply not present have physically (topologically) distinct solutions. As an
example, closed circular orbits are not solutions to the Kepler problem if the coupling is
either repulsive or not present at all.
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We can again parametrize transformations in terms of their scaling effect upon length.
These are thus given:

Dζ := Pθ
∂

∂Pθ
+ ζr

∂

∂r
+ (1− ζ)Pr

∂

∂Pr
+ ∑

i:Vi 6=0
(2− (2 + i)ζ)Ci

∂

∂Ci
(33)

For simplicity, we will again choose to work with the invariants of D1. This is a choice we
make for reasons of simplicity of the mathematical representation. Other choices may be
more useful in certain physical situations. In the case of a total collision, for example, the
highest negative power of r in the potential would be expected to dominate dynamics, and
hence, it would be appropriate to work in a system in which its coupling was kept fixed.

As in the Kepler example, in the contact system, the couplings become dynamical

objects. We let µi = C
− 1

i
i r−1 for i 6= 0, and µ0 = C0, and thus, we can render the contact

system in terms of its Hamiltonian and contact form:

0 =: Hc =
A2

2
+

B2

2
+ µ0 + ∑

i:Vi 6=0
µ−i

i Vi η = −dA + Bdθ + ∑
i

µidzi (34)

Once again, we have introduced a set of dummy configuration variables zi and written
A = Pr and B = Pθ

r . The equations of motion for this system are simple when expressed in
terms of these variables. Since each of our coupling encoding momenta are conjugate only
to dummy variables, their evolution can expressed in terms of themselves and the effective
frictional term A alone.

µ′i = −Aµi → log(µi)
′ = −A (35)

B′ = −AB− ∑
i:Vi 6=0

µ−i
i

∂Vi
∂θ

(36)

Here, we reiterate that although one would not expect explicit θ dependence in the two-
body problem, we have retained the general form of these terms to provide insight into the
more general n-body problem in which angular distributions will matter.

Finally, the equation of motion for A can be found:

A′ =
B2

2
− A2

2
− ∑

i:Vi 6=0
(1 + i)Viµ

i
i (37)

Hence, we have a complete system in which there is a closed dynamical system described
by the three prior variables, A,B and θ, alongside the µi, which encapsulate information
about the couplings of the system. Again, this requires one fewer initial data point than
the usual Hamiltonian representation to close. In that case, we would need the values of
each of the Ci alongside three of r, Pr, θ, Pθ , with the fourth found through the Hamiltonian
constraint. In the contact system, we can discern the entire system from knowing (at one
time) the values of each of the µi and two of A, B, θ, again with the third determined by the
contact Hamiltonian as a constraint. The price we pay for this is that the µi are dynamical
objects albeit with simple equations of motion, whereas the Ci are constants.

From Equation (37), we can form a Lagrangian for our system in the same way as was
done in the Kepler system. We note that the equations of motion for the dummy variables
zi are given by the general form—see Equation (6). These are thus:

zi
′ = −iViµ

−(i+1)
i . (38)

Suppose we are given an initial value of Ai = A(τi) at time τi. At later times τf , we know
A f = A(τf ) is given by

A f = Ai +
∫ τf

τi

A′dτ (39)
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The equations of motion for our system can be found from the extremization of A f subject to

A′ =
θ′2

2
− A2

2
− ∑

i:Vi 6=0
(i + 1)

(
−zi
′

iVi

) i
i+1

Vi (40)

from which the Euler–Lagrange equations are (after some algebraic manipulation):

θ′′ = −Aθ′ − ∑
i:Vi 6=0

(
−zi
′

iVi

) i
i+1 ∂Vi

∂θ
= −Aθ′ − ∑

i:Vi 6=0
µ−i

i
∂Vi
∂θ

θ′

zi
′′ = zi

′
(

A(i + 1) +
∂Vi
∂θ

θ′

Vi

)
→ (log z′i)

′ = (i + 1)
(

A + (log Vi)
′) (41)

and the contact Hamiltonian is that given in Equation (34). The equations match those
derived from the contact Hamiltonian and, thus, those of the equivalent system when
written in the usual symplectic Hamiltonian or Lagrangian forms.

5. The N-Body System

Let us now consider the further generalization of the above to include more than
two particles in our description, the so-called “n-body problem” [33–38]. There is a long
history of study of such problems, with particular attention paid to the case of gravita-
tional attraction between the bodies. This is at the heart of modelling many interesting
phenomena from the dynamics and stability [39–41] of the solar system to the formation of
galaxies [42–44].

For simplicity, we will assume that each of the particles has the same mass. We will
work in centre of mass coordinates, so for n particles in R3, we thus need 3n− 3 coordinates.
We will transform from the usual Cartesian basis in which the positions are given as
x1, . . . , x3n−3 to a description in terms of the overall size of the system, R2 = ∑3n−3

l=1 x2
l and

positions on a 3n− 4-sphere, θ1, . . . , θ3n−4. We refer to this sphere as ‘shape space’ [34,36].
Thus, the Lagrangian for this system can be written in terms of these variables, their
velocities, and the metric on S3n−4 induced by embedding the unit sphere in R3n−3, gjk and
the potentials Vi :

L =
Ṙ2

2
+ ∑

j,k

R2gjk θ̇j θ̇k

2
−∑

i
CiRiVi(~θ) (42)

In this Lagrangian, the potentials will depend explicitly on the θj as the physical separations
of the particles are functions of these. We note again at this point that a rescaling that
fixes angles θi will affect all kinetic terms equally; thus, we are in the same position
as with the Kepler problem—the increase in the number of particles has no effect on
the choice of scalings that leave the form of the Lagrangian unchanged. Thus, we can
treat these in the same manner as above. In the Hamiltonian formulation, following a
Legendre transformation the Hamiltonian is written in terms of the conjugate momenta
PR = Ṙ, Pj = ∑l R2gjl θ̇l :

H =
P2

R
2

+ ∑
j,k

hjkPjPk

2R2 + ∑
i

CiRiVi(~θ) (43)

where hjk is the inverse of gjk, i.e., ∑l hjl glk = δjk, where δjk is the Kronecker delta. Since
rescaling affects all kinetic terms in the same way, we see that the dynamical similarities of
this Hamiltonian are a further generalization of those given in Equation (33):

Dζ := ∑
j

Pj
∂

∂Pj
+ ζR

∂

∂R
+ (1− ζ)PR

∂

∂PR
+ ∑

i:Vi 6=0
(2− (2 + i)ζ)Ci

∂

∂Ci
(44)
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As above, we will work with the case where ζ = 1 for ease of comparison, though the
construction is general, and absorb the energy E into V0 and thus work on the H = 0
surface. We will express our system in terms of the invariants of D1:

A = PR, Bj =
Pj

R
, and for i 6= 0 µi =

1

C
1
i

i R
, µ0 = C0 (45)

In these terms, the contact Hamiltonian and contact form are similar to those of Equation (34):

0 =: Hc =
A2

2
+ ∑

j,k

hjkBjBk

2
+ µ0 + ∑

i:Vi 6=0
µ−i

i Vi (46)

η = −dA + ∑
j

Bjdθj + ∑
i

µidzi (47)

The equations of motion we obtain from this are entirely analogous to those of Equations (35)–(37)
appropriately summed over indices. Of particular note is the equation of motion for
A, which, after a Legendre transformation, forms the Herglotz–Lagrangian. In close
correspondence with the above, this becomes:

Lh = A′ = ∑
j,k

gjkθ′jθ
′
k

2
− A2

2
− ∑

i:Vi 6=0
(i + 1)

(
−zi
′

iVi

) i
i+1

Vi (48)

where once again the z′i are the velocities related to the momenta µi through:

zi
′ = −iViµ

−(i+1)
i (49)

Thus, we see a complete and closed description of the dynamics of the n-body problem can
be written entirely in terms of the shape space, velocities thereon and the variable A, which
represents the apparent friction on shape space induced by changes of the overall size of the
system in the Euclidean space. Such a description is important for several reasons; the first
is that it may shed more light on the set of total collisions. These are characterised by R→ 0
in the decomposition we used for our Lagrangian. However, the Herglotz–Lagrangian (or
contact Hamiltonain) description of this system makes no reference to scale. Therefore,
this description may be better suited to describing total collisions in terms of shape space,
following, e.g., [37]. A second point of interest is that there are points at which the system
behaves as though there is no friction, those being when A = 0, which correspond to
the overall size neither increasing nor decreasing. These are what Barbour refers to as
“Janus points” [16,45], though we note that Janus points are not universally points of zero
expansion but have a more complex role. They mark distinguished points of the evolution
at which the system is instantaneously conservative. These are particularly interesting as
places at which to evaluate the measures of solutions [23,24,31,32,37] to assess whether a
particular configuration can be considered ‘typical’. In our setup, as there is no reference to
scale, the configuration space is shape space and hence compact. This alleviates some of
the problems of cut-offs and infinities that arise when attempting to measure the typicality
of such systems.

6. Cosmology

Cosmology offers a natural arena for examining the role of scale in physical systems. It
is well-known that within the ubiquitous Friedmann–Lemaître–Robertson–Walker (FLRW)
models, the scale factor, a, must be fixed to some value at a given time, with the usual
choice that the present value is set to unity. The choice of physical event at which to set this
(or equivalently the value to which it is currently set) has no effect on physical observables.
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The FLRW models are symmetry-reduced solutions to Einstein’s equations. After
enforcing homogeneity and isotropy on the spatial metric, the only remaining information
is the behaviour of the scale factor, a(t). The space-time metric is given:

ds2 = −dt2 + a(t)
(

dr2 + f (r)(dθ2 + sin2 θdφ2)
)

(50)

where the function f (r) depends on the curvature of the spatial slice; for flat spaces

(k = 0) f (r) = r, for closed spaces (k > 0) f (r) = sin(
√

kr)√
k

and for open spaces (k < 0),

f (r) = sinh(
√
−kr)√
−k

.
We derive the dynamics for the system from the Einstein–Hilbert Lagrangian written

in terms of the metric g and Ricci scalar R with matter determined by a Lagrangian Lm:

S =
∫ √

g(R + Lm)d4x (51)

wherein we have adopted the unit convention that 8πG = 1. Following the principle of
symmetric criticality, we can induce an action on the space of homogeneous, isotropic
space-times. We choose a fiducial cell in space to integrate over (this is arbitrary since the
spatial slices are homogeneous) and are left with

S =
∫

a3
(
−3

ȧ2

a2 +
3k
a2 + Lm(q, q̇)

)
dt (52)

and from this, the usual Euler–Lagrange equations give rise to the acceleration equation,
and the Hamiltonian is the Friedmann equation, which we will express in terms of the
Hubble parameter H = ȧ

a :

2Ḣ + 3H2 +
k
a2 = Lm (53)

H2 +
k
a2 =

Hm

3
(54)

whereHm is the matter Hamiltonian obtained from the matter Lagrangian. Note that the
inclusion of a cosmological constant can be achieved by adding a constant term to Lm (or
equivalentlyHm).

The freedom to fix the value of a at any time is reflected in the rescaling of the action
under: a → λa, k → λ2k, in which case we find that S → λ3S for real positive λ and
the matter degrees of freedom remain unaffected. It is important to note that the Hubble
parameter, H, is unaffected by this rescaling. In making this transformation, we have again
extended our dynamical similarity to act on the constant, k, and our equations of motion
remain unchanged. Further, we have kept the time coordinate, t, unchanged; thus, we map
between solutions with the same time parametrization.

In previous work [18], we have treated the general case in which the matter Lagrangian,
Lm, is left as a general function of q and q̇. Here, for clarity of exposition and to allow
more direct comparison to the usual cosmological literature, we will simplify the situation
by restricting ourselves to considering the matter to be a mixture of perfect fluids with a
constant barotropic parameter. The matter Hamiltonian,Hm, is usually decomposed into
components,Hm = ∑i ρi, that have differing pressures, Pi, and thus differing dependence
on the scale factor a. From the vanishing of the covariant derivative of the stress-energy
tensor in general relativity, we arrive at the continuity equation

ρ̇i + 3H(ρi + Pi) = 0 (55)
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For a perfect fluid, the pressure is proportional to the energy density, Pi = wiρi, with wi the
(constant) barotropic parameter. Hence, by solving Equation (55), we see that:

ρi =
κi

a3+3wi
(56)

This allows us to do two things: the first is to treat the curvature term as a matter term for
which w = −1/3. The second is to re-write Equation (54) as the Friedmann equation in its
more familiar cosmological form:

H2 =
8πG

3 ∑
i

κi

a3(1+wi)
(57)

wherein we have restored the Newton constant, G, for ease of comparison to the literature.
This makes clear that we can re-write an action for such systems purely in terms of the
scale factor and the constants:

S =
∫

a3

(
−3

ȧ2

a2 + ∑
i

ki

a3(1+wi)

)
dt (58)

for some constants ki. It is a simple exercise to show that the Euler–Lagrange equations for
this system give rise to the usual Friedmann and acceleration equations.

We are now in a place to demonstrate the dynamical similarity within this system:
as we noted above, the action is invariant if we rescale both the scale factor, a, and the
constants ki following

a→ λa ki → λ3(1+wi)ki causes S→ λ3S (59)

Thus, we can consider the quantities that are invariant under the transformation; H = ȧ
a

and ki
a3(1+wi)

. We will follow our method of promoting constants to dynamical variables to
allow their description in a Herglotz action:

A′ =
3A2

2
+ ∑

wi 6=0
ż

1+wi
wi

i (60)

wherein A = −H. There are a few interesting points to note about this. The first is that this
arises as an action principle that can be expressed as: ‘Extremize the Hubble parameter at
time t, subject to the acceleration Equation (53) and given an initial value H0 at time t0’. It
should be no surprise that this is in close correspondence with the action described in [18]
as it was derived in the same manner but for a simpler treatment of matter. The second is
that the Herglotz–Lagrange equations for zi become

d
dt

log(żi) = −3Hwi (61)

and hence, should we choose to reintroduce the scale factor a, then żi ∝ a−3w. However, this
is not strictly necessary for the evolution of the system; the system itself can be completely
integrated without ever referring to the scale factor and can be shown to be integrable even
in places where the symplectic system with the scale factor is not [17,46]. As we saw in
the Kepler example, the scale itself is not a necessary quantity to include in our treatment.
This can be carried forward by a Legendre transformation to the Hamiltonian description,
where the contact Hamiltonian is

Hc = −3A2

2
+ ∑

wi 6=0

1
wi

(
1 + wi

wi
Πi

)1+wi

(62)
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This makes clear why wi = 0 (the appropriate barotropic parameter for describing dust)
has been excluded from our summation; its contribution to evolution arises as the value
of the contact Hamiltonian, i.e., Hc = ρdust. Including this, we see that Equation (62) is
exactly the Friedmann Equation (54) reproduced in these variables.

In forming our dynamical similarity, we made the choice to keep the time parameter
fixed. This is not strictly necessary, as we could make the transformation:

a→ λa t→ λµt ki → λ3(1+w)−2µki causes S→ λ3−2µS (63)

Following this process leads to an action that is equivalent to that of Equation (60) but
written in a different lapse. In doing so, the value of the contact Hamiltonian will no longer
correspond to the energy density of dust but to some other matter component determined
through the scaling.

Finally, let us note the similarities and differences between the standard description of
cosmology provided by the actions of Equations (52) and (58). Dynamically, in terms of
physical observables, where the symplectic system is well-defined the two descriptions are
identical. An observer who measured, for example, the redshift of photons emitted by the
CMB in either case would arrive at the same conclusions. In terms of physical ontology,
and thus descriptive power, the two differ significantly. In the case of the former, we have
to endow the universe with an unobservable quantity, the scale factor, and the differing
fall-off of various matter types over time as a result of the change in this scale factor. In the
latter case, the differing behaviour is due to the frictional nature of the system; since it is
an inherently dissipative system, we should not be surprised that neither the total energy
density, nor its components, are conserved. The same driving factor is at the mathematical
root of both descriptions, it is the integral of the Hubble parameter over time. However,
in the original case, this was used to describe the expansion of the universe, whereas in
the latter, this is the amount of energy dissipated. For each action, the dynamics must be
specified in terms of either the constants κi at some time or some values of the velocities żi
at some instant. Since the new formulation has a different set of basic elements, it is unlikely
that quantizations of the two systems would remain identical. Following Dirac’s usual
procedure of replacing Poisson brackets with commutators, for example, they would differ
significantly as the Hubble parameter has no conjugate variable in the new formulation.

In this work, we have only considered a description of the FLRW cosmological models
with simple matter sources. Both of these restrictions can be relaxed, and a more general
prescription is given in [18], wherein the isotropy restriction is removed, considering
homogeneous cosmological solutions wherein the spatial slice is a manifold of the type
classified by Bianchi. Further, we leave the matter source as that which can be described
through a general matter Lagrangian, which is minimally coupled to gravity. The results
therein are equivalent to that which we have described here, as the scaling of the action is
closely related to that which we have discussed.

7. Discussion

In this paper, we have demonstrated several results at the heart of shape dynamics.
These are: (i) scaling symmetries between theories can be expressed as dynamical sim-
ilarities by extending our description to include the coupling constants of the theories
as velocities (or momenta in the Hamiltonian framework). This allowed us to show that
there is a description of systems which have such symmetries which makes no reference
to scale. (ii) The evolution of these systems can be expressed entirely in terms of ‘shapes’
(observables independent of scale). (iii) The elimination of this redundancy reveals that
these systems can be described in terms of a frictional system, whose dynamics can be
derived following an action principle of the Herglotz type. It is important to emphasise
that this symmetry does not imply scale invariance of physical observables, but that there
is a redundancy in the mathematical description of our theories, which we can eliminate.

The idea of rescaling the constants of our theory may seem somewhat esoteric. One
could argue that since we observe specific values of, for example, Newton’s constant, in
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our universe, we should restrict ourselves to descriptions of reality that use only this value.
However, such arguments are based upon a false premise—that it is possible to uniquely
determine these constants from within a system determined by their values. Rather, these
constants are determined by making observations of the universe itself. Hence, in a strict
sense, they are relationally determined. Newton’s constant can be determined following a
torsion balance experiment designed by Cavendish [47]. This is a physical device whose
dynamics are determined by similar laws to those described in Equation (2), though the
geometric set-up is notably more complicated. Nonetheless, the same scaling can be applied
to reveal indistinguishable observations. Therefore, in considering the space of physical
theories that cannot be distinguished from one-another by observation, we are justified in
considering the transformation of couplings alongside changes of positions and velocities.

We have considered three physical systems as exemplars of scaling symmetries: The
Kepler problem (and its generalizations), the n-body problem and homogeneous, isotropic
cosmologies. In each case, we see that there is a frictional description of the dynamics,
which makes no reference to the original scale. This description is autonomous; the
equations of motion of the scale invariant quantities do not depend on scale and can be
derived from an action principle, which also makes no reference to scale. Such descriptions
are particularly interesting at points where the scale of the system proves problematic in the
usual framework, such as the total collision of the n-body system and the initial singularity
of cosmology. In such cases, the evolution of the system can become ill-determined as,
for example, the equations of motion are no longer Lipschitz continuous, and hence, the
uniqueness of solutions cannot be guaranteed. In the case of cosmology, it has been shown
that the reduced, scale-free description does not suffer from such problems and thus can be
continued beyond these points [17,46]. This may be a hint that the scale-free description is
more fundamental and hence potentially a more fertile starting point for quantum theories
of gravity.

The frictional nature of our descriptions is seen through the focussing of measures,
following Equation (12). This has important implications for discussions of the arrow of
time (see, e.g., [15,36,37]). In several systems, the focussing is monotonic for large periods,
such as flat or open cosmologies and the n-body problem with gravitational forces and
positive total energy. This can be used to explain why there is an apparent thermodynamic
arrow of time, which points in the direction of measure focussing. Since we can always
‘symplectify’ a contact system [22], by introducing scale into our description, we arrive at a
conservative system. In such cases, Liouville’s theorem applies, and hence, measures on
phase space such as the natural measure Ω of Section 2 are preserved. This preservation
is brought about precisely by expanding or shrinking the extent of the measure along the
unobservable scale direction to compensate for the focussing on the observable directions.
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Appendix A. Derivations of the Kepler System

In this appendix, we will present a complete derivation of the systems described in
Section 3. In doing so, we will not rely directly upon the well-known Euler–Lagrange
equations and their less well-known contact counterparts but instead show the explicit
extremization of actions and derivation of Hamiltonian vector fields, etc. Our reason for
this is two-fold. In the first instance, this will provide a clear example of the similarities
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and differences between the two approaches and how they manifest in a physical system.
Further, this will show the workings of a contact system in a more easily accessible context
than the abstract use of, e.g., Darboux coordinates.

We first begin with the Lagrangian of Equation (18). At each point on the tangent
bundle, we consider the transformations

∆ : {r, ṙ, θ, θ̇} → {r + δr, ṙ + δṙ, θ + δθ, θ̇ + δθ̇} (A1)

The requirement that ẋ represents a time derivative of x forces δẋ = d
dt (δx) for configuration

variables x. Minimizing the action under such transformations, we see (dropping boundary
terms, which are specified by initial conditions and therefore cannot vary):

0 = δS =
∫ t f

ti

(
ṙδṙ + (2rθ̇2 − C

r2 )δr + r2θ̇δθ̇

)
dt

=
∫ t f

ti

(
(−r̈ + r2θ̇2 − C

r2 )δr− d
dt
(r2θ̇)δθ

)
dt (A2)

Setting the coefficients of δr and δθ to zero gives rise to the usual equations of motion of
the Kepler system.

Let us now compare with the system described through Herglotz principle: The first
significant change is that we only have three variables, A, θ and θ′. In the same way that
we had to relate the variations in position and velocity in the usual Lagrangian system, we
note that δθ′ = d

dτ δθ. Further, to ensure that we retain the relationship between A and A′,
we note that at each instant in the evolution, δA = ∂A′

∂θ′ δθ. For a rigorous derivation of this,
see, e.g., [22,25]. Once again, we ignore boundary terms to arrive at

0 = δA f =
∫ t f

ti

(
θ′δθ′ − AδA

)
dt

= −
∫ t f

ti

(
θ′′ + Aθ′

)
δθ dt (A3)

Hence, the minimization of this action gives the exact dynamics of our system.
Let us now compare the case of the Hamiltonian systems. In regular usage, we would

express our system in Darboux coordinates and use the well-known Hamilton equations
to find the evolution of the system or find the evolution of variables by taking Poisson
brackets with the Hamiltonian. However, we are again going to derive this in terms of
vector fields on a phase-space manifold. We show this so that the inner working of both the
Hamiltonian phase space description and the contact Hamiltonian system can be compared.

The Hamiltonian vector field XH satisfies [22]:

ιXHω = −dH (A4)

and hence, we can read off the equation of motion for each of our phase space variables by
comparing these one-forms. If we express the coefficients of the vector field in terms of the
phase space variables, we can write

XH = XPr

∂

∂Pr
+ Xr

∂

∂r
+ XPθ

∂

∂Pθ
+ Xθ

∂

∂θ
(A5)

Thus, we find from Equation (19) that the left-hand side of Equation (A4) is:

ιXHω = XPr dr− XrdPr + XPθ
dθ − XθdPθ (A6)

and the right-hand side is:

dH = PrdPr +
Pθ

r2 dPθ +

(
C
r2 −

Pθ

r3

)
dr (A7)
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and hence, comparing coefficient of the base one-forms, we see:

ṙ = Pr Ṗr =
P2

θ

r2 −
C
r2 θ̇ =

Pθ

r2 Ṗθ = 0 (A8)

Let us now contrast this with the derivation of the equations of motion from the contact
Hamiltonian system given in Equation (22). Since our system is already expressed in
Darboux coordinates, we could rely on the standard contact equations of motion given in
Equation (10). However, in more complex systems, it may be preferable to use dynamical
similarity to eliminate, for example, the dilation of objects used to define a rod, which, in
turn, will not necessarily render the system in Darboux coordinates. Hence, below, we
demonstrate in more detail how the dynamics of the system can be calculated as a flow on
the extended contact phase-space.

Given a one-form η, there is a vector R, called the Reeb vector, on the contact space satisfying:

η(R) = 1 ιRdη = 0 (A9)

and in Darboux coordinates, this is given by R = ∂
∂S . The contact Hamiltonian vector field

Y satisfies [11]
ιYdη + (ιYη)η = −dHc + (ιRdHc +Hc)η (A10)

In our set up, the contact Hamiltonian is a constraint, with the system arranged such that
Hc = 0 throughout. To find the evolution of the system, we consider a general vector field
on the extended contact space:

Y = YA
∂

∂A
+ YB

∂

∂B
+ Yθ

∂

∂θ
+ Yµ

∂

∂µ
+ Yz

∂

∂z
(A11)

The left-hand side of Equation (A10) is then:

ιYdη + (ιYη)η = −(ιYη)dA− YθdB + (YB + BιYη)dθ − Yzdµ + (Yµ + µιYη)dz (A12)

and the right-hand side is:

dHc − (ιRHc +Hc)η = BdB + ABdθ − dµ + Aµdz (A13)

Hence, equating coefficients and subtracting the Hamiltonian constraint (which is zero) to
A′ for clarity, we see:

A′ =
B2

2
− A2

2
+ 1 B′ = −AB θ′ = B µ′ = −Aµ z′ = 1 (A14)
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