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Abstract: We investigate a one-dimensional, many-body system consisting of particles interacting
via repulsive, short-range forces, and moving in an overdamped regime under the effect of a drag
force that depends on direction. That is, particles moving to the right do not experience the same
drag as those moving to the left. The dynamics of the system, effectively described by a non-linear,
Fokker–Planck equation, exhibits peculiar features related to the way in which the drag force depends
on velocity. The evolution equation satisfies an H-theorem involving the Sq nonadditive entropy, and
admits particular, exact, time-dependent solutions closely related, but not identical, to the q-Gaussian
densities. The departure from the canonical, q-Gaussian shape is related to the fact that in one spatial
dimension, in contrast to what occurs in two or more spatial dimensions, the drag’s dependence on
direction entails that its dependence on velocity is necessarily (and severely) non-linear. The results
reported here provide further evidence of the deep connections between overdamped, many-body
systems, non-linear Fokker–Planck equations, and the Sq-thermostatistics.

Keywords: non-linear Fokker–Planck equation; direction-dependent drag; H-theorem

1. Introduction

Non-linear Fokker–Planck equations (NLFPEs) [1] are nowadays recognized as valu-
able tools for understanding diverse aspects of the dynamics of complex systems. In
particular, they proved to be useful for the study of type-II superconductors [2,3], gran-
ular media [4], and self-gravitating systems [5,6]. A NLFPE determines the evolution of
a density ρ that, in many applications, describes the spatial distribution of particles in
the system’s configuration space [7]. In the power-law NLFPE, which has been studied
intensively in recent years, the time derivative of the density ρ is equal to the sum of two
terms: a diffusion term depending on a power of ρ, and a drift term depending linearly
on ρ [8,9]. In some applications [3], the power-law diffusion term provides an effective
description of the forces between the particles of the system, while the drift term accounts
for the external forces acting on the particles. Non-linear diffusion is useful also for the
analysis of other phenomena [10,11], such as the spread of biological populations [12,13]
and the transmission of information in a neural network [14].

The non-linear, power-law, Fokker–Planck equations satisfy an H-theorem [15] in-
volving the Sq, non-additive, entropic measures [16], whose associated maximum entropy
distributions are central to various recent developments in statistical physics, complex
systems theory, and related fields [17–24]. In some relevant situations, the non-linear,
power-law, Fokker–Planck equations admit q-Gaussian solutions, which are densities
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optimizing the Sq entropies under simple constraints [16,17]. The q-Gaussian solutions
highlight the connection linking the non-linear, Fokker–Planck dynamics with the Sq-
thermostatistics [8]. The connection, through its intricately ramified physical implications,
is related to lines of enquiry that are currently being pursued in diverse directions [25–32].
The relation between the NLFPEs and the Sq entropies helps to explain the successful
phenomenological account that the Sq-thermostatistics gives for various phenomena in
complex systems [17]. As a remarkable illustration, we can mention the experiments on
granular media reported by Combe et al. [4], which verified a quantitative prediction de-
duced from the Sq-thermostatistics. The experiments confirmed, within a 2% error and for
a wide range of experimental conditions, a scale relation that had been derived theoretically
in 1996, using the maximum Sq-entropy solutions of the power-law NLFPE [9].

Most works using the power-law NLFPEs to model overdamped systems of interacting
particles assume that the drag force acting on each particle is a linear and isotropic function
of the particle’s velocity. In complex systems, however, motion in one direction may not
be as easy as motion in a different direction. Simple experience using a comb can attest to
that. The drag force acting on a moving particle or agent arises from its interactions with
the medium in which the particle is moving. The relevant interactions may not be simple,
and may lead to departures both from linearity and from isotropy. Anisotropic friction
is not rare in nature. Among uncountable other illustrations, we may mention lateral
force microscope experiments in silicon, Si(100) surfaces [33], and similar phenomena
in bio-inspired, asymmetrically-structured surfaces [34]. In the case of over-damped
systems described by NLFPEs, isotropic, non-linear drag forces were considered in [35],
and non-isotropic, linear drag forces in [36]. In the present work, we investigate a system
with drag forces that are both non-linear and non-isotropic. To that effect, we consider a
one-dimensional system of confined and interacting particles that move under the effects
of drag forces depending on direction. We explore the effects that the direction-dependent
drag force has on the thermostatistics of the system. We derive a NLFPE governing
the system’s dynamics, and investigate its physically relevant properties. We obtain its
stationary-state solution, and identify a free-energy-like quantity, related to the Sq-entropy,
that satisfies an H-theorem. We prove that the NLFPE admits particular time-dependent
solutions that have a form akin to q-Gaussians.

2. The Non-Linear Fokker–Planck Equation with Power-Law Diffusion

The one-dimensional, power-law NLFPE is

∂ρ

∂t
= D ∂2

∂x2

[
ρ

(
ρ

ρ0

)1−q
]
− ∂

∂x
(ρK) , (1)

where D is the diffusion constant, K(x) is the drift force, and q is a dimensionless pa-
rameter characterizing the power-law non-linearity in the diffusion term. The diffusion
constant and the parameter q satisfy the inequality (D(2− q) > 0). The time-dependent
density ρ(x, t) and the constant ρ0 have dimensions of inverse length. The evolution
Equation (1) is sometimes cast as ∂P

∂t = D ∂2

∂x2 (P2−q)− ∂
∂x (PK), where P(x, t) = ρ(x, t)/ρ0

is a dimensionless quantity.
In one spatial dimension, the drift force K(x) can always be expressed as the gradient

of a potential function U(x), K(x) = − ∂
∂x U (in N dimensions this is not necessarily the

case, and one can have curl forces). According to the standard convention used in the
literature dealing with the Fokker–Planck equation, K and U are here referred to as a “force”
and a “potential”, even though these quantities do not have physical dimensions of force
and energy. As we explain in the next Section, K and U are, however, proportional to a force
and a potential energy, having the corresponding physical dimensions. The power-law
NLFPE admits a stationary solution of the q-exponential form [17],
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ρq(x) = ρ0 C expq[−βU(x)]

= ρ0 C [1− (1− q)βU(x)]
1

1−q
+ . (2)

The positive constants C and β satisfy the relation

(2− q)βD = Cq−1, (3)

and the q-exponential function is defined as

expq(x) = [1 + (1− q)x]
1

1−q
+ , (4)

where the + sign indicates that the function expq(x) vanishes when 1 + (1− q)x ≤ 0.
The potential U(x) is assumed to be bounded from below so that, with an appropriate
choice of the zero of energy, its minimum value is Umin = 0, and U(x) ≥ 0 for all x. It
is also assumed that the form of U(x) is such that the stationary distribution ρq(x) has a
finite norm, so that

∫
ρq(x) dx = I < ∞. We do not require that I = 1, because in many

applications ρ corresponds to the spatial distribution of particles in a multi-particle system.
The set of admissible q-values for which the density ρq has finite norm depends on the
form of the function U(x). The density ρq(x) can be regarded as a density optimizing the
q-entropy

Sq[ρ] =
k

q− 1

∫
ρ

[
1−

(
ρ

ρ0

)q−1
]

dx , (5)

under the constraints imposed by the norm I and the mean value 〈U〉 =
∫

ρ Udx of the
potential U(x) [8,17]. The positive constant k determines the units and physical dimensions
in which the entropy Sq is measured. In the limit q → 1, the usual linear Fokker–Planck

equation, ∂ρ
∂t = D ∂2

∂x2 ρ− ∂
∂x (ρK), is recovered, and the stationary solution (2) coincides

with the well-known, Boltzmann–Gibbs, exponential density, ρBG(x) = A exp
[
−βU(x)

]
.

Additionally, in this q→ 1 limit, relation (3) is reduced to βD = 1.
The NLFPE with power-law diffusion admits the free-energy functional,

F = 〈U〉 − D
k

Sq∗ [ρ], (6)

that satisfies the H-theorem [15]
dF
dt
≤ 0. (7)

The entropy Sq∗ appearing in the definition ofF corresponds to the entropic parameter
q∗ = 2− q. For integer values of q the NLFPE can be cast in a simpler form, because the
factor ρ

q−1
0 can be absorbed into the diffusion constant. By recourse to the re-scaled

diffusion constant D = Dρ
q−1
0 , the NLFPE can be written as

∂ρ

∂t
= D

∂2

∂x2 (ρ2−q)− ∂

∂x
(ρK) . (8)

It is worth mentioning that, even though (8) looks like the NLFPE corresponding to
a dimensionless density, the quantity ρ appearing in (8) still has physical dimensions of
inverse length.

3. Direction-Dependent Drag Forces and Non-Linear Fokker–Planck Equations

The power-law NLFPE provides an effective mean-field description of confined, over-
damped systems of particles interacting via short-range forces [2,3]. The particles are
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confined by an external potential W(x). The NLFPE governs the evolution of the density ρ
associated with the particles’ spatial distribution. The NLFPE approach to over-damped,
many-particle systems led to a deeper understanding of the thermostatistics of these many-
body systems. Two central assumptions made in [2], and in most other works dealing
with the NLFPE approach to over-damped systems, are that drag forces are isotropic and
that they depend linearly on velocity. It is, therefore, natural to wonder if the NLFPE
approach can still be implemented if the above assumptions are relaxed. The principal
aim of the present contribution is to address this question. To this end, we consider a
one-dimensional system where neither condition on the drag forces, not the isotropy nor
the linearity, is fulfilled.

Our system consists of particles of mass m confined by an external potential W(x).
The particles interact via short-range, repulsive forces and move under the effect of a
direction-dependent drag force. That is, the total force acting on one of the particles has
three components: the force FW derived from the confining potential, the force Fint due
to the interaction with the other particles, and the force Fdrag describing the direction-
dependent drag. Following the treatment advanced in [3], we neglect the effects of random
forces associated with standard thermal noise. The ensuing approximation is relevant both
from the practical and from the theoretical points of view. On the practical side, as was
shown in [3,7], there are important systems, such as systems of interacting vortices in
type-II superconductors, where typical temperatures are so low that the forces associated
with noise are several orders of magnitude smaller than the interaction forces, and can
consequently be neglected. On the theoretical-conceptual side, as was highlighted by
Nobre, Curado, and collaborators in a remarkable series of works, the study of over-
damped systems without thermal noise is of considerable interest, because they still
admit an effective thermostatitical treatment in terms of the non-additive Sq entropies
(see [3,7,27,28] and references therein).

The simplest part of the force acting on a particle is the one due to the confining
potential, which is FW = − ∂W

∂x . Let us consider the force due to the interaction with the
other particles. Since the particles interact through repulsive, short-range forces, each
particle interacts only with particles in its immediate neighborhood. Following [2], this
intuitive notion can be expressed in a quantitative way. The repulsive force acting on
a particle at x due to another one at x′ is f (|x′ − x|)(x − x′)/|x′ − x|, where f (r) > 0
is assumed to be a function of r = |x′ − x| decaying fast enough so that

∫ ∞
0 r f (r)dr

converges. Given the short-range nature of the interactions, it makes sense to assume that
the characteristic length scales of the system are large compared with the range of r-values
for which f (r) differs substantially from zero. Consequently, when computing the force
Fint(x) on a particle at x, originating from its interaction with other particles at different
locations x′, the density ρ(x′) can be approximated as ρ(x′) = ρ(x) + (x′ − x)( ∂

∂x ρ) (see [2]
for details). The force Fint(x) can then be expressed as

Fint = −g
∂ρ

∂x
, (9)

where g = 2
∫ ∞

0 r f (r)dr. The force Fint arises, for instance, when particles located at x1,2
interact through the Dirac’s delta potential V(x1, x2) = g δ(x2 − x1).

Now we consider a drag force whose strength depends on whether the particle moves
to the right or to the left. The dependence on velocity, including the dependence on
direction, can be expressed concisely as

Fdrag = −1
2

[
(αr + αl)v + (αr − αl)|v|

]
, (10)

where v = ẋ, and the constants αr,l > 0 correspond to the values adopted by the drag
coefficient for particles moving to the right or to the left. For v < 0 one has Fdrag = −αlv,
while for v > 0 one has Fdrag = −αrv. For v = 0, of course, the drag force vanishes.

The three contributions to the force felt by a test particle lead to the equation of motion
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mẍ = −g
∂ρ

∂x
− ∂W

∂x
− 1

2

[
(αr + αl)v + (αr − αl)|v|

]
. (11)

When the inertial term mẍ is negligible compared with other terms in (11), one obtains
the equation of overdamped motion,

1
2

[
(αr + αl)v + (αr − αl)|v|

]
= −g

∂ρ

∂x
− ∂W

∂x
. (12)

Solving for v one obtains

v = −1
2

[
αr + αl

αrαl

(
g

∂ρ

∂x
+

∂W
∂x

)
+

αr − αl
αrαl

∣∣∣∣g ∂ρ

∂x
+

∂W
∂x

∣∣∣∣ ]. (13)

The particle density ρ(x, t) of a system of interacting particles moving according
to (12) obeys a continuity equation ∂ρ

∂t +
∂J
∂x = 0, with a density current J = ρv given by

J = −ρ

2

[
αr + αl

αrαl

(
g

∂ρ

∂x
+

∂W
∂x

)
+

αr − αl
αrαl

∣∣∣∣g ∂ρ

∂x
+

∂W
∂x

∣∣∣∣ ]. (14)

The resulting continuity equation reads

∂ρ

∂t
=

∂

∂x

{
ρ

2

[
αr + αl

αrαl

(
g

∂ρ

∂x
+

∂W
∂x

)
+

αr − αl
αrαl

∣∣∣∣g ∂ρ

∂x
+

∂W
∂x

∣∣∣∣ ]} , (15)

which has the form of a non-linear Fokker–Planck equation. Making the identifications
D → g

2αl
and U → W

2αl
, and introducing the dimensionless parameter

ε = 1− αl
αr

, (16)

the Fokker–Planck Equation (15) can be written as

∂ρ

∂t
=

∂

∂x

{
ρ

[
(2− ε)

(
D

∂ρ

∂x
+

∂U
∂x

)
+ ε

∣∣∣∣D ∂ρ

∂x
+

∂U
∂x

∣∣∣∣ ]} . (17)

Therefore, if one introduces direction-dependent drag forces in a many-body sys-
tem of the kind considered in [2], the resulting dynamics is governed by the evolution
Equation (17).

It is worth to emphasize that the direction-dependent drag forces are both anisotropic
and non-linear. The parameter ε characterizes the departure from isotropy and linearity.
When the parameter vanishes the drag forces become linear and isotropic, and the evolution
Equation (17) reduces to the power-law NLFPE (8) with q = 0, which is relevant for the
study of interacting vortices in type-II superconductors [2,3,7]. The one-dimensional
instance of a drag force that depends on direction is special because it is not possible to
have a one-dimensional, linear drag force that depends on direction. The only possible
form of a one-dimensional, linear drag force is Fdrag = −αv (with α > 0), which obviously
describes a direction-independent drag, since particles moving to the right or to the left have
the same drag coefficient α. To have a one-dimensional, direction-dependent drag force, it is
necessary to depart from linearity. That is, in one dimension, direction-dependence of drag
is necessarily accompanied by non-linearity. In N > 1 spatial dimensions, the situation is
different. It is possible to have a linear, anisotropic drag force of the form Fdrag = −A · v,
where A is a positive-definite N × N matrix playing a role akin to an anisotropic drag
coefficient. Isotropic drag is obtained when A is proportional to the identity matrix.
The problem studied in the present work has the peculiarity of involving a drag force that
is both anisotropic and non-linear. This kind of scenario can be extended to higher spatial
dimensions. In multi-dimensional problems, however, anisotropy and non-linearity may
be combined in a myriad different ways, most probably requiring a case-by-case treatment.
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4. Stationary Solutions and H-Theorem for Over-Damped Systems with
Position-Dependent Drag forces

In this section, we prove that the evolution Equation (17) admits a stationary solution
of the q-exponential form, and that it satisfies an H-theorem related to the Sq entropies.
To this end, it is enlightening to investigate a more general evolution equation, that is
defined for a continuous range of q-values, and may be connected with various applications
of the Sq-thermostatistics. We consider the evolution equation,

∂ρ

∂t
=

∂

∂x

{
ρ

2

[
(2− ε)

∂

∂x

(
D
(

2− q
1− q

)(
ρ

ρ0

)1−q
+ U

)

+ ε

∣∣∣∣∣ ∂

∂x

(
D
(

2− q
1− q

)(
ρ

ρ0

)1−q
+ U

) ∣∣∣∣∣
] }

, (18)

that reduces to (17) for q = 0 and D = D/ρ0. The constant ρ0 with dimensions of inverse
length is introduced in order to work with dimensional quantities, as was done when
studying the NLFPE (1). It is assumed, again as was done with (1), that (2− q)D > 0.

On first acquaintance, the differential Equation (18) may not be pleasing to the eye.
However, it has some physically relevant, nice properties that can be studied analytically
and attest to its close links with the Sq-thermostatistics. In particular, it has a stationary
solution of the q-exponential form, and it satisfies an H-theorem related to the Sq entropies.

4.1. Stationary Solutions

We now prove that, for appropriately chosen parameters A and β, the q-exponential density,

ρq(x) = ρ0C[1− (1− q)βU(x)]
1

1−q
+ , (19)

constitutes a stationary solution of the NLFPE (18). It follows from (19) that, within the
interval where ρq 6= 0,

Cq−1

(1− q)β

(
ρq

ρ0

)1−q
+ U =

1
(1− q)β

, (20)

implying that, for all x,

ρq
∂

∂x

[
Cq−1

(1− q)β

(
ρq

ρ0

)1−q
+ U

]
= 0 . (21)

Choosing now values of the parameters A and β satisfying Cq−1 = (2 − q)Dβ,
Equation (21) can be re-expressed as

ρq
∂

∂x

[
(2− q)D

1− q

(
ρq

ρ0

)1−q
+ U

]
= 0 . (22)

Comparing now (22) with (18), we can verify by inspection that the density ρq given
by (19) is actually a stationary solution of (18). Remarkably, the stationary density (19) has
the same shape as the stationary density (2) of the NLFPE (1) corresponding to systems
with isotropic and linear drag forces. We see that the stationary densities of confined, over-
damped systems with short-range, repulsive forces are quite robust. For one-dimensional
systems, the stationary densities are not affected by the nonlinearity and the anisotropy
associated with the direction-dependence of the drag forces. The robustness makes physical
sense, because the stationary densities are determined by conditions that do not involve
the drag forces directly. Stationary densities correspond to configurations of the system
for which the interaction forces between the particles are balanced by the confining forces
arising from the external potential. The robust character of the stationary densities may
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be of considerable significance for the Sq-thermostatistical theory, since some of its most
important applications are based on the maximum Sq-entropy, stationary densities of
systems described by NLFPEs.

4.2. H-Theorem

Now we show that the NLFPE (18) satisfies an H-theorem. We consider the free-
energy-like quantity

G =
∫

ρ

[
D

1− q

(
ρ

ρ0

)1−q
+ U

]
dx. (23)

The time derivative of G is

dG
dt

=
∫

∂ρ

∂t

[
D
(

2− q
1− q

)(
ρ

ρ0

)1−q
+ U

]
dx. (24)

We now substitute in (24) the right hand side of (18) for the time derivative ∂ρ
∂t . After

some calculations that include an integration by parts, one obtains

dG
dt

=−
∫

ρ

{
D
(

2− q
1− q

)
∂

∂x

[(
ρ

ρ0

)1−q
]
+

∂U
∂x

}2

dx

− ε

2

∫
ρ

(
D
(

2− q
1− q

)
∂

∂x

[(
ρ

ρ0

)1−q
]
+

∂U
∂x

)
×

×
{
−
(
D
(

2− q
1− q

)
∂

∂x

[(
ρ

ρ0

)1−q
]
+

∂U
∂x

)
+

∣∣∣∣∣D
(

2− q
1− q

)
∂

∂x

[(
ρ

ρ0

)1−q
]
+

∂U
∂x

∣∣∣∣∣
}

dx

≤ 0 ,

(25)

which is the H-theorem satisfied by the Fokker–Planck Equation (18). The equality dG
dt = 0

holds only for the stationary solutions of (18). There is a close connection between the
H-theorem (25) and the Sq entropies. The H-theorem can be expressed as

d
dt

[
〈U〉 − D

k
Sq∗ [ρ]

]
≤ 0 , (26)

where q∗ = 2− q. We see here another remarkable invariance of the NLFPEs describing
over-damped systems. The forms of the H-theorem, and of the associated free-energy-like
functional, are preserved when one considers the anisotropy and non-linearity associated
by direction-depending drag forces. One should be aware, however, that the rate of change
dG/dt of the free energy does depend on the parameter ε characterizing the amount of
anisotropy exhibited by the drag forces.

5. An Example with a Time-Dependent Solution Having Asymmetric q-Gaussian Form

We now consider an exact analytical solution, of an asymmetric, q-Gaussian form, for
the dynamics of an un-confined system of particles with repulsive, short-range interactions
doing over-damped motion under direction-dependent drag forces. The system evolves
according to the non-linear diffusion equation,

∂ρ

∂t
=

∂

∂x

{
ρ

[
(2− ε)D

∂ρ

∂x
+ ε

∣∣∣∣D ∂ρ

∂x

∣∣∣∣ ]} , (27)

which constitutes a particular instance of the NLFPE (17), corresponding to a vanishing
confining potential, U(x) = 0. At locations where ∂ρ

∂x > 0, the right-hand side of (27) is

∂

∂x

[
2 D ρ

∂ρ

∂x

]
, (28)
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which corresponds to the power-law, non-linear, diffusion equation with diffusion coeffi-
cient D. On the other hand, at locations where ∂ρ

∂x < 0, the right-hand side of (27) is

∂

∂x

[
2(1− ε) D ρ

∂ρ

∂x

]
, (29)

which corresponds to an effective diffusion coefficient equal to (1− ε) D.
The general strategy for constructing an exact solution of (27) is based on matching

two evolving half q-Gaussians of different widths, given by A(t) expq(−β1(t)x2) and
A(t) expq(−β2(t)x2). For x > 0 the solution is described by A(t) expq(−β1(t)x2), and
for x < 0 by A(t) expq(−β2(t)x2) (notice that A(t) is the same in both parts). The time-
dependent parameters A(t) and β1,2(t) evolve in such a way that the right-part (x > 0)
of the solution satisfies a power-law diffusion equation with effective diffusion constant
(1− ε)D, while the left-part (x < 0) satisfies a similar equation with effective diffusion
constant D. The right and the left parts have to match each other properly at x = 0, so that
the combined density satisfies the differential Equation (27) also at that point. We shall
prove that the two halves of the solution do match in an appropriate way, provided that
the initial values of the parameters β1,2 satisfy the relation β2(0) = (1− ε)β1(0).

Replacing the ansatz,

ρ(x, t) = A(t)
[

1− 1
4
(1− q)

(
β1(t)(x + |x|)2 + β2(x− |x|)2

)] 1
1−q

+
, (30)

into the diffusion Equation (27), one verifies that, for q = 0, the ansatz (30) is a solution
of (27) provided that the time-dependent parameters A and β1,2 adopt adequate initial
conditions A(0) and β1,2(0), and satisfy an appropriate set of coupled ordinary differential
equations of motion. For the rest of this section we consider the case q = 0 of (30). First,
notice that

∂ρ

∂x
= −2Aβ1x for x ≥ 0 ,

∂ρ

∂x
= −2Aβ2x for x < 0 .

(31)

Inserting the ansatz (30) into the diffusion Equation (27), and using the
relations (31), one verifies that (30) satisfies (27), if the time-dependent parameters A(t)
and β1,2(t) comply with the set of coupled, ordinary differential equations

dA
dt

= −4 (1− ε)D A2 β1 ,

dβ1

dt
= −8 (1− ε)D A β2

1 ,

dβ2

dt
= −8 D A β2

2 .

(32)

We assume that A(0) > 0 and β1,2(0) > 0. The equations of motion (32) guarantee
that A(t) > 0 and β1,2(t) > 0 for all times t > 0. It follows from the first two equations
in (32) that

2
A
β1

dA
dt
−
(

A
β1

)2 dβ1

dt
=

d
dt

(
A2

β1

)
= 0 , (33)

and

A(t)
A(0)

=

(
β1(t)
β1(0)

) 1
2
. (34)

Combining the second and third equations in (32) one gets
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1
β2

1

dβ1

dt
= (1− ε)

1
β2

2

dβ2

dt
, (35)

implying that d
dt

(
β−1

1 − (1− ε)β−1
2

)
= 0. Therefore, if the relation

β2 = (1− ε) β1 (36)

holds at t = 0, it holds at all times. Equation (36) implies that, for solutions of (32)
complying with the initial conditions β2(0) = (1− ε) β1(0), the quantities A(t) and β2(t)
satisfy also the differential equation

dA
dt

= −4 D A2 β2 , (37)

from which the relation (34) can be extended to

A(t)
A(0)

=

(
β1(t)
β1(0)

) 1
2
=

(
β2(t)
β2(0)

) 1
2
. (38)

The above calculations guarantee that the ansatz (30) satisfies the differential
Equation (27) for x < 0 and for x > 0. To prove that the ansatz constitutes a full so-
lution to (27), we have now to prove that (27) is also satisfied at x = 0. First, notice that
both ρ(x) and ∂ρ

∂x are continuous at x = 0,

lim
x→0+

ρ = lim
x→0−

ρ = A(t) ,

lim
x→0+

(
∂ρ

∂x

)
= lim

x→0−

(
∂ρ

∂x

)
= 0 .

(39)

We now consider the behavior of the left and right-hand sides of Equation (27) at
x = 0. The left-hand side is simply given by

(
∂ρ
∂t

)
x=0

= dA
dt . As for the right-hand side

of (27) at x = 0, we have

lim
x→0+

∂

∂x

{
ρ

[
(2− ε)D

∂ρ

∂x
+ ε

∣∣∣∣D ∂ρ

∂x

∣∣∣∣ ]} = −4(1− ε)D A2 β1 , (40)

and

lim
x→0−

∂

∂x

{
ρ

[
(2− ε)D

∂ρ

∂x
+ ε

∣∣∣∣D ∂ρ

∂x

∣∣∣∣ ]} = −4 D A2 β2 . (41)

The relation (36) between β1 and β2 implies that the limits appearing
in (40) and (41) have the same value, and it follows from (32) that both limits are equal
to
(

∂ρ
∂t

)
x=0

. Therefore, the ansatz (30) constitutes a solution of the non-linear diffusion
Equation (27).

We shall refer to the density (30) as an “asymmetric q-Gaussian”. It has cut-off points

at x+ = β
− 1

2
1 and x− = −β

− 1
2

2 (such that the density vanishes outside the interval [x−, x+]).
The normalization of (30) is given (for q = 0) by

N =
∫ x+

x−
ρ(x, t)dx =

2A
3

(
β
− 1

2
1 + β

− 1
2

2

)
. (42)

It follows from the relations (38) that dN/dt = 0 and normalization is conserved.
The conservation of N can also be derived directly from (27) for general solutions of the
non-linear diffusion equation. Taking (34) into account, (32) leads to
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dA
dt

= −4 (1− ε)D
(

β1(0)
A(0)2

)
A4 , (43)

whose solution is

A(t) = A(0)
[

1 +
t
τ

]− 1
3

, (44)

with

τ =
1

12 (1− ε)Dβ1(0)A(0)
. (45)

The time dependence of β1 is then

β1(t) = β1(0)
[

1 +
t
τ

]− 2
3
. (46)

As the time-dependent density ρ evolves, both A and β1 decay in a q-exponential
way, with effective values of q given by q(relax)

A = 4 and q(relax)
β = 5/2 (see (44) and (46)).

The evolution of the asymmetric, q-Gaussian density (30) is illustrated in Figure 1, where
the density ρ is plotted for different values of t/τ.
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Figure 1. Time evolution of the asymmetric, q-Gaussian solution (30) to the non-linear diffusion
Equation (27). The density ρ(x, t) is depicted as a function of x for different values of t/τ. The solution
corresponds to D = 1 and q = 0, and to initial conditions given by A(0) = 1, β1(0) = 1, β2(0) = 1/4.
The density ρ is measured in units of A(0), and the coordinate x in units of β1(0)−1/2.

For the asymmetric, q-Gaussian solution the quantity satisfying the H-theorem evolves
according to

G =
4
5

DNA =
4
5

DNA(0)
[

1 +
t
τ

]− 1
3

, (47)

meaning that it also decays in a q-exponential fashion, with q(relax)
G = q(relax)

A . The asymp-
totic decay of G with time is, therefore, as t−1/3.

For ε = 0, the drag forces become linear and isotropic, the condition (36) reduces to
β1 = β2, and the density (30) coincides with the well-known, time-dependent, q-Gaussian
solution of the power-law diffusion equation.
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6. Exact Solutions for Non-Linear Diffusion with General q-Values

For general q-values satisfying (2− q)D > 0, the non-linear diffusion equation,

∂ρ

∂t
=

∂

∂x

{
ρ

2

[
(2−ε)

∂

∂x

(
D
(

2− q
1− q

)(
ρ

ρ0

)1−q
)

+ ε

∣∣∣∣∣ ∂

∂x

(
D
(

2− q
1− q

)(
ρ

ρ0

)1−q
)∣∣∣∣∣
]}

,

(48)

also admits exact solutions of the asymmetric, q-Gaussian form (30). For the solution to
be normalizable it is required that q < 3. It is possible to prove, by recourse to arguments
similar to those developed in the previous subsection, that the ansatz (30) is a solution
of the non-linear diffusion equation, if the initial values of the parameters β1,2 satisfy
β2 = (1− ε)β1, and the time dependence of A(t) and β1,2(t) obeys the set of coupled,
ordinary differential equations

dA
dt

= −2(2− q)(1− ε)Dβ1 A
(

A
ρ0

)1−q
,

dβ1

dt
= −4(2− q)(1− ε)Dβ2

1

(
A
ρ0

)1−q
,

dβ2

dt
= −4(2− q)Dβ2

2

(
A
ρ0

)1−q
.

(49)

For ε = 0, the asymmetric, q-Gaussian form (30) becomes symmetric, and the above
equations coincide with those determining the q-Gaussian solution of the non-linear Fokker–
Planck equation [8] for the the case of zero potential. The differential Equations (49) imply
that the condition β2(t) = (1− ε)β1(t) is preserved during the evolution, and also that
A(t)/A(0) = (β1(t)/β1(0))1/2 = (β2(t)/β2(0))1/2. This, in turn, guarantees that the
density’s normalization N, which is proportional to A

(
β−1/2

1 + β−1/2
2

)
, is constant in time.

7. Conclusions

We have investigated one-dimensional systems of confined particles with short-range,
repulsive interactions, that perform over-damped motion, under direction-dependent drag
forces. That is, particles moving to the right experience drag forces of different strength than
those moving to the left. We obtained a family of non-linear Fokker–Planck equations that
govern the dynamics of these systems, and explored their main properties. We found that
the Fokker–Planck equations have maximum Sq-entropy, stationary solutions, and that the
equations comply with an H-theorem. There exists a free-energy-like functional, equal to a
linear combination of an entropy Sq∗ (with q∗ = 2− q) and the mean value of the confining
potential, whose time derivative is always non-positive. We also obtained, for the case of
unconfined systems, analytic, time-dependent solutions of the corresponding non-linear
diffusion equation. The solutions exhibit the form of asymmetric, q-Gaussian densities
and include instances with q > 1, for which the q-Gaussians have long tails that decay
asymptotically as power-laws.

The present work provides further evidence of the strong links between the thermo-
statistics of over-damped, many-body systems, the associated non-linear Fokker–Planck
equations, and the Sq entropies. For the systems studied here, the links are preserved even
when considering drag forces that are both anisotropic and non-linear.
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