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Abstract: The Dirac equation with chiral symmetry is derived using the irreducible representations of
the Poincaré group, the Lagrangian formalism, and a novel method of projection operators that takes
as its starting point the minimal assumption of four linearly independent physical states. We thereby
demonstrate the fundamental nature of this form of the Dirac equation. The resulting equation is then
examined within the context of spacetime and CPT symmetries with a discussion of the implications
for the general formulation of physical theories.
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1. Introduction

Since its introduction in 1928 numerous modifications of the Dirac operator [1] have
been proposed resulting a number of so-called generalized Dirac equations. Such gen-
eralizations have been invoked for the purposes of unifying leptons and quarks [2–4],
accounting for the three families of elementary particles [5–9], including ad hoc a pseu-
doscalar mass [10], and extending the Dirac equation to distances comparable to the Planck
length [11]. One most recent modification of the Dirac equation has included the effects of
chiral symmetry [12]. In this generalization, the most general first order partial differential
equation for bispinors is constrained via Poincaré invariance is derived, resulting in the
chiral Dirac equation (CDE) which differs from the original by an additional degree of
freedom in the form of the chiral angle. Specific solutions to this equation necessitate a
specific choice of chiral basis. These results have been used to explain smallness of neutrino
masses and some properties of dark matter [12].

With the benefit of hindsight and the accumulation of experimental evidence, it may
be said that one of the great insights of Driac was the observation that elementary particles
exhibit a quantization of both angular momentum (spin-up/spin-down) and sign of the
energy (matter/antimatter). Modern particle physics has reinforced this picture for free
particles of a given flavor independent of internal (gauge) symmetries. In this work,
we demonstrate how the assumption of two quantized characteristics is equivalent to the
chiral form of the Dirac equation (CDE), Dirac’s original equation being a special case.

In an attempt to demonstrate these result holistically, the present paper is organized as
follows: Section 2 presents three different methods of deriving the CDE operator beginning
with the standard group theory and Lagrange formalism derivations before presenting
a novel derivation from the assumption of the existence of independent physical states
and their corresponding orthogonal idempotents (projection operators) paramaterized by
physically meaningful quantities; Section 3 then sets out a detailed investigation into the
spacetime (continuous) and CPT (discrete) symmetries underlying the derived CDE, their
role and constraints in the derivation procedures, and the physical implications resulting
from this equation; Section 4 is devoted to conclusions.
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2. Methods to Derive Chiral Dirac Equation
2.1. Group Theoretical Derivation

To derive the Dirac equation with chiral symmetry, we begin by following
Wigner [13,14] and identifying particles with the induced irreducible representations (ir-
reps) of the Poincaré group P = SO(3, 1)⊗s T(3+ 1), with SO(3, 1) being a non-invariant
Lorentz group of rotations and boosts and T(3 + 1) an invariant subgroup of spacetime
translations. The condition that the Dirac spinor wavefunction transforms as one of the
irreps of T(3+ 1) ⊂ P extended by parity can be written as the following matrix eigenvalue
equation [12].

Xµ∂µψ = −Yψ , (1)

where µ = 0, 1, 2 and 3 and

ψ =

[
χL
χR

]
(2)

is the Dirac spinor wavefunction with χL and χR being two-component bispinors. Here Xµ

and Y are five 4× 4 which nontrivially mix the spinor components. To determine form
of these matrices, we constrain them to satisfy covariant conditions under the Lorentz
transformations of SO(3, 1), and find the resulting Poincaré invariant chiral Dirac equation
(CDE) [12] to be given by

(iγµ∂µ −meiαγ5
)ψ = 0 , (3)

where α is the chiral angle. This angle appears as a necessary degree of freedom as it is
unconstrained by the covariant transformation constraints.

Because this method of deriving the CDE is based explicitly on the symmetries of
Minkowski spacetime, we may be certain the resulting equation is Poincaré invariant.
Furthermore, The CDE correctly accounts for all four sets of states (spins up and down,
matter and antimatter), and its solutions have important physical implications [12]. Being
Poincaré invariant and local, the CDE satisfies the two basic characteristics required for
the equation to be fundamental. Two other characteristics are gauge invariance and the
existence of Lagrangian. Since we consider only free elementary particles, gauge invariance
is not discussed here. We now demonstrate that the CDE can be formally derived from
Lagrangian formalism, which is sufficient to call the CDE the fundamental equation
of physics.

2.2. Derivation from Lagrangian Formalism

The Lagrangian formalism is a powerful and independent way to derive a dynamical
equation. The Lagrangian for the Dirac equation (α = 0 in Equation (3)) is very well-known
and presented in textbooks (e.g., [15,16]) without derivation. In fact, the Lagrangian was
not a part of the Dirac’s original paper where the equation first appeared [1]. An interesting
attempt to obtain the Dirac Lagrangian is presented and discussed in [17]. Let us briefly
review the main points of this attempt and then use them to obtain the Lagrangian for
Equation (3).

In case α = 0, Equation (3) reduces to the Dirac equation

(iγµ∂µ −m)ψ = 0 , (4)

which describes a free, massive, non-chiral and spin 1/2 relativistic elementary parti-
cle [1,15–17].

To obtain the Lagrangian density for this equation, we follow [17] and require that
the Lagrangian is a hermitian, single-valued proper scalar or pseudo-scalar in ψ and ∂µψ.
Since ψ has the double-valued properties under rotations, the terms in the Lagrangians
must have even numbers of ψ. The simplest proper scalar is ψ̄ψ, where ψ̄ is the Dirac
adjoint. Now, the construction of a scalar kinetic term has to be done with caution as ∂µψ
requires saturation of the index µ, which cannot be done by another derivative since the
result would be a second-order equation. Therefore, the Dirac matrices γµ are used to
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saturate the index µ, and write the kinetic term as iψ̄γµ∂µψ. Since the physical units of the
kinetic term than ψ̄ψ, the latter must be multiplied by an inverse length dimension, which
in natural units is mass. Then, the Dirac Lagrangian can be written in the following form

LD =
1
2

ψ̄(iγµ∂µ −m)ψ− 1
2

ψ̄(iγµ←−∂µ + m)ψ = 0 . (5)

This is a fully symmetric form of the Lagrangian, which shows that when evaluated along
a stationary path the Dirac Lagrangian vanishes [17]. Both the Dirac equation and its
Lagrangian are Poincaré invariant.

Using the above procedure, the Lagrangian for the CDE (see Equation (3)) can also be
obtained and written as

LCD =
1
2

ψ̄(iγµ∂µ −me−iαγ5
)ψ− 1

2
ψ̄(iγµ←−∂µ + me−iαγ5

)ψ = 0 . (6)

Similarly to LD, the Lagrangian is also fully symmetric, hermitian and single-valued
proper scalar, and it vanishes when evaluated along a stationary path. Moreover, the CDE
and its Lagrangian are Galilean invariant. By substituting LCD into the Euler-Lagrange
equation for variations with respect to ψ̄, the CDE given by Equation (3) is obtained.
This method of deriving the CDE is independent from the group theory derivation and
serves to demonstrate that the equation satisfies a least-action principle requisite of any
fundamental theory. We is derivation based on projection operators that is now presented.

2.3. Derivation from Orthogonal Idempotents

We may define a set of projection operators operating on an N-dimensional complex
vector space with any set of N-by-N orthogonal idempotent matrices satisfying

P̂i P̂j = P̂j P̂i = δij P̂i

N

∑
i=1

P̂i = 1 . (7)

The total number of projection operators of a given vector space is maximally equal to
the dimensions of the space considered. Therefore, for N = 2, we may expand the most
general operators acting on a spinor in terms of the Pauli matrices and the two-by-two
identity matrix. Let

P̂1 = a0 I2 +~σ ·~a P̂2 = b0 I2 +~σ ·~b . (8)

The total number of projection operators of a given vector space is maximally equal to
the dimensions of the space considered. Therefore, for N = 2, we may expand the most
general operators acting on a spinor in terms of the Pauli matrices and the two-by-two
identity matrix. Let

a0 = b0 =
1
2

~a ·~a =~b ·~b =
1
4

~a = −~b . (9)

Solving this we find two projection operators for our symmetry group whose degrees
of freedom may be parameterized in terms of the unit vector â. We write these projection
operators succinctly as

P̂±(â) =
1
2
(I2 ±~σ · â) . (10)

For a fixed â, these operators allow us to define two types of objects in our two-
dimensional vector space. For any such element χ ∈ C2 we may define χ±(~a) ≡ P̂±(â)χ(~a).
It necessarily follows that

(~σ · â)χ±(~a) = ±χ±(~a) . (11)
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It is now a simple matter to extend these projection operators to projections in 2N-
dimensional vector spaces. In general we may write

P̂s1,s2,...,sN (â1, â2, . . . , âN) =
N⊗

i=1

P̂si (âi) , (12)

for si ∈ {±}. It is easy to see that these projection operators satisfy our orthogonal
idempotent constraints. We then define our set of eigenvectors in a similar manner

χs1,s2,...,sN (~a1,~a2, . . . ,~aN) =
N⊗

i=1

χsi (~ai) . (13)

By restricting our considerations to the vector space of spinors we are able to give these
abstract considerations physical significance. Recall that the rotation operator correspond-
ing to a rotation of θ about the axis defined by â for the vector space of two-component
spinors takes the form

R̂(θ, â) = cos
θ

2
+ i(~σ · â) sin

θ

2

= e
iθ
2 P̂+(â) + e−

iθ
2 P̂−(â) .

(14)

It follows that eigenstates of our projection operators P̂±(â) are physically invariant
under rotations about â, differing only by a phase. We therefore identify P̂±(â) as projecting
out the portion of the state vector with spin parallel (+) or anti-parallel (−) to the â-axis.
By choosing~a = ~p, where ~p is the three-momentum of the particle, we find P̂±( p̂) to be the
helicity projection operators. This most neatly encapsulates the experimental observance
of binary spin states in mathematical terms.

We now wish to use our projection operator methodology to classify states of positive
and negative energies, e.g., matter/anti-matter. The inclusion of an additional two-valued
quantum property necessitates (at minimum) a four-dimensional vector space. We therefore
construct the projection operators of the form

P̂s1,s2(q̂, p̂) = P̂s1(q̂)⊗ P̂s2( p̂) , (15)

where we have introduced the vector q̂ about which we will have more to say shortly,
for the time being q̂ is simply a set of three complex numbers and satisfies q̂ · q̂ = 1.

Next we define the operand

χs1,s2(q̂, p̂) = χs1(q̂)⊗ χs2( p̂) . (16)

The corresponding generalization of Equation (11) yields

(~σ · q̂⊗ I2)χs1,s2(q̂, p̂) = s2χs2,r2(q̂, p̂) (17)

(I2 ⊗~σ · p̂)χs1,s2(q̂, p̂) = s1χs1,s2(q̂, p̂) . (18)

Exploiting the fact that s1 = ±s2 we may construct the equations

(~σ · q̂⊗ I2 + I2 ⊗~σ · p̂)χ±,∓(q̂, p̂) = (~σ · q̂⊕~σ · p̂)χ±,∓(q̂, p̂) = 0 (19)

(~σ · q̂⊗ I2 − I2 ⊗~σ · p̂)χ±,±(q̂, p̂) = (~σ · q̂	~σ · p̂)χ±,±(q̂, p̂) = 0 . (20)

We now identify the set of gamma matrices in the chiral representation

γ0 = σ1 ⊗ I2

γk = iσ2 ⊗ σk



Symmetry 2021, 13, 1608 5 of 8

satisfying the Clifford algebra

{γµ, γν} = 2ηµν I4 .

Taking the usual definition γ5 = iγ0γ1γ2γ3 as the matrix which anticommutes with
all γµ, let us write

iγ5γ0 = σ2 ⊗ I2

−γ5 = σ3 ⊗ I2

which give

(~σ · q̂⊗ I2) =
1
|~q|γ

0γ5(γ5q1 − iI4q2 + γ0q3) (21)

(I2 ⊗~σ · p̂) = −
1
|~p|γ

0γ5~γ · ~p . (22)

Rewriting the operators of Equations (15) and (16) in terms of the gamma matrices, we find

(~σ · q̂⊕~σ · p̂) = 1
|~p||~q|γ

0γ5(γ0|~p|q3 − |~q|~γ · ~p + γ5|~p|q1 − iI4|~p|q2)

(~σ · q̂	~σ · p̂) = 1
|~p||~q|γ

0γ5(γ0|~p|q3 + |~q|~γ · ~p + γ5|~p|q1 − iI4|~p|q2) .

It is our goal to identify the vector ~q with our physical quantities. Scaling these
operators from the left with ±|~p||~q|γ5γ0, we now restrict~q and ~p to be of equal-magnitude
(this is equivalent to the on-mass-shell asssumption). We then obtain equivalent equations
to Equations (15) and (16) of the form

(−γ0q3 + ~γ · ~p + γ5q1 − iI4q2)χ±,∓ = 0 (23)

(+γ0q3 + ~γ · ~p− γ5q1 + iI4q2)χ±,± = 0 . (24)

It is now possible to make the identifications with our physical quantities explicit.
For the vector~q, we identify:

q1 = im sin α q2 = −im cos α q3 = p0 = E (25)

The identification of q3 = E (E > 0) is chosen to align with our definition of gamma
matrices though equivalent linear combinations of the vector may be found through unitary
transformations. It may appear curious upon first inspection that the vector~q is seemingly
compelled to take on imaginary values in two components and real values in the third.
It is, however, a simple matter to absolve ourselves of this inhomogeneity by performing
a Wick-rotation of the energy axis in the complex plane and thereby considering the four
vectors of Minkowski spacetime in purely Euclidean terms. In this way the connection
between our projection operators as a basis of SL(2,C) and the Lorentz group SO(1, 3)
may be made explicit. These simplifications notwithstanding, we will continue consider
real-valued energies in Minkowski spacetime.

Substituting our terms of Equation (25), into Equations (23) and (24) we obtain

(−γ0E + γk pk + meiαγ5
)χ±,∓ = 0 (26)

(+γ0E + γk pk −meiαγ5
)χ±,± = 0 . (27)
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It is clear that Equations (26) and (27) are the momentum space analogues of the CDE for
positive and negative energies and therefore are equivalent to plane wave solutions of
Equation (3). The eigenstates therefore satisfy

E2χs1,s2 = (p2 + m2)χs1,s2 . (28)

The method of projection operators for deriving fundamental equations has potential
to extend beyond the C4 vector space of bi-spinors. While outside the scope of the present
work, the possibility of extending the concepts and methodologies presented here to
investigate the algebraic structure inherent in three particle flavors and their mass spectrum
remains a tantalizing possibility.

3. Symmetries and Their Physical Implications
3.1. Spacetime Symmetries

From the Special Theory of Relativity we know that in order for an equation to
be considered fundamental it must remain invariant in all inertial frames of reference.
Such frames may be defined as those frames in which the symmetries of Minkowski
spacetime are agreed to hold. These symmetries are represented by the Poincaré group
P = SO(3, 1)⊗s T(3 + 1) consisting of rotations, boosts, and translations in space and
time (see Section 2.1) which carry one inertial frame to another. We may therefore refer to
the class of inertial observers to whom fundamental equations must remain invariant as as
Poincaré observers. It follows as a neccesary condition for any equation to be considered
fundamental that it preserve its form for all Poincaré observers and hence remain invariant
with respect to all transformations given by P . Only such equations will be able to make
physical predictions about which all Poincaré observers will agree upon. It is easy to verify
that the derived CDE above is one such Poincaré invariant equation and so satisfies a
necessary condition to be called a fundamental equation of physics.

The other characteristics requisite of a fundamental theory may be summarized as
locality, gauge invariance, and the satisfaction of a least-action principle (equivalent to
the existence of Lagrangian density for the equation). Since the CDE is a first-order
partial differential equation, it is local. In this paper only free particles are considered,
therefore, gauge invariance is not included. In Section 2.2, we demonstrated that the
Lagrangian density for the CDE exists and may be written in the fully symmetric form
given by Equation (6). In general Lagrangians posses less symmetry than the dynamical
equations resulting from them due to the assumptions on which the Noether theorem is
based [18,19]. The best known example is the law of inertia, whose dynamical equation is
Galilean invariant but its Lagrangian is not [20,21]. However, a method to restore Galilean
invariance of the Lagrangian was developed and applied to the law of inertia [22,23].

As is already known the Dirac Lagrangian constructed in this paper by following [17]
is Poincaré invariant. Similarly, the Lagrangian for the CDE equation is also Poincaré
invariant. Therefore the form of the CDE equation and its Lagrangian, as well as theoretical
predictions resulting from them, are the same for all observers who accept the Principle
of Relativity underlying Special Theory of Relativity and its Poincaré group P . Therefore,
the presented results combined with the above discussion clearly imply that any theory of
physics based on the CDE equation and its Lagrangian may be rightly called a fundamental
equation of physics.

3.2. CPT Symmetries

Beyond the symmetry group of P , we may also inquire into which discrete symmetries
of nature hold for the CDE. We define the operations of charge-conjugation (C), spatial
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inversion (P), and time-reversal (T ) on an arbitrary operator Ô(x, t) acting on a state ψ(x, t)
as follows

C[Ô(x, t)ψ(x, t)]C−1 = Ô∗(x, t)ψ∗(x, t) (29)

P [Ô(x, t)ψ(x, t)]P−1 = Ô(−x, t)ψ(−x, t) (30)

T [Ô(x, t)ψ(x, t)]T −1 = Ô∗(x,−t)ψ(x,−t) . (31)

With these definitions, we may determine the parity-conjugated forms of the CDE.
Defining D̂(α) = iγµ∂µ−meiαγ, taking the symmetry operation U ∈ {C,P , T }, and writing
the corresponding unitary transformation acting on the spinor indices Û ∈ {Ĉ, P̂, T̂},
we obtain

Û[U D̂(α)U−1]Û†ψU(x, t) = 0 (32)

where ψU(x, t) ≡ Û[Uψ(x, t)U−1]. Then, the resulting transformations may be summa-
rized as

Ĉ[CD̂(α)C−1]Ĉ† = D̂(α∗) (33)

P̂[P D̂(α)P−1]P̂† = D̂(−α) (34)

T̂[T D̂(α)T −1]T̂† = D̂(−α∗) , (35)

and the following conditions can be identified

1. If ψ exhibits C-invariance (ψ = ψC), then α ∈ R
2. If ψ exhibits CP-invariance (ψ = ψCP), then α ∈ I
3. If ψ exhibits CPT-invariance (ψ = ψCPT), then α ∈ C

These conditions combined with the CPT theorem reinforce our conclusion that the
Dirac equation with chiral freedom is the most general first order differential equation
derivable from the irreps of the Poincaré group. While it is quite conceivable that the
constraints imposed by observed classes of discrete symmetries in interactions (and their
fundamental violations) may contribute to constraints on the CDE, it is important to
emphasize the regimes of validity presented here are derived for free particles in the
absence of interactions and therefore a result of extrinsic and not intrinsic symmetries.
In this way the discrete constraints presented above are foundational for any extended
theoretical considerations.

4. Conclusions

We have presented three distinct derivations of the generalized form of Dirac’s equa-
tion to include all those parameters not constrained by Poincaré symmetry: from the
irreducible representations of the Poinccaré group, from Lagrangian formalism, and from
a classification scheme built from projection operators. The result of all these derivations
agree and show the chiral angle is a necessary degree of freedom for complete categoriza-
tion of all physical eigenstates of spin and the matter/anti-matter nature. Equivalently,
by showing that the obtained chiral Dirac equation is local, Poincaré invariant and its
Lagrangian exists, the equation becomes a fundamental equation of modern physics. Using
this derived equation it has then possible to investigate the underlying spacetime and CPT
symmetries and the constraints on allowable values.
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