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Abstract: We propose a physical model for neurons to describe how neurons interact with one
another through the surrounding materials of neuronal cell bodies. We model the neuronal cell
surroundings, include the dendrites, the axons and the synapses, as well as the surrounding glial
cells, as a continuous distribution of oscillating modes inspired from the electric circuital picture of
neuronal action potential. By analyzing the dynamics of this neuronal model by using the master
equation approach of open quantum systems, we investigated the collective behavior of neurons.
After applying stimulations to the neuronal system, the neuron collective state is activated and
shows the action potential behavior. We find that this model can generate random neuron–neuron
interactions and is appropriate for describing the process of information transmission in the neuronal
system, which may pave a potential route toward understanding the dynamics of nervous system.

Keywords: neuronal system; open quantum systems; nonequilibrium dynamics; Hopfield model;
action potential

1. Introduction

The nervous system is a very complex part of living objects. It detects environmental
changes that affect the body, and then it cooperates with the endocrine system in order to
respond to such events. It coordinates its movements and sensory information through
signal transmission with different parts of its body [1]. Therefore, understanding the
structure and dynamics of the nervous system is the most challenging research area not
only in biology but also in the development of modern science and technology, especially
for the development of deep learning methods in a machine learning framework such as
the computer vision task, speech recognition, multi-task prediction and the autonomous
vehicle, etc. [2–6]. It may also help us solve the complex nervous system and assist in
constructing proper implementations of the AI models associated with the understanding
of the human brain [7]. Meanwhile, investigating the nervous system can not only enable
us to eventually understand the mechanisms of human brain function but also reveal the
origin of human thought and consciousness [8,9].

The key point of neural modeling is the connection between biological evidence
and mathematical descriptions by using physical principles. Physically, we can depict
all the phenomena into evolutions of physical states for simplification. Each neuron is
commonly described by two states, the active (firing) and inactive (silence) states, and
denoted physically as a spin or a quantum information qubit. The mathematical analogy
of this concept was first proposed by McCulloch and Pitts in 1943 using a logic circuit for
describing the neural networks [10]. About a decade later, Hodgkin and Huxley proposed
the action potential model to explain neuronal state activation through the experimental
evidence of signal transmission from the neuronal membrane [11]. They use electric circuits
to mimic the lipid bilayer of membranes and the different kinds of ion channels through
the membrane. This model can successfully fit the experimental data of the squid giant
axon and other neural systems [11–16]. With the development of signal transmission and
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the binary neuron spin state, the concept of a neural network for brain modeling was
also developed at almost the same time. Proposed in 1949, Hebb developed a theory to
describe the formation of synapses [17]. He found that when two joining neuron cells
fire simultaneously, the connection between them strengthens, which generates the new
synapses. The concept of learning and memory explaining how the brain learns after
firing several times through the connection between neuron cells was developed [17]. In
1982, Hopfield implemented Hebb’s idea to simulate a neural network with a stochastic
model, which is now called the Hopfield model. This model shows how the brain has the
ability to learn and memorize [18]. In the Hopfield model, neurons are modeling as binary
units or spins. The collective neurons form the state flow following the minimum “energy”
principle to reach the fixed points, which are saved in advance. This has become the basic
framework of the artificial neural network that AI development has relied on in the past
four decades.

In the Hopfield model, neuron cells are randomly coupled to one another. It is
known nowadays that the neural signals are transmitted between neurons mainly via
neurotransmitters. It is not clear how the neural signals transmit through the randomly
coupled neuron cells. In fact, the interactions between the neurons are realized through
the neural surrounding materials, including the neurotransmitters through the synapses,
the electrical signal from the dendrites and the axons and the noise from the glial cells
surrounding the neurons [19]. Signal transmission via the intracellular wave propagation
on the membrane has also been proposed from some evidence [20–24]. It is natural to ask
how the neural surrounding affects the signal transmission between neurons, and it may be
more fundamental to microscopically generate the random neuron couplings through these
surrounding effects. As a result, the neural surroundings can be taken as an environmental
effect with respect to the neuronal system as in the nonequilibrium dynamics description
of open quantum systems from which the dynamics of macroscopic collective phenomena
of the neuron system can be depicted.

In the literature, there are some approaches describing the process of neuron dynam-
ics from the nonequilibrium dynamics of open quantum systems, where the collective
phenomena of neuron systems are simulated as the spin collective phenomenon in open
quantum systems determined by the master equation [25–29]. In the action potential
picture, RC circuits are used to simulate the neural signals through the neuronal axon
membrane and various ion channels. However, some evidence of inductive features in
neural systems was observed [30,31]. Thus, the neural circuit for describing the signal
transmission should be a neural RLC circuit. Physically, RLC circuits are equivalent to
a collection of coupled harmonic oscillators with all kind of different frequencies [32],
which provides us the idea to microscopically model the neural environment effect in
the neuronal system as a continuous distribution of harmonic oscillators. On the other
hand, the action potential is mainly due to the inward and outward ion flows of sodium
and potassium ions through their own channels crossing the membrane, resulting in the
voltage difference between the inside and outside of the membrane. The emergence of
action potential transmission in the neurons is due to the stimulation from the environment
by the neurons coupling with the surroundings. We exert our neuron system stimulations
through the surrounding environment and demonstrate the collective neuron states with
the action potential behavior. In this work, we will focus the investigation on the collective
behavior of the neuronal system.

The paper is organized as follows. In Section 2, we introduce our neuronal model to
describe the interaction of neurons in the nervous system through the surrounding neural
materials. The surrounding environment effects are modeled as a continuous distribution
of harmonic oscillators with different frequencies. Then in Section 3, we derive the master
equation which governs the dynamics of neurons, where the random couplings between
neurons naturally emerge. In Section 4, we analyze in detail the collective behavior of
neurons in the neuronal system. The collective neuronal equations of motion are solved
from the master equation obtained in Section 3. We apply external signals to stimulate the



Symmetry 2021, 13, 1603 3 of 13

neuronal system, then the collective neuron states show the action potential properties. The
thermal effects are also taken into account for mimicking the environment of the neuronal
system. A conclusion is made in Section 5.

2. Modeling the Neuronal System as an Open Quantum System

Inspired by previous neuron modeling, such as the perceptrons [33], the linear asso-
ciative net [34–37] and the content addressable memory [38–40], Hopfield modeled the
neuron system based on neuron statistical behavior [18]. He started with the binary neural
states. The idea of a binary neural state came from McCullough and Pitts’s model [10],
which characterizes the neural feature by a “all-or-none” logical property. In Hopfield’s
model, the binary neuron states can be realized through the spin configuration of N spins
at time t:

|α, t〉 = |σα
1 , σα

2 , . . . , σα
N ; t〉, (1)

where α denotes different spin configurations and there are 2N various configurations. The
single spin state σα

i can either be 1 or −1 to represent the neuron activating or inactivating,
respectively. The dynamical evolution of the neuron states is determined through the
coupling matrix JN×N . The state evolution from time t to time t′ can be described with a
matrix form of the transformation:

σt′
1

σt′
2
...

σt′
N

 = Sgn




J11 J12 . . . J1N
J21 J22 . . . J2N
...

...
. . .

JN1 JN2 JNN




σt
1

σt
2
...

σt
N

−


b1
b2
...

bN


 (2)

which follows the equation σt′
i = Sgn{∑j Jijσ

t
j − bi}, where the sign function Sgn{} assigns

the results 1 or −1 to the spin configuration elements with the time variable t′, and the
threshold of the action potential for ith neuron is represented by the bias bi. The dynamical
evolution leads the many-neuron state to a local minimum in the configuration space.
Thus, the Hopfield model can be equivalent to a disordered Ising model in statistics, where
neurons are modeled as spins and the neuron dynamics are equivalently determined by an
effective disordered Ising Hamiltonian:

HHopfield = ∑
ij,i 6=j

Jijσ
z
i σz

j + h ∑
i

σz
i . (3)

The first term in the above Hamiltonian describes the neuron coupling in the neuronal
system, where σz

i is the z-component of the spin Pauli matrix for representing two states,
silence (inactivate) and firing (activate), of the ith neuron. The second term is an effective
magnetic field, in response to the threshold of the action potential for firing. Such a
Hamiltonian mimics the signal transmitting between the neurons, in which all neurons
are connected to one another with randomly distributed couplings Jij. By defining the
coupling through the concept from Hebb’s learning theory, this neural model has the ability
to learn and memorize what it has saved. More specifically, the coupling strengths in
Hopfield model are defined as Jij = ∑ij ξiξ j, which comes from the random variable ξi as a
quenched, independent variable with equal probability in 1 and −1 [41].

Our motivation is to find the microscopic picture of the random neuron–neuron inter-
action from the interactions between the neurons and their surroundings (environment).
Physically, neuron dynamics are governed by the interaction of neuronal cell body with
their surroundings. The surrounding environment consists of all materials surrounding
the neuronal cell bodies, including axon, dendrite, synapses and the surrounding glial cells.
On the other hand, the neuronal system transmits the electrical signal that one can measure
(see Figure 1a). Hodgkin and Huxley used the cable model to explain the electric voltage
change of the neuronal membrane through RC circuits. However, the circuit analogy
of the neuronal system should contain not only the resistance and capacitors from the
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fundamental action potential model but also the inductances as observed in some neuronal
experiments [30,31]. Consequently, the neuronal system with neural signal transmission
among neurons can be taken as more reasonable RLC circuits modified from the action
potential model, which is shown in Figure 1b.
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(cell body)

dendrites

axon
synapses

(a)
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Figure 1. (a) The structure of realistic neuron cells. (b) An extended action potential RLC circuit
for mimicking neural signal transmissions in neuronal systems. (c) Our modeling of the neuronal
system as a collection of neuronal cell bodies interacting with one another through their surrounding
environmental materials.

In general, any circuit consisting of a complicated combination of RLC circuits corre-
sponds to a collection of coupling harmonic oscillators [32,42]. Explicitly, a RLC circuit is
equivalent to a damping LC harmonic oscillator:

d2q(t)
dt2 + γ

dq(t)
dt

+ ω2q(t) = f (t). (4)

which can be obtained from a simple circuit equation L dI(t)
dt + RI(t) + 1

C q(t) = E(t),
where q(t) is the charge in the circuit, I(t) = dq(t)/dt is the corresponding circuit current,
γ = R/L is the damping rate, ω = 1/

√
LC is the circuit frequency, and f (t) is an external

force induced by the external voltage E(t) applied to the circuit. Quantum mechanically,
a damping LC harmonic oscillator can be obtained microscopically from a principal LC
harmonic oscillator linearly coupling to a continuously distribution of many LC harmonic
oscillators in the surrounding environment with different frequencies:
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H =
1
2

[
L
(dq

dt

)2
+

1
C

q2
]
+ ∑

k

1
2

[
Lk

(dqk
dt

)2
+

1
Ck

q2
k

]
+ q ∑

k
gk(t)qk, (5)

as is shown by Feynman and Vernon in their path-integral influence functional theory [32,43],
where the first term is the principal LC oscillating Hamiltonian, the second term represents
the environment consisting of a continuous distribution of the surrounding LC oscillators.
The last term is the coupling of the principal oscillator with the environment oscillators,
which results in the damping dynamics.

As a result, we model the neuron cells by a collection of spins, and these neuronal
spins can interact with one another through the surrounding materials. The surrounding
materials can be modeled by a continuous distribution of harmonic oscillators with all
kind of different oscillating frequencies, characterized by Figure 1c, as inspired from the
above RLC circuit picture. In quantum mechanics, the collection of the harmonic oscillators
with all possible different frequencies can be expressed by the Hamiltonian in the particle
number representation:

HE = ∑
k

1
2

[
Lk

(dqk
dt

)2
+

1
Ck

q2
k

]
= ∑

k
h̄ωka†

k ak =
∫ ∞

0
$(ω)dωh̄ωa†

ωaω, (6)

where the continuous distribution of environmental oscillating modes has been taken ∑k →∫
$(ω)dω and $(ω) is the density of state of all the oscillating modes in the environment.

The operators aω and a†
ω are the annihilation and creation operators of the oscillating

mode with the corresponding frequency ω. The interaction between neuron spins and the
surrounding materials is provided by the interaction Hamiltonian:

HSE =
h̄√
N

∫ ∞

0
$(ω)dω ∑

i
(Vi(ω)a†

ωσ−i + V∗i (ω)σ+
i aω), (7)

where Vik is the coupling strength between the neuron spin mode σz
i and the oscillating

mode ωk. The spin raising and lowering operators of each neuron spin are defined as
σ±i = 1

2 (σ
x
i + iσy

i ), and N is the total neuron number in the neuronal system. The neuron
Hamiltonian of the following:

HS = g
h̄
2 ∑

i
σz

i (8)

corresponds to a set of neuron spins in an effective magnetic field g. With the above model
description, we obtain our neuronal system described by the following Hamiltonian:

H = g
h̄
2 ∑

i
σz

i +
∫ ∞

0
$(ω)dωh̄ωa†

ωaω +
∫ ∞

0
$(ω)dω ∑

i

h̄√
N

[
Vi(ω)a†

ωσ−i + V∗i (ω)σ+
i aω

]
, (9)

which contains three parts: the Hamiltonian of the neurons, and the Hamiltonian of all
oscillating modes from the surroundings, as well as the couplings between them. We
will show that it is the coupling between the neurons and their surrounding oscillating
modes that is causing the neurons’ connection to one another and resulting in the random
neuron–neuron coupling.

3. The Master Equation of the Neuron Dynamics

The neuron dynamics are described by the non-equilibrium evolution of all neuron
states in the neuronal system. Neurons can interact with one another through their sur-
rounding environment, as described by the Hamiltonian shown in Equation (9). Quantum
mechanically, the total state evolution of neurons plus the environment is determined by
the total density matrix ρtot(t), which carries all the state information of the neurons and
their surroundings. It is governed by the Liouville–von Neumann equation [44]:
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d
dt

ρtot(t) =
1
ih̄
[H, ρtot(t)], (10)

where H is the total Hamiltonian. We focus on the state evolution of the neurons affected
by the infinite number of oscillating modes in the environment considered in Equation (9).
Thus, we should focus on the time evolution of the reduced density matrix ρS(t), which
is determined by tracing over all the environmental states from the total density matrix:
ρS(t) = TrE[ρtot(t)]. The reduced density matrix ρS(t) describes the nonequilibrium
dynamical evolution of all neuron states in the neuronal system. The equation of motion
for the reduced density matrix ρS(t) that determines such evolution is called the master
equation, which is derived below.

In the interacting picture of quantum mechanics, the total state of neurons plus
their environment in the neuronal system is defined by ρ̃tot(t) = eiH0tρtot(t)e−iH0t, where
H0 = HS + HE. An expansion solution of Equation (10) in the interacting picture can be
written as follows:

ρ̃tot(t) = ρ̃tot(0) +
1
ih̄

∫ t

0
dt′[HI(t′), ρ̃tot(t′)]

= ρ̃tot(0) +
1
ih̄

∫ t

0
dt′[HI(t′), ρ̃tot(0)]

− 1
h̄2

∫ t

0
dt′
∫ t′

0
dt′′[HI(t′), [HI(t′′), ρ̃tot(t′′)]], (11)

where the interacting Hamiltonian is given by HI(t) = eiH0tHSEe−iH0t, and ρ̃tot(0) is the
initial state. Suppose that the initial state of the system (neurons) and the environment
(surroundings) is a decoupled state ρ̃tot(0) = ρ̃S(0)⊗ ρ̃B(0), and the environment state is
in a thermal equilibrium state, which is ρ̃B(0) = ρB(0) = 1

ZB
e−βHE , where β = 1

kBT is the
inverse temperature of the environment and ZB = Tr[e−βHE ] is the environmental partition
function. Meanwhile, we assume that all the neurons and their surroundings are weakly
coupled to one another so that the environmental state almost remains unchanged, namely
ρ̃tot(t′′) ' ρ̃S(t′′) ⊗ ρ̃B(0) in Equation (11), which is called as the Born approximation.
Since the neurons are weakly coupled to their environment, we can further use the Markov
approximation by replacing ρ̃S(t′′) in the above Born approximation by ρS(t). After making
such Born and Markov approximations, we obtain the trace over all the environmental
states. It can be shown that TrE[HI(t), ρ̃tot(0)] = 0. Then, we obtain the master equation
for the reduced density matrix ρ̃S(t) of all the neuron states.

d
dt

ρ̃S(t) = −
1
h̄2

∫ t

0
dsTrE[HI(t), [HI(s), ρ̃S(t)⊗ ρB(0)]]. (12)

This is known as the Born–Markov master equation in open quantum systems [45].
Now, we apply the above master equation formulation to the Hamiltonian described

by Equation (9). For the sake of simplicity, we assume that the coupling strength is a real
value, Vi(ω) = V∗i (ω). In the interacting picture, the interaction Hamiltonian is as follows.

HI(t) =
∫

$(ω)dω ∑
i

h̄Vik√
N

(
ei(ω−g)tσ−i a†

ω + e−i(ω−g)tσ+
i aω

)
. (13)

After completing the trace over the environmental states in Equation (12) and changing
the formulation back into the Schrödinger picture, we have the master equation only with
neuron spin degrees of freedom:
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d
dt

ρS(t) =
1
ih̄
[H′S(t), ρS(t)]

+ ∑
ij

{
κij(t)

[
σ−j ρS(t)σ+

i −
1
2

σ+
i σ−j ρS(t)−

1
2

ρS(t)σ+
i σ−j

]
+ κ̃ij(t)

[
σ+

j ρS(t)σ−i −
1
2

σ−i σ+
j ρS(t)−

1
2

ρS(t)σ−i σ+
j
]}

, (14)

which describes the dynamical evolution of all the neuron states in the neuronal system.
In Equation (14), the first term at the right hand side is a unitary transformation for the
system dynamics according to the renormalized system Hamiltonian H′S(t) = HS + δH(t),
where δH(t) is induced by the couplings between the neurons and their surroundings:

δH(t) = ∑
ij
[λij(t)σ+

i σ−j − λ̃ij(t)σ−i σ+
j ], (15)

which characterizes how the disordered neuron–neuron interactions are generated from
the coupling between the neurons and their surroundings. The other terms in the mas-
ter equation describes the dissipation and fluctuations of the neurons induced by the
surrounding materials.

The environment-induced neuron–neuron interactions and the dissipation and fluc-
tuation dynamics of neurons are determined by the corresponding time-correlations be-
tween the neurons and their surroundings in terms of the time-dependent coefficients in
Equation (14):

κij(t) =
∫ t

0
ds
∫ ∞

0

dω

2π
Jij(ω)(2 cos[(ω−g)(t−s)])n̄(ω, T) (16)

κ̃ij(t) =
∫ t

0
ds
∫ ∞

0

dω

2π
Jij(ω)(2 cos[(ω−g)(t−s)])n(ω, T) (17)

λij(t) = −
∫ t

0
ds
∫ ∞

0

dω

2π
Jij(ω)(sin[(ω−g)(t−s)])n̄(ω, T) (18)

λ̃ij(t) = −
∫ t

0
ds
∫ ∞

0

dω

2π
Jij(ω)(sin[(ω−g)(t−s)])n(ω, T), (19)

where κij and κ̃ij describes the effects of environmentally induced dissipation and fluctua-
tion, and λij and λ̃ij are the environmentally induced random neuron–neuron couplings.
The function Jij(ω) is the spectral density of the environment:

Jij(ω) = 2π$(ω)Vi(ω)V∗j (ω), (20)

and $(ω) is the density of states of the environmental oscillating spectrum. The spectral
density encompasses all the information about the structure of the materials surrounding
neurons and the couplings with the neurons. The function n(ω, T) = TrE[ρ̃B(0)a†

ωaω ] is the
particle distribution of the environmental oscillating modes and n̄(ω, T) = n(ω, T) + 1.

The neuronal system contains plenty of dynamical neurons and it is difficult to solve
them even numerically. We can lower the calculating cost by summing up all the neuronal

operators as a collective neural spin. The collective neural spin ~̂S = (Ŝx, Ŝy, Ŝz) is defined
by summing up all the neuron spins in each direction α:

Ŝα = ∑
i

σα
i , (21)

where α = x, y, x. In order to formulate the collective neuron behavior conveniently, we
assume that the environment provides the same effect on all the neurons, namely, the
coupling strength being independent relative to different neurons, Vi(ω) = V(ω). The
spectral density then becomes the following.
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Jij(ω)→ J(ω) = 2π$(ω)|V(ω)|2. (22)

As a result, the master Equation (14) is simply reduced to the following form:

d
dt

ρS(t) =
1
ih̄
[H′S(t), ρS(t)]

+ κ(t)
[
Ŝ−ρS(t)Ŝ+− 1

2
Ŝ+Ŝ−ρS(t)−

1
2

ρS(t)Ŝ+Ŝ−
]

+ κ̃(t)
[
Ŝ+ρS(t)Ŝ−−

1
2

Ŝ−Ŝ+ρS(t)−
1
2

ρS(t)Ŝ−Ŝ+
]
, (23)

where H′S(t) = λ(t)Ŝ+Ŝ− − λ̃(t)Ŝ−Ŝ+ and Ŝ± = 1
2 (Ŝ

x ± iŜy). The corresponding renor-
malization and dissipation/fluctuation coefficients in Equation (23) becomes the following.

κ(t) =
∫ t

0
ds
∫ ∞

0

dω

2π
J(ω)(2 cos[(ω−g)(t−s)])n̄(ω, T) (24)

κ̃(t) =
∫ t

0
ds
∫ ∞

0

dω

2π
J(ω)(2 cos[(ω−g)(t−s)])n(ω, T) (25)

λ(t) = −
∫ t

0
ds
∫ ∞

0

dω

2π
J(ω)(sin[(ω−g)(t−s)])n̄(ω, T) (26)

λ̃(t) = −
∫ t

0
ds
∫ ∞

0

dω

2π
J(ω)(sin[(ω−g)(t−s)])n(ω, T). (27)

This is the master equation for the collective neuron states in our physical modeling of
neuronal system.

4. Collective Neural Behavior and Neuron Dynamics Analysis
4.1. Equation of Motion for the Collective Neural States

The equations of motion for the collective neural states are obtained through the
expectation values of the collective neural spin operators. By taking the expectation value
of the collective neural spins with the reduced density matrix, as in the following:

Sα = Tr[ρS(t)Ŝα] = 〈Ŝα〉, (28)

and applying the mean-field approximation, 〈ŜαŜβ〉 = 〈Ŝα〉〈Ŝβ〉, we obtain a close form of
the equation of motion for the collective neural states from Equation (23):

Ṡx = K(t)SySz−[g+P(t)]Sy+
1
2
[D(t)Sz−F(t)]Sx (29)

Ṡy = −K(t)SxSz+[g+P(t)]Sx+
1
2
[D(t)Sz−F(t)]Sy (30)

Ṡz = −1
2

D(t)(Sx2+Sy2)−F(t)Sz (31)

where the coefficients in the above equation of motion are provided by K(t) = λ(t) −
λ̃(t), P(t) = λ(t) + λ̃(t), D(t) = κ(t)− κ̃(t), F(t) = κ(t) + κ̃(t). The coefficients K(t) and
P(t) are related with the neuron–neuron interactions, and D(t) and F(t) are related to the
dissipation and fluctuations. All of them are induced by the couplings between the neurons
and with the environment in the neuronal system.

In the following calculation, as an example, we obtain the most common spectral
density as follows [43]:

J(ω) = 2πηω(
ω

ωc
)s−1e−

ω
ωc , (32)

where η is a dimensionless coupling constant between the system and the environment,
and ωc is a cut-off frequency. The value of s can be s = 1, < 1 and > 1, corresponding
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to the spectrum of the environment Ohmic, sub-Ohmic and super-Ohmic spectrum, re-
spectively. Here, we consider the Ohmic spectrum, s = 1. With such detailed structure
for the neuron environment, we can study the collective neuron behavior induced by the
environment effects.

4.2. The Dynamics of Collective Neural States

With the equation of motion, Equations (29)–(31), obtained from the master equation,
we want to explore how the collective neural states evolve in time under coupling with
their surroundings. We start from the collective neural states (Sx, Sy, Sx) = (1, 1,−1) and
study the time evolution of the collective state under different coupling constants. The
results are presented in Figure 2, with the coupling strength being η = 0.1 and η = 0.02.
As one can observe, the system always flows to the (0, 0, 0) state, which corresponds to the
depolarized state. The differences are manifested in the trajectories of the collective neural
states in the phase space. The larger the coupling constant, the sooner the collective neural
state is depolarized.

Sx

0.00.20.40.60.81.0S y
0.0 0.2 0.4 0.6 0.8 1.0

S
z

1.0
0.8
0.6
0.4
0.2

0.0

0.0 0.5 1.0
Sx

1.0
0.8
0.6
0.4
0.2
0.0

Sz

0.0 0.5 1.0
Sx

0.00
0.25
0.50
0.75
1.00

Sy

Sx

0.750.500.25
0.000.250.500.751.00S y

0.50
0.25

0.00
0.25

0.50
0.75

1.00
1.25

S
z

1.0
0.8
0.6
0.4
0.2

0.0

0 1
Sx

1.0
0.8
0.6
0.4
0.2
0.0

Sz

0 1
Sx

0.5

0.0

0.5

1.0

Sy

Figure 2. Collective neural state evolution of the neurons coupled to the environment effect with
different couplings. The couplings η are (a) η = 0.1 and (b) η = 0.02. The temperature is taken in
T = 300 K (room temperature), where g = ω0 determines the system frequency ω0 = 2000 Hz.

In reality, the neural signal transmissions through the external pulses stimulate the
neurons. In the following, we want to explore how the collective neural states evolve in
time when exerting an external pulse to the system by replacing the constant coupling
strength with a rectangular pulse. In order to investigate the collective neural dynamics,
we consider first the simple case of the nervous system at zero temperature and then move
to the more realistic case of the neuron system at room temperature.

4.2.1. Collective Neural Dynamics at Zero Temperature

In order to consider an external pulse acting on the neuronal system, we modify the
coupling as a time dependent parameter.

J(ω, t) = 2πη(t)ω(
ω

ωc
)s−1e−

ω
ωc , (33)

Meanwhile, at zero temperature, the dissipation and fluctuation coefficients in the master
equation are reduced to the following:

κ(t) = 2
∫ t

0
ds
∫ ∞

0
dωη(s)ωe−ω/ωc cos[(ω−g)(t−s)], (34a)

λ(t) = −
∫ t

0
ds
∫ ∞

0
dωη(s)ωe−ω/ωc sin[(ω−g)(t−s)], (34b)
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and κ̃(t) = λ̃(t) = 0 follows. Figure 3 shows the dynamics of the collective neural state
after stimulation. We apply a simple square pulse with amplitude up to 0.8 for depolarizing
the neural state (see the inset in Figure 3). The gray lines in Figure 3 represents time from
0 to 1.5 (ω0t), and the black-dashed line represents time from 1.5 to 10 (ω0t), where the
duration time is scaled by the system frequency defined as ω0 = 2000 Hz. Initially, the
collective neural state is at polarized state (Sx, Sy, Sz) = (0, 0, −1). At the time from 0
to 1 (ω0t), no environmental noise exists, and the neuron system is in the rest state. At
time from 1 to 1.5 (ω0t), we exert a pulse with amplitude 0.8, and the system reaches the
depolarized state (Sx, Sy, Sz) ≈ (0, 0, 0). In the retrieving process, we extended the time
duration to one and a half and made comparisons with the storing process and changed the
coupling to 1.5 times less at time 1.5 to 2.25 (ω0t). The neural state then proceeds backward
and experiences the repolarized process. Finally, during the time from 2.25 to 10 (ω0t), the
system gradually returns to the initial rest state.

0 2 4 6 8 10
0t

1.0

0.8

0.6

0.4

0.2

0.0

Sz

0 5 10
0t

0.5

0.0

0.5

ap coupling (t)

Figure 3. State evolution of the collective neurons under stimulation (refer to the inset). The coupling
during the storing process is set as 0.8 at the time from 1 to 1.5 (ω0t), and it is set as −0.53 at the time
from 1.5 to 2.25 (ω0t) during the retrieving process. The system frequency ω0 is defined as g.

In Figure 4, we consider the stimulation when it doubles in time and becomes half
in terms of quantity (refer to the inset of Figure 4). The result shows that the collective
neural state can still repolarized to the original rest state. The similar action potential
behavior was demonstrated from the collective neural state. This phenomenon shows that
the stimulation of the neuronal system activates almost half of the neurons so that the
collective neural state can reach the depolarized state “SZ ' 0”. This is the “depolarization”
mechanism of the neuron states via the environmental stimulation in our neuronal model.

0 2 4 6 8 10
0t

1.0

0.8

0.6

0.4

0.2

0.0

Sz

0 5 10
0t

0.0

0.5

ap coupling (t)

Figure 4. State evolution of the collective neurons with the positive/negative coupling in the same
area relative to the time axis. The negative coupling becomes twice in terms of time and half in terms
of quantity. The coupling during the storing process is set as 0.8 at the time from 1.00 to 1.5 (ω0t), and
it is set as −0.4 at the time from 1.5 to 2.5 (ω0t) during the retrieving process. The system frequency
ω0 is defined as g.
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4.2.2. Collective Neural Dynamics at Room Temperature

However, the zero temperature condition is an ideal case. The biosystem survives
within room temperature. The increase in temperature will provide more noise from the
environment. If we consider the environment at room temperature, all the dissipation and
fluctuation coefficients of Equations (24)–(27) remain. At room temperature (T ' 300 K),
the particle distribution in the environment can take on the classical Boltzmann distribution
n(ω, T) = exp{− h̄ω

kBT }. The state evolution under the room-temperature-environmental
effect is shown in Figure 5. In this case, we find that it takes longer time for the state return-
ing back to the initial rest state through the depolarization and repolarization processes
due to the environment fluctuation on the collective neural state. This result also shows
that no more than a half of the neurons are fired, and thus the maximum amplitude of
the collective neural state is a little bit less than 0, but the temperature effect renders the
firing states closer to the depolarized state. Furthermore, the condition of the same area
also holds with the non-zero-temperature. The result is shown in Figure 6 for the same
pulse profile in Figure 4.

0 2 4 6 8 10
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0 5 10
0t
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0.0

0.5

ap coupling (t)

Figure 5. State evolution of the collective neural state for the system considering the environment
in finite temperature (T = 300 K). The coupling during the storing process is set as 0.80 at the time
from 1.00 to 1.50 (ω0t) and, during the retrieving process, it is set as −0.53 at the time from 1.50 to
2.25 (ω0t).
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Figure 6. Investigating the positive/negative coupling in the same area to the time axis. Applying
twice the time of the negative coupling (the same as in Figure 4) in order to compare with the result
in Figure 5. The room temperature is also the same T = 300 K.

5. Conclusions

In conclusion, we built a neuronal model as an open quantum system in order to
understand the randomly coupled neuron–neuron interaction through their coupling
with the neural environment. We used the master equation approach to studied the
collective behavior of neurons incorporating the pulse stimulation in order to demonstrate
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the action potential. We explored the neuron dynamics at zero temperature and also
at room temperature and found that, in both cases, the collective neural states evolved
from polarized states (rest states) to the depolarized states and, finally, back to the initial
polarized states under a simplified external pulse driving the neuronal system. Such
results show that this simple neuronal model can not only catch the expected neuron
dynamics but also provide an alternative mechanism in explaining how neurons couple or
connect to one another through the complicated neuronal surrounding oscillating modes.
As the result also shows, neuron–neuron connections through their surroundings are
mainly determined by the spectral density of the neural surrounding environment, which
characterizes the detailed energy spectrum structure of the neuronal environment. In
this work, we only used the simple Ohmic spectral density as an example to simulate
the collective neuron dynamics. The more realistic description of neuron dynamics relies
on the spectral density that should be obtained from the spectral measurement of the
neuron surroundings. Furthermore, a more complete description of the underlying neuron
dynamics should be given by the neuron firing distribution in the neuronal system, which
is depicted by the reduced density matrix of the master equation and can be obtained by
solving the master equation directly. These remain open for the further investigations.
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