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Abstract: Accurate recognition of tomato diseases is of great significance for agricultural produc-
tion. Sufficient and insufficient training data of supervised recognition neural network training
are symmetry problems. A high precision neural network needs a large number of labeled data,
and the difficulty of data sample acquisition is the main challenge to improving the performance of
disease recognition. The tomato leaf data augmented by the traditional data augmentation methods
based on geometric transformation usually contain less information, and the generalization is not
strong. Therefore, a new data augmentation method, RAHC_GAN, based on generative adversarial
networks is proposed in this paper, which is used to expand tomato leaf data and identify diseases.
In this method, continuous hidden variables are added at the input of the generator, and the purpose
is to continuously control the size of the generated disease area and to supplement the intra class
information of the same disease. Additionally, the residual attention block is added to the generator
to make it pay more attention to the disease region in the leaf image; a multi-scale discriminator
is also used to enrich the detailed texture of the generated image and finally generate leaves with
obvious disease features. Then, we use the images generated by RAHC_GAN and the original
training images to build an expanded data set, which is used to train four kinds of recognition
networks, AlexNet, VGGNet, GoogLeNet, and ResNet, and the performance is evaluated through
the test set. Experimental results show that RAHC_GAN can generate leaves with obvious disease
features, and the generated expanded data set can significantly improve the recognition performance
of the classifier. Furthermore, the results of the apple, grape, and corn data set show that RAHC_GAN
can also be used as a method to solve the problem of insufficient data in other plant research tasks.

Keywords: data augmentation; generative adversarial network; tomato disease recognition;
insufficient training data

1. Introduction

Tomato is one of the crops planted all over the world and is rich in nutritional value [1].
Most studies have shown that the intake of tomatoes or tomato products has an inhibitory
effect on some cancers (such as lung cancer, gastric cancer, etc.), which is beneficial for
multiple health outcomes in humans [2,3]. However, in the cultivation process of tomatoes,
due to the influence of climate, environment, pests, and other factors, they will be infected
with different kinds and degrees of diseases. These diseases are highly infectious, widely
spread, and harmful; are not conducive to the growth of tomatoes; and also affect the yield
and quality of fruit. Therefore, it is of great significance to accurately identify tomato
diseases and carry out early prevention and timely treatment. With the development of
deep learning, convolutional neural networks (CNN) have made major breakthroughs in
the field of disease recognition. Most researchers [4-8] improved the architecture of neural
network models and applied them to the recognition of plant diseases, which has achieved
good results. However, a neural network with good performance usually requires a large
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number of parameters, and a large amount of data is required to make these parameters
work correctly. To obtain accurate disease data, manual collection and labeling are needed,
which are time-consuming, labor-intensive, and error-prone. Therefore, in the field of
tomato disease recognition, it is often impossible to obtain enough data to train the neural
network, which is also the main reason that affects the further improvement of tomato
disease recognition accuracy.

In the field of computer vision, data augmentation is a typical and effective method
to deal with small data sets, including supervised and unsupervised methods. The unsu-
pervised data augmentation method expands samples by geometric transformation [9-12]
(such as flipping, clipping, rotation, scaling, etc.), which is simple and operable, so it is
widely used in the data processing of diseased leaves. Liu et al. [13] used conventional im-
age rotation, brightness adjustment, and principal component analysis methods to expand
the image, solve the problem of insufficient images of apple disease, and achieve good
recognition results. Abas et al. [14] used rotation, translation, scaling, and other methods
to enhance the plant image data and used an improved VGG16 network to classify plants,
so as to solve the problem of overfitting caused by too few plant samples. This kind of
generation method can generate a large amount of data, which solves the problem of
insufficient data to a certain extent but still has the following shortcomings: the image
expanded by geometric transformation contains less information and is temporary, and a
partially expanded image is not conducive to the training of the model, is not applicable
to some tasks, and even reduces the performance of the model. At the same time, due
to the large randomness of the generated data, there is no consistent target, which will
produce a large number of redundant samples. In order to generate images that are more
beneficial to specific tasks, an unsupervised image generation method based on learning
has been proposed [15-18]. This kind of method uses different geometric transformation
sequences to transform images, finds the most beneficial combination of classification
results through reinforcement learning to enhance data, and adaptively adjusts it according
to the current training iteration, finally generating a customized, high-performance data
augmentation plan. However, this method is time-consuming and resource-intensive for
training, so it has limitations on some tasks.

GAN [19] (generative adversarial network) is another data augmentation method
based on unsupervised methods. It has been proven to be able to generate images with
a similar distribution to the original data, showing subversive performance in image
generation [20-23]. Clément et al. [24] used a GAN-based image augmentation method to
enhance the training data and segmented the apple disease on tree crown with a smaller
data set. Compared with the results without image generation, the F1 value was increased
by 17%. The DCGAN (deep convolution generative adversarial network) [25] used a
CNN (convolutional neural network) to replace the multilayer perceptron in GAN to
improve the quality of the generated images. Purbaya et al. [26] used a regularization
method to improve DCGAN and generated plant leaf data to prevent the model from
overfitting. Although DCGAN improves the quality of the generated images, it cannot
control the classes of the generated images, limiting the generation of multi-class images.
To this end, ACGAN (generative adversarial network with an auxiliary classifier) [27]
is proposed, which adds class information constraints to the generator and an auxiliary
classifier to the discriminator to classify the output image, so that it has the function of
image classification and can guide the generator to generate images of different classes.
In addition, in order to generate higher quality data, many new architectures based on GAN
have been proposed and applied to the field of plant science [25,28-32]. For the problem
of insufficient data for apple diseases, Tian et al. [33] used CycleGAN [34] to generate
images, which enriched the diversity of training data. Zhu et al. [35] proposed a data
augmentation method based on cGAN, adding condition information to the input of
generator to control the class of the generated image. In addition, dense connection was
added to the generator and discriminator to enhance the information input of each layer
and significantly improve the classification performance. Liu et al. [36] added dense
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connections in GAN, and improved the loss function to generate grape leaves to achieve
better recognition results in the same recognition network. However, the goal of GAN is to
generate images that are as real as possible. It learns the overall information of the image,
ignoring the key local disease information, and cannot generate images with clear disease
spots. At the same time, due to the lack of detail texture, most of the images generated are
of poor quality.

In order to solve the problem of insufficient data for tomato disease identification and
insufficient disease features of expanded data, this paper proposes an improved ACGAN
method RAHC_GAN for data augmentation (Figure 1a) and establishes an expanded
data set of original data and generated data using RAHC_GAN (Figure 1b), so as to meet
the data required for neural network training and improve the performance of the classifier
in tomato leaf disease recognition. The innovations and contributions are as follows:

e Adding a set of continuous hidden variables to the input of the generative adversarial
network to improve the diversity of the generated images. Due to the intra-class
differences of the same tomato disease being small, the traditional generative ad-
versarial network has difficulty learning the intra-class differences, and then it will
generate similar images, resulting in the phenomenon of mode collapse [37]. In order
to avoid this phenomenon, we use the hidden variable and class label to generate
tomato leaves with different diseases. The class label is used to generate specific
disease classes, and the hidden variable is used to improve the potential changes in
the same class. For each class of disease, we capture the potential differences within
the class by changing the value of the hidden variable, such as the area size and
severity of the disease, so as to supplement the information within the class and enrich
the diversity of the generated images.

®  The fusion of residual attention block and multi-scale discriminator to enrich disease
information of generated pictures. We add residual attention blocks to the generator.
The residual network deepens the network depth and avoids network degradation.
The attention mechanism makes the generator pay more attention to the disease
information in the leaves from the perspectives of channel and space and guides
the generation of tomato diseased leaves with obvious disease features. In addition,
we introduce a multi-scale discriminator, which can capture different levels of infor-
mation in the image, enrich the texture and edges of the generated leaves, and make
the generated leaves more complete, richer in detail, and clearer in texture.

¢ Using RAHC_GAN to expand the training set to meet the large amount of data needed
for neural network training. We use the expanded data set as the training set, train four
kinds of recognition networks (AlexNet, VGGNet, GoogLeNet, and ResNet) through
transfer learning, and use the test set for performance evaluation. The experimental
results show that in multiple recognition networks, the performance of the expanded
data set is better than that of the original training set.
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Figure 1. Schematic of the proposed strategy. This strategy consists of two parts: (a) using the pro-
posed method, RAHC_GAN, to generate tomato diseased leaves; (b) the generated data are extended
to the training set to train the classifier, so as to improve the disease recognition performance of
the classifier.

The rest of this paper is organized as follows: Section 2 introduces related work and
the model we proposed. Then, Section 3 shows the experimental results and analyses. Section 4
shows the related discussions. Section 5 contains the conclusions and future prospects.

2. Materials and Methods
2.1. Related Works
2.1.1. ACGAN

The working principle of GAN is that the generator generates a fake image, and the dis-
criminator determines whether the input image is real or fake and achieves balance through
mutual games. In the traditional GAN, the input of the generator is a random noise, so it is
impossible to generate images of specified classes. In order to generate images of different
classes accurately, it is necessary to train a generator for each class, which is cumbersome
and involves a heavy workload. To solve this problem, ACGAN was proposed. It connects
the class label ¢ with the random noise z and adds a classifier in the discriminator to guide
the training to control the generator to generate specified class images, which overcomes
the limitation of GAN in multi-class data generation.

The main goal of our work is to generate six different tomato leaf disease images and use
them as an extended data set to train the disease recognition network to improve the accuracy
of disease recognition. However, in tomato leaves, the early features of some diseases are not
obvious, and the similarity between the same diseases is high. Therefore, relying on the class
label alone is not enough to generate diseased leaves with obvious features.

2.1.2. CBAM

The CBAM (convolutional block attention module) [38] is a lightweight attention mod-
ule composed of a channel attention module and a spatial attention module. For a given
feature map, CBAM infers the attention map along the channel and space dimensions
and then multiplies the attention map with the input feature map to refine the features, so
that the network focuses on the parts that are more effective for the task, thereby improving
the performance of the model. The network structure of CBAM is shown in Figure 2.
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Figure 2. The network structure of CBAM.

For the input feature map F, the channel attention map M, is first generated through
the channel attention module and dot-multiplied with the original feature map F to obtain
F'. Then the spatial attention map M; is generated by the spatial attention module. The final
output F" is obtained by dot multiplication with F . The calculation process is shown in
Equations (1) and (2).

F = M(F)®F @)

P// _ Ms (F/) ® F/ (2)

The channel attention module aggregates the spatial information of the feature map
through average pooling and maximum pooling and generates average pooling features
Fi,y and maximum pooling features Fj,;.. Then, the channel attention map M eRE*1¥1 js
generated through the shared network. The calculation process of the channel attention
module is shown in Equation (3).

M(F) = o(MLP(AvgPool(F)) + MLP(MaxPool(F))) (3)

The spatial attention module generates Fj,, € RVHXWand F,, € RP>*H*W through
the average pooling layer and the maximum pooling layer, and then performs convolution
operations to generate the space attention map. The calculation process of the spatial

attention module is shown in Equation (4).
M,(F) = a( £7<7(| AvgPool [F]]; MaxPool(F))) )

2.2. Building RAHC_GAN for Tomato Leaf Disease Recognition
2.2.1. The Overview of RAHC_GAN

In the leaf disease recognition network, there is a strong symmetric relationship be-
tween sufficient and insufficient training data. Sufficient data make the neural network
achieve better performance. Therefore, in the case of insufficient training data, we used
the method of GAN to enhance the data. Inspired by Odena, A [27], this paper improved
the network architecture of ACGAN and proposed a generative adversarial network,
RAHC_GAN, which is used to generate tomato leaf images with obvious disease features,
so as to improve the recognition accuracy of the recognition network. The overall network
structure of RAHC_GAN is shown in Figure 3. RAHC_GAN uses the hidden variable mech-
anism to continuously control the generation of the diseased area; through the generator
with a residual block and attention mechanism, more obvious leaf features were extracted
to generate tomato leaves with prominent disease, and the multi-scale discriminator is
used to capture the high-frequency information lost in the image and enrich the detail
texture of the image.



Symmetry 2021, 13, 1597

6 of 21

Convolution Residual Downsampling Attention

32
block block block block 6

4
128
Fully oee
] comected Class Hidden Random 256 o,
! variable noise :
layer | —

Discriminative D2
Ls

8 Real/fake
™| BE |
o2t 3
5 25
26 158
64

16Res+CBAM
64
128
256 _
512
| ) -

Discriminative D1

32
Generator G

Lc
Lh

Figure 3. The network structure of RAHC_GAN. The input is composed of class label ¢, hidden
variable h, and random noise z. The image is down-sampled using a multi-scale discriminator
strategy, and the outputs are real probability, class label, and reconstructed hidden variables.

2.2.2. The Generative Network G

In order to control the disease class of the generated leaves and enhance the generator’s
attention to the diseased area, this paper used the generator network structure as shown
in Figure 4 (a). It extracts high-level features in the image through the residual attention
block, so it can generate images that are more conducive to recognition tasks.

The generator is composed of multiple deconvolution layers. The input of the genera-
tor is a random vector composed of class label, hidden variable, and random noise. After
six layers of deconvolution operations, the output tensor is obtained. Finally, a 128 x 128
x 3 image is generated through the tanh activation layer.

The original ACGAN controls the class of generated images through a set of discrete
class labels. Inspired by this, we added a set of continuous variables as a supplement to
the input information. Since the class label is a discrete value of 0, 1, we defineda 1 x 1 x
6 hidden variable Hide € [—1,1]. Similar to the class label, the six dimensions represent
six classes of diseases respectively, since this paper studies a single disease of a single leaf
image and does not consider the existence of multiple diseases in one image. Therefore,
for the hidden variable of a specified class of disease, we set its dimension to a random
value of —1 to 1 and set other dimensions to 0 to generate the image of this class, so that
the size of the disease area and the disease severity of the generated image can change
with the continuous change of the hidden variables. Thus, the introduced hidden variables
can guide the generation of images with different disease sizes and regions and increase
the diversity of generated images.

However, the existing generators can generate images, considering that the deeper
network is beneficial to the improvement of model performance. In this paper, 16 residual
blocks [39] are added before the last deconvolution layer of the generator. On one hand,
the network depth is deepened to enable the generator to obtain high-level features of
images, and on the other hand, the degradation problem caused by networks with a too
deep depth is avoided.

Accurate recognition of tomato diseases requires accurate disease features. Some of
the early-stage features of the diseases are relatively small. However, the existing GAN
often ignores the tiny disease features when generating images. In order to pay attention
to the disease area of the image, we add a CBAM block before the accumulation layer of
each residual block to help the model judge more beneficial features from two aspects:
channel and space. Channel attention makes the network pay attention to the diseased
area, and spatial attention makes the network know which parts to pay attention to, so that
the generator focuses on the diseased area and de-noises irrelevant information to generate
disease images with obvious disease features.
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2.2.3. The Discriminative Network D

The discriminator is composed of sequentially stacked convolutional layers, and the input
is a real or generated image. The input image is subjected to a six-layer convolution operation
to obtain a feature vector, and the feature vector is transformed into a one-dimensional vector
through the flatten operation of the sigmoid functionand soft-max function, respectively, which
is used to indicate the probability of the input image as a real image and the probability of
being classified. In addition, for the additional hidden variable = (hy, ..., h;;) introduced at
the input, our purpose is to independently control the inter-class details of the same disease.
In this way, similar to the class label ¢, the hidden variable & should be independent, similar to
random noise. Therefore, for the image generated by using a hidden variable, after the feature

extraction of the discriminator, it should be possible to separate the various components
!/ !/ /!

h = (ho, ...,hn) of h [40], which is called the restored hidden variable. Correspondingly,

since the hidden variable at the input takes the value [—1,1], we use the tanh function to
flatten the feature vector to obtain the restored hidden variable and the hidden variable loss to
constrain it. The overall architecture of the discriminator is shown in Figure 4b.

The images generated by traditional GAN often have the problem of a fuzzy tex-
ture structure and lack of high-frequency information. In order to capture the image
distribution at different scales and recover the high-frequency information lost in the im-
age, we proposed a multi-scale parallel learning discriminator architecture [41], which
used two discriminant scales, namely the original 128 x 128 image scale and the down
sampling 64 x 64 image scale. We input them into the corresponding discriminator for
feature extraction and subsequent operation and integrate multi-scale data by feature
fusion. Among them, the discriminator with a smaller input size has a larger field and
guides the generator to generate whole continuous plant leaves, and the discriminator with
a larger input size guides the generator to generate a smaller area, such as the boundary of
the lesion. Since images with different resolutions contain different levels of visual features,
the proposed multi-scale discriminator can increase the discriminator’s receptive field and
make the generated images more detailed and contain a clearer texture.

Input LFT: a
Z = (c,h,2) 2 Ay%?

,,,,,,,,,, | — Aty
! DeConv2D 3 X
! | x~Image
repeat — BN i l
3 Relu i Conv
I i LeakyRelu
Conv |
! Dropout
BN ; i
Relu i E Conv §
repeat ¢—— Conv i : BN 3
| | —— repeat
BN | E LeakyRelu |
CBAM Dropout
-+ Relu ‘ J T
l Flatten Flatten Flatten
DeConv2D l l l
Tanh Sigmoid Softmax Tanh

(a) (®)

Figure 4. The network structure of generator (a) and discriminator (b).
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2.2.4. Loss Function

Adversarial Loss: In order to make the generator “cheat” the discriminator and
generate indistinguishable images, the adversarial loss function of the original GAN is
used, as shown in Equation (5):

Ls = Exepyya(x) 108 D[x]] + E;py (2 [log[1 = D[G[Z]]]] ®)

where x represents the real data sampled from the real data p;,,(x), and z represents
the d-dimensional noise vector sampled from the Gaussian distribution p,.

Classification Loss: For a given class label c, the generator needs to generate the cor-
responding class image Xy.,. The real image pair (c, X;.q) is given by the training data,
and the classification loss is shown in Equation (6).

Le = E[log PIC = ¢ | Xyeut]] + E[log P[C = ¢ | Xpare]] ©)
Hidden variable loss: Due to the instability of the GAN'’s training, pattern collapse
often occurs. Therefore, we added hidden variable loss to GAN to enhance the diversity of

generated images and reduce the occurrence of mode collapse. The definition of hidden
variable loss is shown in Equation (7):

(i~ m)° )

1=

Ly =

i=0

!/

where h = (hy, ..., h,) represents the hidden variable input, and W= (ho, .y h;l) represents

the restored hidden variable obtained after RAHC_GAN.

Specifically, mode collapse means that different input vectors generate the same im-
age through the generator. For different hidden variables k4, iy, they are connected with
a label vector and random noise as the input of the generator z;, zy, further generating
images. Then, the discriminator extracts the features of the generated images and tries to
restore the hidden variables through the fully connected layer. If there is a mode collapse
phenomenon in GAN, the images generated G(z1) = G(zp) after different inputs zq, zp
are passed through the generator. When the image G(z;) = G(z2) is input to the dis-
criminator, the discriminator extracts the same features and, through the full connection
layer restoration, the restored hidden variables h,1 = hlz. While the input hidden variables
hy # hy, at this time, the hidden variable loss calculated by Equation 7 will be very large.
In order to reduce the loss, the RAHC_GAN will continuously optimize the generated
images and generate different images for different inputs, which can improve the diversity
of generated images and reduce the occurrence of model collapse.

Full Objective: Finally, the objective functions of the generator and discriminator are
defined as Equations (8) and (9), respectively:

Lg= Ls+ Le+ ALy, (8)

LD: —Ls+ L (9)

where A is a hyperparameter, and A = 1 is used in all experiments.

2.2.5. Recognition Model for Tomato Leaf Disease Identification

In this paper, a convolutional neural network is applied to tomato disease recog-
nition, mainly to explore whether the image generated by RAHC_GAN is beneficial to
the improvement of recognition performance, so the performance of different recognition
networks is not compared. Moreover, in order to explore the performance of the expanded
data set on different recognition models, we conducted experiments on four classic recog-
nition networks, AlexNet [42], VGGNet [43], GoogLeNet [34], and ResNet [39]. The main
algorithm is shown in Table 1.
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Table 1. Tomato leaf disease recognition algorithm based on RAHC_GAN data augmentation.

Algorithm 1

INPUT: Training set X, Test set X¢,the epoch of RAHC_GAN E,the epoch of recog-
nition network E.,the batch size of RAHC_GAN by, the batch size of recognition

network b,

1. Initialize RAHC_GAN network parameters;

2.  forepochl <« to E;do

3. //RAHC_GAN training

4. forepoch=1,...,E;do

5. Sampling by, group data (x*,y),where x* ~ (c,h,z),y ~ pg(y); Sam-

pling b, group real data (x",y) ~ p;(X,y);
6. Update the discriminator network by Equations (9);
7. Update the generator network by Equations (8);
8. end
9. // RAHC_GAN completes training;
10. Generate data X, ~ (xg,y) through trained RAHC_GAN
11. Xe=XUX;,
12.  Initialize the network parameters of the recognition network;
13. // recognition network training
14.  for epoch <-1to E; do

15. Sampling b, group data (xe,y) ~ pe(Xe, );

16. Update the recognition network through gradient descent;

17. Sampling b. group data (xc,y) ~ p,(Xc,y), use recognition network to
calculate the recognition accuracy;

18. end

OUTPUT: Recognition accuracy rate of test set X,

3. Results
3.1. Data Set

In this paper, tomato data from the Plant Village data set are used for experimentation.
The Plant Village data set is the only public data set on plant leaf disease research at present.
We selected six classes of data from tomato diseases, including five classes of diseased leaf
data and healthy leaf data, as shown in Figure 5. In order to maintain the data balance,
we selected 1250 images for each class of diseased leaves from the Plant Village data set
and used an 80-20% train-test distribution [44] to divide them into a training set (Train
(origin)) and test set (Test). The specific information of the data set is shown in Table 2.
In Table 2, Train (origin + augment) represents the expanded data set, which is composed
of Train (origin) and the data generated by the augmentation method. Specifically, for each
class of data in Train (origin + augment), it includes 1000 original data points in Train
(origin) and 1000 data points generated by the augmentation method.
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(d) (e ®

Figure 5. Six classes of tomato diseases. (a) Healthy; (b) Spot disease; (c) Septoria leaf spot; (d) Bacte-

rial spot; (e) Late blight; (f) Yellow leaf curl virus disease.

Table 2. The tomato data set information.

Class Train (Origin)  Train (Origin + Augment)  Test

Healthy 1000 2000 250

Spot disease 1000 2000 250
Septoria leaf spot 1000 2000 250
Bacterial spot 1000 2000 250

Late blight 1000 2000 250

Yellow leaf curl virus disease 1000 2000 250
Total 6000 12000 1500

3.2. Experimental Setup

All the models in the experiments are running based on the pytorch framework under
Ubuntu 18.04.2 LTS, and the Python version is 3.6.9.

For RAHC_GAN, Adam is used as the optimizer, the learning rate is set to 0.0002,
the output image size is 128 x 128, and the training stops after 500 epochs. The training
data set is Train (origin).

In all experiments, the recognition network is trained from 0, and the network weights
are randomly initialized. The final fully connected layer output of the recognition network
is modified to 6, corresponding to the number of classes of tomato diseases. The training is
stopped after 50 epochs. In our work, for all the recognition results obtained by expanding
the data using data augmentation methods, the training set is the expanded data set Train
(origin+augment), and the test set (Test) remains unchanged.

The recognition accuracy Acc of the test set is used as an index to evaluate the clas-
sification effect, and the calculation process is shown in Equation (10). The original data
set contains 1000 original images, and the expanded data set contains 2000 images (1000
original images, 1000 generated images). In the whole evaluation process, the test set is
kept unchanged, and the data generated are only used to expand the training set:

N
Lt
Acc = ’;1 x 100% (10)
n;
i=1
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where N represents the number of classes, t; is the number of correct predictions for the i-th
class, and n; is the total number of samples in all classes.

3.3. RAHC_GAN Model Exploration
3.3.1. Number of Residual Blocks for Plant Image Generation

In order to explore the influence of the number of residual blocks on tomato disease
recognition results, we conducted experiments on different numbers of residual blocks
based on the original ACGAN, and the results are shown in Table 3. In Table 3, the first row
represents the recognition results obtained after data expansion using ACGAN, and the sec-
ond to fifth rows represent the results of adding 4, 8, 16, and 32 residual blocks into
ACGAN, respectively.

Table 3. Results of tomato disease recognition under different numbers of residual blocks (%).

AlexNet VGGNet GoogLeNet ResNet
ACGAN 94.7 92.4 94.9 96.8
Res4 95.3 94.6 95.0 97.1
Res8 95.0 93.9 95.1 96.9
Res16 95.3 94.9 95.3 97.6
Res32 94.5 94.2 94.1 98.0

It can be seen from Table 3 that compared with the original ACGAN, the network
with the residual blocks has better performance (except for the application of Res32 on
AlexNet and GoogLeNet), which shows that the addition of the residual blocks is beneficial
to deepening the generation network and improving the generation results. In addition,
we noticed that the performance of ACGAN with 32 residual blocks is better than that
of ACGAN with 16 residual blocks on the ResNet network, but the performance on other
networks is not as good as the results with 16 residual blocks. Considering the performance
and longer training time adding more residual blocks, in this paper, 16 residual blocks are
added to the generator to deepen the depth of the generator.

3.3.2. Different Scale of Discriminators for Plant Image Generation

In order to explore the influence of the discriminator scale on tomato disease recogni-
tion results, we conducted experiments on discriminators with different scales based on
the original ACGAN, and the results are shown in Table 4.

Table 4. Results of tomato disease recognition under different discriminator scales (%).

AlexNet VGGNet GoogLeNet ResNet
2D(641128) 94.8 95.1 95.5 97.6
2D(1281256) 94.7 94.4 93.9 96.9
3D(321641128) 93.7 94.8 95.4 97.3
3D(6411281256) 94.3 93.9 95.0 97.2

Table 4 shows the tomato disease recognition results of discriminators with different
scales. The scale of the image generated by the generator is 128 x 128, and we down-
sampled and up-sampled, respectively, to obtain 64 x 64 and 256 x 256 scale images.
The first two rows of Table 4 indicate that two discriminators are used to input images with
scales of 64 x 64 and 128 x 128 and 128 x 128 and 256 x 256, respectively. The results
show that the performance of down-sampling is better than that of up-sampling. On this
basis, we further introduced a discriminator and down-sampled the image again to obtain
an image with a scale of 32 x 32. We combined three discriminators and input images with
scales of 32 x 32, 64 x 64, and 128 x 128 and images of 64 x 64, 128 x 128, and 256 x
256, respectively. The results show that for the combination of three discriminators, two
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down samplings of the image generated by the generator will achieve better results, but
the results are still lower than that of using down sampling once; thus, we used multi-
scale discriminators with scales of 64 x 64 and 128 x 128 to enrich the detailed texture of
the generated images.

3.3.3. The Recognition Performance on Different Expansion Numbers of Training Set

By using the images generated by RAHC_GAN to expand the training set, the recog-
nition accuracy of the classifier can be improved. In order to explore the optimal number
of expanded images, we used RAHC_GAN to generate images and evaluated the perfor-
mance of the classifier in four cases (expanding the data by 0.5 times, 1 times, 2 times, and 3
times the number of original training sets). The experimental results are shown in Figure 6.

Alexiel WislalME L00ogLenNet Resiet

Figure 6. Results of tomato disease recognition under different expansion ratios.

From Figure 6, we know that expanding different amounts of data on the original
data set can improve the performance of the classifier, and after expanding the data by 1
time, the classifier obtains the best performance. However, when the expansion ratio is
increased to 2 times and 3 times the original data set, the performance of the classifier does
not improve, and the overall performance shows a downward trend. It is worth noting that
on ResNet, the performance of the model after the data are expanded by 3 times is lower
than that of original data set, which indicates that a greater expansion of the amount of
data is not better. A larger expansion of the data may “contaminate” the data set and have
a negative impact on accuracy [45]. Therefore, for all the experiments in this paper, we
chose to expand the data set by 1 time on the basis of the original data set as the expanded
data set for further experiments.

3.3.4. The Effect of Hidden Variables

In order to illustrate the control effect of hidden variables on disease generation, we
fixed the random noise z and class c and explored its influence on the generated images
by changing the values of the hidden variable. Each dimension of the hidden variable &
([ho, - .., hs]) controls a disease, and we control the generation of the disease by changing
the value of a certain dimension. Since this work studies a single disease class of a single
leaf image and does not consider the existence of two diseases on a single image, we
change the size of a certain dimension in the range of —1 to 1 with an increasing value
of 0.25 and set the values of other dimensions to 0 for the experiment. The results are
shown in Figure 7. From Figure 7, we know that when the hidden variable takes different
values, the area size and the severity of leaf disease in the generated images are not exactly
the same. With the increase of the hidden variable, the disease area of spot, septoria
leaf spot, bacterial spot, and late blight gradually increases, indicating that the disease
suffered by the leaves is becoming more and more serious [46]. Moreover, when the value of
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the hidden variable increases, the septoria leaf spot becomes deeper and deeper, and the leaf
color difference of yellow leaf curl virus disease becomes bigger and bigger, which indicates
that the hidden variable can capture the potential difference information within the class,
so it can control the severity of the disease. Therefore, the proposed hidden variable can
improve the intra-class difference of diseased leaves, thereby increasing the diversity of
generated images.

Figure 7. Images generated by different values of hidden variables. The rows represent the class of
disease: (A) Spot disease, (B) Septoria leaf spot, (C) Bacterial spot, (D) Late blight, (E) Yellow leaf
curl virus disease. The columns represent the values of different hidden variables: (a) —1, (b) —0.75,
(c) —0.5, (d) —0.25, (e) 0, (f) 0.25, (g) 0.5, (h) 0.75, (i) 1.

We added hidden variable loss to the full objective loss of RAHC_GAN, which is to
enhance the diversity of generated images and reduce the occurrence of mode collapse.
In order to explore the importance of the newly added hidden variable loss relative to
the overall loss, we set the value of the hyperparameter A (Equation (8)) ranging from
0 to 1 and the experiment with 0.2 as the step size. In addition, according to the study
of Jinetal. [47], we set A = 6 to make it equal to the number of classes. We trained
RAHC_GAN with different A values, expanded the generated data to the training set,
and used it for the training of AlexNet, VGGNet, GoogLeNet, and ResNet; then, the test
sets were recognized. According to the recognition accuracy, the generation quality under
different A values was judged. The results are shown in Figure 8. It can be seen from Figure
8 that when A = 1, the accuracy of each recognition network reaches the highest, which
shows that when the hidden variable loss is the same as the proportion of adversarial loss
and classification loss, the disease generation ability of the network is optimal.
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Figure 8. The recognition results of different values of A .

3.4. The Comparative Experiment

In order to evaluate the effect of disease images generated by RAHC_GAN on recog-
nition performance, we compared it with six other generation methods, including con-
ventional augmentation, random erasing [9], ACGAN [27], DCGAN [25], SAGAN [48],
and MSGAN [49]. We used different generation methods to generate images and ex-
panded them to the original training set to obtain the expanded training set. Then, we
performed training and testing on four mainstream recognition networks of AlexNet,
VGGNet, GoogLeNet, and ResNet. The experimental results are shown in Table 5.

Table 5. The recognition accuracy of different generation methods on 4 recognition networks (%).

AlexNet VGGNet GoogLeNet ResNet

Baseline 94.1 93.1 93.8 97.7
Conventional 94.5 93.0 95.7 97.7
Random erasing 94.6 93.0 94.8 97.6
ACGAN 94.7 92.4 94.9 96.8
DCGAN 94.9 95.1 94.7 96.6
SAGAN 93.6 92.1 95.2 97.3
MSGAN 95.0 93.5 95.8 97.5
RAHC_GAN 95.9 95.3 96.5 98.1

In Table 5, the baseline indicates that no augmentation method was used to expand
the data, that is, only the Train (origin) was used to train the model. It can be seen from
Table 5 that the effect of various generation methods on the ResNet recognition network
is in a declining state, which may be because we have used the pre-training model for
training, and it is difficult to improve the performance. Since conventional augmentation
only changes the location and direction of the image, less information is learned, and
the improvement in recognition accuracy is limited. Random erasing erases random areas
in the image, but it may erase the diseased area, which makes the recognition network
learn incomplete disease features. Therefore, its accuracy is lower than that of conventional
augmentation. When ACGAN, DCGAN, and MSGAN were used as the generation network
to expand the data set, the performance of some recognition networks was improved.
However, because the generated disease features are not obvious or there are overlaps
between diseases, the performance of some recognition networks declined. On the other
hand, RAHC_GAN adds a residual attention mechanism to the generator to enhance
the transmission of disease information in the network, which is conducive to generating
obvious disease features. Compared with the baseline, the performance of RAHC_GAN
on the four classification networks improved by 1.8%, 2.2%, 2.7%, and 0.4%, respectively.
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In addition, compared with other data augmentation methods, the expanded data set
generated by RAHC_GAN can improve the accuracy of the four recognition networks,
which has obvious advantages.

In order to intuitively compare the quality of six classes of leaf disease images gen-
erated by different generation methods, we visualized the generated disease images,
as shown in Figure 9. In Figure 9, different rows represent leaf disease images generated
by different methods, and different columns represent different leaf diseases. It can be
seen that the images generated by DCGAN and MSGAN are fuzzy and poor in quality;
the images generated by SAGAN are clearer, but the disease features are not obvious.
Under the same training setting, due to the insufficient ability of the generator to learn
disease features, ACGAN has difficulty generating obvious spot diseases, while the images
generated by RAHC_GAN have high resolution and obvious disease features. In addition,
combined with Table 5, we can seen that MSGAN, which generates relatively fuzzy im-
ages, has achieved better results in the recognition of tomato leaf diseases, while SAGAN
with clearer images reduced the performance of the model, because the GAN can not
balance image generation and class classification well [50]. In contrast, RAHC_GAN adds
a residual attention block to make the disease information of the generated images more
obvious, which helps the discriminator to classify correctly. The multi-scale discriminators
introduced can enrich the detail texture of the generated images, so that the generated
images are clear with obvious disease features.

(@) (b)) (o) (d) (e) )

*
®)
© i
®)
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(F)

Figure 9. Diseased leaves generated by different methods: (a) Healthy, (b) Spot disease, (c) Septoria
leaf spot, (d) Bacterial spot, (e) Late blight, (f) Yellow leaf curl virus disease; (A) Original data,
(B) ACGAN, (C) DCGAN, (D) SAGAN, (E) MSGAN, (F) RAHC_GAN.

In order to further illustrate that the images generated by RAHC_GAN have obvious
disease features, we used Train (Origin) as the training set and the generated images as
the test set to conduct experiments on different network architectures. Since each class
in the origin test set (Test) contains 250 images, we also generate 250 images for each
class and use them as the test set. The results are shown in Figure 10. From Figure 10,
we know that on different classifiers, the recognition accuracy of leaf diseases reached
the highest after adding RAHC_GAN (except for the result on ResNet), indicating that
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the images generated by RAHC_GAN are more similar to the original images. We noticed
that the accuracy of RAHC_GAN on the ResNet classifier is lower than SAGAN, which
may be because the pre-trained model used is more sensitive to the leaves generated by
SAGAN. In addition, the images generated by DCGAN and MSGAN are relatively fuzzy,
and the disease feature are not obvious, so they cannot be classified correctly. On the whole,
compared with other generation methods, the images generated by RAHC_GAN can be
recognized more accurately, indicating its effectiveness in generating leaf disease features.

AlexMet VGEGNet GoogleMet Reshet

ol 8 GAN i WA SGAN SAGAN DCGAN il L AHC GAN

Figure 10. Test accuracy of images generated by different generation methods.

3.5. The Ablation Experiment

The data augmentation method RAHC_GAN proposed in this paper mainly adopts
three improvement strategies to improve the baseline model ACGAN: the addition of
residual attention blocks, the introduction of hidden variables, and the use of multi-scale
discriminators. In order to verify the effectiveness of these three improvement strategies,
we trained a generated adversarial network based on different network configurations
and combined the generated images with the original training set as an extended training
set, which is trained on four recognition networks of AlexNet, VGGNet , GoogLeNet, and
ResNet, and used the test set to evaluate the performance of different networks. The results
are shown in Table 6.

Table 6. Ablation experiment. R is the 16-layer residual block, A is the attention mechanism of
CBAM, and H is the hidden variable (%).

AlexNet VGGNet GoogLeNet ResNet
ACGAN 94.7 92.4 94.9 96.8
+R+A 94.9 93.6 95.5 97.5
+R+H+A 95.7 94.7 96.1 97.7
RAHC_GAN 95.9 95.3 96.5 98.1

It can be seen from Table 6 that after adding the residual attention block to ACGAN,
the recognition accuracy of AlexNet, VGGNet, GoogLeNet, and ResNet has been improved,
indicating that the residual attention block can improve the disease generation ability of
the network. On this basis, by adding the hidden variable input and hidden variable loss
function, the performance of the four recognition networks has been greatly improved.
This is because the hidden variable has a control effect on the generation of diseases and
can supplement intra-class information in the generated images. In addition, the constraint
of the hidden variable’s loss increases the diversity of the generated images, so that
the recognition network can learn more disease characteristics. Finally, the multi-scale
discriminator strategy is applied to RAHC_GAN, and the performance is also improved on
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the four recognition networks, because the multi-scale discriminator enriches the detailed
texture of the generated images and can generate complete local disease information. It can
be seen that the three proposed improvement strategies are beneficial to the generation of
diseased images, which can improve the recognition performance of the classifier.

3.6. The Recognition Performance on Other Plants

RAHC_GAN can generate leaves with obvious disease features on tomato plants.
At the same time, we hoped that it could also have a good disease generation ability on
other plants to improve the performance of the recognition network. In order to verify
whether RAHC_GAN has a good ability to generate other plants, we chose apple, grape,
and corn leaves in the Plant Village data set. The apple data include four diseases (black
spot, black rot, cedar-apple rust, and healthy), the grape data include four diseases (black
rot, wheel spot, brown spot, and healthy), and the corn data include four diseases (gray
leaf spot, common rust, healthy, and northern leaf blight), as shown in Figure 11. We
use the same method for image generation, data expansion, and disease identification on
these three plants. The specific information of the data set and the experimental results of
RAHC_GAN on these three types of data sets are shown in Tables 7 and 8, respectively.

Gray_Leaf Spot Common_Rust
P "

Cedar_apple_rust Healthy Healthy Leaf ]i ght Healthy Northern_Leaf Blight
(a) (b) ©

Figure 11. Sample display of apple (a), grape (b), and corn (c).

Table 7. The data set display of apple, grape, and corn.

Apple Grape Corn
Class Train Test Class Train Test Class Train Test
Scab 500 125 Black_rot 500 125  Gray_leaf spot 200 50
Black_rot 500 125 Black Measles 1000 250 Common_rust 500 125
Cedar_apple_rust 200 50 Healthy 200 50 Healthy 500 125

Healthy 1000 250 Leafblight 500 125 Northern_leaf blight 500 125

Table 8. The recognition accuracy on apple, grape, and corn data(%). a,b,c represent three kinds of
recognition networks, AlexNet, VGGNet, and GoogLeNet, respectively.

Apple Grape Corn
a b c a b c a b c
baseline 975 975 995 987 984 995 967 969 984

ACGAN 97.8 978 996 971 987 993 977 974 986
RAHC_GAN 980 991 998 991 987 998 981 981 988

From Table 8, we can see that after using RAHC_GAN for data augmentation, the per-
formance of the three recognition models on apple, grape, and corn data has been improved
in varying degrees, proving that the RAHC_GAN method has a generalization ability on
different data sets. It is worth noting that for apple and corn data, using ACGAN for
expansion can improve the recognition performance of the classifier. However, for grape
data, on the AlexNet and GoogLeNet recognition networks, using ACGAN for expansion
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will reduce the recognition performance. This is because the four classes of apple and
corn disease data are quite different in shape and lesion (Figure 11a,c), while the shapes
of the four grape disease data sets (Figure 11b) are very similar, with small intra-class
differences, and the difference of the four diseases is only in the disease spots. In this
case, ACGAN cannot accurately focus on the lesion area, which leads to an indistinct
lesion in the generated images and even reduces the recognition performance of the model.
In contrast, because RAHC_GAN adds the residual attention module, it can accurately pay
attention to and learn the disease information in the image. Furthermore, the multi-scale
discriminator can enrich the detailed texture of the disease spot area and generate the im-
ages with obvious disease features. Therefore, in grape data, RAHC_GAN can improve
the recognition performance of the classifier.

4. Discussion

Deep learning training requires a large amount of data. When the data are insufficient,
a variety of methods can be used for data augmentation, such as flipping, cropping, etc.
Instead of this method, GAN does not require the manual selection of transformation
operations, but through the confrontation of generator and discriminator, it simulates
the distribution of the original data and generates a group of data. Experimental results
show that the extended data generated by GAN can improve the recognition performance
of plant diseases. However, because the variability of the image generated by GAN is
limited, it is impossible to capture all the possible changes in the image, so the perfor-
mance improvement is limited. At the same time, the images generated by GAN have
limitations. Although adding data can improve the recognition performance, adding too
much data in the training set may destroy the original data set and cause performance
degradation. Therefore, in future work, we will continue to explore more effective data aug-
mentation methods to generate higher-quality images while maintaining better recognition
performance.

In addition, because GAN is a kind of neural network, its training also depends on
data. When the amount of data in the training set is too small, the image of the specified
class cannot be generated accurately by noise. Therefore, we will also try to use image to
image conversion generation instead of noise to image conversion for data augmentation.

5. Conclusions

In the training of a recognition network, there is a strong symmetric relationship
between sufficient and insufficient training samples. In order to solve the problem of
insufficient data, we proposed a generative adversarial network model for tomato disease
leaf generation, called RAHC_GAN, and evaluated it on four disease identification net-
works: AlexNet, VGGNet, GoogLeNet, and ResNet. The experimental results show that
the expanded data set can meet the large amount of data required for neural network train-
ing, which makes the data set expanded by RAHC_GAN have a greater improvement in
recognition accuracy under different classification models. At the same time, we found that
under the same experimental settings, VGGNet, as the classification network with the most
network parameters, has the lowest recognition performance among the four networks
without data augmentation, and the performance improvement is the most obvious after
using RAHC_GAN for data augmentation, which shows that on the neural network with
large parameters, sufficient data can significantly improve its recognition performance.

In comparison with other data augmentation methods, the data set expanded by
RAHC_GAN has better performance on the four classification networks, indicating that
RAHC_GAN can generate tomato diseased leaf images with obvious disease features from
random noise and can effectively solve the problem of insufficient training data. The results
of ablation experiments show that in the generation of leaves with the same disease,
the newly added hidden variable can learn the potential intra-class change information, so
as to enrich the class information of the same disease. The addition of residual attention
blocks can make the generator pay attention to the disease area in the image and guide
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it to generate leaves with obvious disease features. The introduction of a multi-scale
discriminator can enrich the detailed texture of the generated images.

The application of RAHC_GAN on apple, grape, and corn data from the PlantVillage
data set shows that the proposed method has good generalization ability. In addition to
solving the problem of insufficient data for tomato leaf identification, it can also be used
for other plant research tasks lacking diseased leaf data.
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