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Abstract: For time-invariant Metzler linear MIMO systems, this paper proposes an original approach
reflecting necessary matching conditions, specifically structural system constraints and necessary
positiveness in solving the problem of MIMO PID control. Covering the matching conditions by the
supporting structure of measurement, refining the controller and system parameter constraints and
introducing enhanced equivalent system descriptions, the reformulated design task is consistent with
PID control law parameter representation and is formulated as a linear matrix inequality feasibility
problem. Characterization of the PID control law parameters is permitted to highlight dynamical
properties of the closed-loop system and the structural influence of the control derivative gain value
in the design step. For the first time, the paper comprehensively sets the synthesis standard for PID
control of MIMO Metzler systems because others for the given task have not been created at present.

Keywords: linear Metzlerian systems; positive linear systems; diagonal stabilization; linear matrix
inequalities; PID control

1. Introduction

Representing the system state and variable positiveness of systems in different do-
mains [1], positive systems act as a specific class of systems of technical processes. To cover
the class of plants using the model with non-negative parameters, the distinctive connec-
tions with the Metzler structure of system matrices [2] for notational simplicity implies
a rather common notation of them as Metzler systems. The main areas of applicability
are switched systems [3] and multi agent systems [4]. Since the existence of controllers
that stabilize this class of plants is a distinctive problem, suitable publications are focused
on the sophisticated techniques applicable for representation of different positive con-
straints [5,6]. To achieve the necessary closed-loop system state positivity with respect to
parameter boundaries and then semi-definite programming [7], the implementation of
non-symmetrical bounds [8] as well as the combined linear programming method [9] have
been proposed, but the specific problems concerned with solver interactions and parameter
constraints remained open.

Tractable ways of including a PID controller into control structures have appeared,
where stabilizing tasks formulated with the inclusion of additional performance require-
ments and constraints are also of interest [10]. The resulting closed-loop system provides
stable system responses and, if the design is covered by adequate matrix formulation, it
establishes desired variable constraints with good computational efficiency [11], as well
as non-iterative design schemes based on linear matrix inequality (LMI) formulations,
directly connected with stability and robustness [12]. Unfortunately, the majority of results
related to those above-mentioned methods are not directly applicable to linear Metzler
systems [13].

Because control algorithms used for Metzler linear positive systems are static in
general, one of the motivating factors for the paper [14] was PID control law parameter
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design for single-input single-output (SISO) Metzler systems, but it turned out that its direct
generalization for Metzler multiple-input multiple-output (MIMO) linear systems under
given boundaries is not possible. To find out what underlying Metzler system restrictions
must be placed on the system parameters, a particular structure of the matching conditions
were analyzed and a generalized systematic scheme to determine the PID control for MIMO
linear Metzlerian continuous-time systems is proposed in this paper. To show the Metzler
and Hurwitz closed-loop system matrix structure, a more concrete PID control design task
is formulated.

Concerning asymptotically stable solutions, the article is also a follow-up of another
authors’ papers [15,16], which introduced a representation of Metzlerian system parameter
constraints using LMIs, exploited a diagonal principle in stabilization and utilized a
rhombic mapping of a strictly square Metzler matrix.

Such formulation is mathematically represented through the state-space models with
a Metzler system matrix and supported by a minimal number of LMIs, defining structural
constraints (compare [8]).

Reflecting the above-mentioned specific conditions, the approach presented in this
paper for PID control design with application to linear Metzler MIMO systems is original
and primary. Such inclusion of the D-part of PID, if the matching conditions are satisfied,
refine system matrix parameter constraints in the design task. This is accomplished by
assuming that a suitable equivalent system exists and the resulting PI design bilinear task
can be tackled using LMIs and a linear matrix equality (LME) approach.

The remaining part of this paper is organized as follows. To present the reasoning path,
brief comments on MIMO linear Metzlerian systems are given in Section 2. The proposed
LMI technique, enforcing conditions on the PID control law design, with the structure of
the matching conditions and the main theorem characterizing the system’s behavior, is
stated in Section 3. More concretely, this section is focused on parametric features in PID
control design for MIMO Metzlerian systems, basic constitutive relations concerning the
D-part of the control law, feasibility problems that involve system parametric constraints
and the ways of turning the approach into an LMI-based design formulation, conditioned
by one LME. Confirming these results, Section 4 follows with an illustrative numerical
example. Finally, Section 5 discusses the results and their interpretation to establish a
straightforward perspective on the conclusions presented in Section 6.

Throughout the paper, the following notations are used: xT, XT denotes the transpose
of the vector x, and the matrix X, respectively, the indication XhT means transpose of the
h-th power of a square matrix X, the notation X ⊗ Y represents the Kronecker product
(tensor product) of two real matrices X, Y , diag[ · ] outlines a diagonal form, ρ(X) identifies
a set of related matrix eigenvalues, labeling of matrix X � 0 means its positive definiteness,
In ∈ Rn×n is a unit matrix, a ∈ R+ is a non-negative real scalar, (Rn×r

+ ), Rn×r refers to
the set of n× r (non-negative) real matrices and Mn×n

−+ , (Mn×n
−+◦) means the set of strictly

(purely) Metzler square matrices, respectively.

2. Linear Metzler Systems Formalism and Control System Strategies

Making additional assumptions on the control design for a multiple-input, multiple-
output (MIMO) Metzler positive system, the goal of this section is to present coincided
conditions, which can be justified when defining this task as the problem of synthesis with
the set of parametric constraints.

A linear, time-invariant continuous-time MIMO Metzler positive system allows the
state-space description

q̇(t) = Aq(t) + Bu(t) , (1)

y(t) = Cq(t) , (2)

where q(t) ∈ Rn
+, u(t) ∈ Rr, y(t) ∈ Rm

+ are the system state vector, control input and
measurable output.
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Since there exist different techniques to preserve important properties of the Metzler
linear positive systems for parameter constraints compartmentalization, with reference
to the notation, it is considered that B ∈ Rn×m

+ , C ∈ Rm×n
+ are non-negative matrices and

A ∈Mn×n
−+ is Metzler.

Exploiting the Metzler matrix structure notation, the following features have to
be highlighted.

Definition 1 ([17]). A square matrix A ∈ Mn×n
−+◦ is purely Metzler if its diagonal elements

are negative and its off-diagonal elements are non-negative. A square matrix A ∈ Mn×n
−+ is

strictly Metzler if its diagonal elements are negative and its off-diagonal elements are positive.
A Metzler matrix is stable if it is Hurwitz. From a strictly Metzler matrix A ∈ Mn×n

−+ imply n2

structural constraints

aii < 0 ∀ i = 1, . . . n, aij, i 6=j > 0 ∀ i, j = 1, . . . n . (3)

Remark 1. Since B ∈ Rn×r
+ , C ∈ Rm×n

+ are non-negative, a negative feedback makes smaller
(non-negative or positive) off-diagonal elements, and it could destroy the Metzler structure, setting
one or more off-diagonal elements to a negative value. This fact also highlights that structural
constraints must be included in the synthesis conditions to keep the resulting Metzler structure.

While for general linear systems it is possible to work with signum indefinite elements in the
matrix inversion of a square matrix, for Metzler systems it may be difficult, or impossible, to provide
general statements if this matrix operation has to be performed. Since a square matrix X and its
inverse have non-negative, structure if X is positively definite diagonal, to guarantee structural
constraints the LMI based design conditions for Metzler systems are formulated using positive
definite diagonal matrix variables, and the term "diagonal stability" is used [15,18]. If A ∈ Rn×n

−+
is only purely Metzler, the synthesis conditions have to reflect further structural constraints,
includable in the design by related structured diagonal matrix variables [19].

Proposition 1 ([1]). A solution q(t) of (1) for t ≥ 0 is asymptotically stable and positive if
A ∈ Mn×n

−+ is a stable Metzler matrix, B ∈ Rn×r
+ is a non-negative matrix and the state vector

q(t) ∈ Rn
+ for given u(t) ∈ R+ and q(0) ∈ R+. The linear system (1), (2) is asymptotically stable

and positive if A ∈ Mn×n
−+ is a stable Metzler matrix, B ∈ Rn×r

+ , C ∈ Rm×n
+ are non-negative

matrices and the output vector y(t) ∈ R+ for all u(t) ∈ R+ and q(0) ∈ R+.

Definition 2 ([20]). A matrix L ∈ Rn×n is a permutation matrix if exactly one item in each
column and row is equal to 1 and all other elements are equal to 0.

Taking into account Definition 2 and envisaging a diagonal Y ∈ Rn×n such that

Y = diag
[
y1 y2 · · · yn

]
, (4)

then it yields
LTY L = diag

[
y2 · · · yn y1

]
, (5)

if LT ∈ Rn×n takes the circulant form

LT =

[
0 In−1
1 0

]
. (6)
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Remark 2 ([16]). The diagonal stabilization problem can be reformulated using a rhombic mapping
of the square strictly Metzler matrix A ∈Mn×n

−+ of the form

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

...
...

an1 an2 an3 · · · ann

, (7)

where the rhombic mapping is constructed using circular shifts of rows of A ∈Mn×n
−+ as

AΘ =


a11 a12 a13 · · · a1n

a22 a23 · · · a2n a21
a33 · · · a3n a31 a32

. . .
...

...
...

. . .
ann an1 an2 · · · an,n−1

. (8)

It is evident that generally n2 parametric constraints (3) can be defined by the negativeness of
AΘ(i, i+ h) ∈ Rn×n

+ for h = 0 and by the positiveness of (n− 1) diagonal matrices AΘ(i, i+ h) ∈
Rn×n

+ for h = 1, . . . , n− 1 with

AΘ(i, i + h) = diag
[
a1,1+h · · · an−h,n an−h+1,1 · · · an,h

]
(9)

related to the diagonals of (8).

Definition 3 ([17]). Let U ∈ Rm×m, V ∈ Rn×n then the (mn)-dimensional matrix, called the
Kronecker product of U and V , is constructed as

U ⊗ V =
[{

uijV
}m

i,j=1

]
, U =

[{
uij
}m

i,j=1

]
. (10)

It can be underlined at this point that the following Kronecker product properties [21] will
now be priority

(In ⊗U)(V ⊗ Im) = (V ⊗ Im)(In ⊗U) , (11)

(U ⊗ V)−1 = U−1 ⊗ V−1, (12)

(U ⊗ V)T = UT ⊗ VT. (13)

Consider the system (1), (2) and the properties of diagonals of the mapping (8), (9)
with the specific relation to the Metzler system diagonal stabilization principle. To keep
the notation simple, without loss of generality, this principle is briefly formulated in the
following lemma.

Lemma 1 ([22]). Let a square real n× n matrix Λ be partitioned as

Λ = A− BDC , (14)

where A ∈ Mn×n
−+ , B ∈ Rn×m

+ , C ∈ Rm×n
+ , D ∈ Rm×m

+ , while A is strictly Metzler. Then Λ is
strictly Metzler if, equivalently,

(i)
aii − bT

i Dci < 0 for all i = 1, . . . , n ,

aij − bT
i Dcj > 0 for all i, j = 1, . . . n, i 6= j ,

(15)
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(ii)
AΘ(i, i)− BdDdCd ≺ 0 ,

AΘ(i, i + h)− BdDdCdh � 0 ,
(16)

where
BT =

[
b1 · · · bn

]
, Bd = diag

[
bT

1 · · · bT
n

]
, (17)

C =
[
c1 · · · cn

]
, Cd = diag

[
c1 · · · cn

]
, (18)

Dd = In ⊗ D , Cdh = ShTCdLh, S = L⊗ Im . (19)

Moreover, the square matrix representation from its rhombic diagonals is given as

Λ =
n−1

∑
h=0

(AΘ(i, i + h)− BdDdCdh)LhT . (20)

Since the positivity of the systems is defined by a non-negative system state, the non-
negative system input and output matrix parameters and a Metzler system matrix structure,
it is necessary to take these facts into account when synthesizing the PID MIMO controller.

Because this introduces an added limitation in the synthesis conditions, the aim is to
develop a systematic framework for PID control design for a given class of Metzler linear
MIMO systems that would be sufficiently general with respect to the system input matrix
parameter and the related structure of the measured system but also effective in terms of
closed-loop system stability and positivity. The latter is a multi-variable problem, subject
to the given parametric constraints.

The problem is finally the following: Assuming the given class of Metzler linear
MIMO systems, the matching conditions for the existence of PID control with transition
to the input and output matrices and the design procedure of the Metzler system have
to be defined, based on the general set of LMIs that is given if the matching conditions
are satisfied. Since the use of other known PID control design formalism for this class of
system remains rather heuristic in the system positiveness, the obtained results cannot be
compared with unknown positive solutions.

3. Main Results

To provide a constructive solution to the parameter feasibility problem in the synthesis
of PID controllers for a given system Metzler system class, it is necessary to establish the
matching conditions related to the system input matrix and the system output matrix,
the LMI representation of the Metzler system matrix parametric constraints and a direct
consequence of the control law matrix parameters on the closed-loop system asymptotic
stability and positiveness.

3.1. Parametric Features in PID Control Design

To respect the positiveness of the system variables for the considered class of square
Metzler linear MIMO systems (1), (2), the MIMO continuous-time PID control algorithm is
considered as

u(t) = KPer(t) + K I

∫ t

0
Cpq(τ)dτ − KD ėr(t) , (21)

where r = m, wr ∈ Rm
+ is a constant positive reference output vector, er(t) ∈ Rm is the

control signal error vector, where

er(t) = wr − y(t) (22)

and KP, K I , KD ∈ Rr×m
+ are non-negative matrix parameters of the controller.
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To reduce the desired specification on the closed-loop system, it is assumed that there
exist associated w ∈ Rn

+ and e(t) ∈ Rn such that

wr = Cw, e(t) = w− q(t), er(t) = Ce(t) (23)

and the essential feature of the considered synthesis problem depending (23) is given as

u(t) = KPCe(t) + K I p(t)− KDCė(t)

= −KPCq(t) + K I p(t) + KDCq̇(t) + KPCw

= −KPCq(t) + K I p(t) + KDCq̇(t) + KPwr ,

(24)

while the variable vector ṗ(t) ∈ Rm
+ on input of the integrator is

ṗ(t)(t) = Cpq(t) . (25)

Note, in general, it can set Cp = C and, appending to the integrator, input all state
variables involved in the measurable system output projection.

For actual computations, the equivalence of the assembled system structure can be
expressed well as[

In − BKDC 0
0 Im

][
q̇(t)
ṗ(t)

]
=

[
A− BKPC BK I

Cp −Im

][
q(t)
p(t)

]
+

[
BKP 0

0 Im

][
wr

p(t)

]
, (26)

[
y(t)
p(t)

]
=

[
C 0
0 Im

][
q(t)
p(t)

]
. (27)

In the above view, the composite variables and the composite matrix parameters are
introduced as

q◦(t) =
[

q(t)
p(t)

]
, w◦(t) =

[
wr

p(t)

]
, y◦(t) =

[
y(t)
p(t)

]
, (28)

A� =
[

A− BKPC BK I
Cp −Im

]
, B� =

[
BKP 0

0 Im

]
, E� =

[
In − BKDC 0

0 Im

]
, C◦ =

[
C 0
0 Im

]
, (29)

which specify the corresponding closed loop system description

E�q̇◦(t) = A�q◦(t) + B�w◦(t) , (30)

y◦(t) = C◦q◦(t) . (31)

Thus, if E� is regular, then

q̇◦(t) = E�−1 A�q◦(t) + E�−1B�w◦(t) . (32)

With this non-descriptor notation, the matrix inequality procedures can hold true but
the direct convexifying lead to bi-linear matrix inequalities.

3.2. Basic Constitutive Control Constraints

To search for a stabilizing PID MIMO controller in which the design is LMI-able,
the role of the system matrix parameter in the design is analyzed.

If A ∈ Mn×n
−+ , B ∈ Rn×r

+ , C ∈ Rm×n
+ are the parameters of a Metzler positive MIMO

system, the matrices B�, C◦ are non-negative. Then, with non-negative parameters of the
PID controller KP, K I , KD ∈ Rr×m

+ the matrix A� is Metzler if (A− BKPCT) is (strictly)
Metzler, (In − BKDC) is regular and (In − BKDC)−1 is positive.

The following simplification is used to show how to realize positive effects of the PID con-
troller derivative part on the Metzler structural constraints satisfying the above assumption.
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Consider a sub-class of square linear Metzler MIMO systems, where r = m, A ∈Mn×n
−+

is strictly Metzler, and B ∈ Rn×m
+ , C ∈ Rm×n

+ take the following non-negative structures

C =
[
Im 0

]
, BT =

[
BT

1 BT
2
]
, (33)

while B1 ∈ Rm×m
+ is regular and non-negative. If KD ∈ Rm×m

+ is supposed as regular and
non-negative, using the Sherman–Morrison–Woodbury formula [23] yields

(In − BKDC)−1 = In − B(K−1
D + CB)−1C

= In − B(−K−1
D + B1)

−1C .
(34)

Setting with a positive scalar ε ∈ R+ that

K−1
D = (1 + ε−1)B1 , (35)

then
(In − BKDC)−1 = In − B(−ε−1B1)

−1C = In + ε BB−1
1 C (36)

and the block structure of B implies

(In − BKDC)−1 = In + ε

[
B1
B2

]
B−1

1 C = In + ε

[
C

B2B−1
1 C

]
. (37)

Since the inverse of a square positive matrix is, in general, signum indefinite, it is
evident that B1 must have a non-negative structure, at least such that one of its non-
diagonal elements takes the value of zero, or B1 has to be a diagonal positive definite
matrix. Under these conditions, B−1

1 is non-negative and it yields

(In − BKDC)−1 = In + ε BB−1
1 C � 0 , (38)

E�−1 =

[
In − BKDC 0

0 Im

]−1

=

[
In + ε BB−1

1 C 0
0 Im

]
� 0 , (39)

respectively.

Remark 3. If B is positive, with a non-negative C of full rank, only the positive B1 can be
constructed and the positive E�−1 cannot be obtained. The case when the matrix B is non-negative,
B1 is positive and B2 = 0 gives the positive E�−1 but a signum indefinite control parameter KD.

The positive effect of the PID controller derivative part on the Metzler matrix structure can be
exploited if C is of full rank and non-negative, the matrix B is non-negative and B1 is diagonal.

An ad hoc solution can exist if (In − BKDC)−1 is not positive and the structure of B1 is, e.g., a
degenerative lower triangular matrix, but it hardly depends on the parameters of Metzler matrix A.

The main idea of this remark can be generalized with respect to the diagonal stabiliza-
tion principle by the following matching conditions.

Definition 4. The derivative part of the PID controller in control of strictly Metzler linear
MIMO systems exists if non-negative matrices B ∈ Rn×m

+ , C ∈ Rm×n
+ of the system satisfy

the matching condition

CB = B1 = diag
[
b11 b22 · · · bmm

]
� 0 , (40)

where CB ∈ Rm×m
+ , C = [Im 0].

The matrix B1, if exists, can be constructed by a linear coordinate transform of the system
state variables while the associated measured variables must be chosen in such a way that C takes
the above structure.
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Remark 4. Prescribing (35) as a solution to the positiveness problem, the direct evaluation then
implies the diagonal control law parameter

KD =
ε

1 + ε
B−1

1 , (41)

with dependence on a positive tuning parameter ε ∈ R+ and positive definite diagonal B1.

The problem can be put in the matrix form when the availing structure of the static
output control is readily solved by the parametrization

A� =
[

A 0
Cp −Im

]
−
[

B 0
0 Im

][
KP −K I
0 0

][
C 0
0 Im

]
= A◦ − B◦K◦C◦

(42)

where

A◦ =
[

A 0
Cp −Im

]
, B◦ =

[
B 0
0 Im

]
, C◦ =

[
C 0
0 Im

]
, K◦ =

[
KP −K I
0 0

]
. (43)

Therefore,

E�−1B� =
[

In + ε BB−1
1 C 0

0 Im

][
BKP 0

0 Im

]
=

[
BKP + ε BB−1

1 CBKP 0
0 Im

]
= B•w, (44)

E�−1B◦ =
[

In + ε BB−1
1 C 0

0 Im

][
B 0
0 Im

]
=

[
B + ε BB−1

1 CB 0
0 Im

]
= B•, (45)

E�−1 A◦ =
[

In + ε BB−1
1 C 0

0 Im

][
A 0

Cp −Im

]
=

[
A + ε BB−1

1 CA 0
Cp −Im

]
= A•. (46)

It is evident, since B is non-negative that B• as well as B•v are non-negative, and since
A is strictly Metzler, then A• is purely Metzler.

Using the above, (32) can be transformed into the form

q̇◦(t) = (A• − B•K◦C◦)q◦(t) + B•ww◦(t) = A•c q◦(t) + B•ww◦(t) , (47)

also emphasizing that such system description leads directly to a bilinear structure of
matrix inequalities.

Remark 5. Since the resulting B•, B•w are non-negative, this in turn means that for a positive
diagonal KD defined as in (41) it is sufficient to include in the synthesis the parametric constraints
resulting from the desired Metzler structure of A•c = A• − B•K◦PIC

◦, where A• is purely Metzler.
In order to provide constraint limitations, constraint structures need to reflect linear matrix

inequality forms, but the structure of A•c implies an essentially bilinear matrix inequality formula-
tion. This can be eliminated by applying one linear matrix equality into the design (see, e.g., [22]).
The principle is explicated at the point of application.

3.3. PID Control Law Parameter Design

Exploiting the diagonal stabilization principle in accession to the control design for
strictly linear Metzlerian structures [15], the following matrix parameter A• ∈M(n+m)×(n+m)

−+ ,
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B• ∈ R(n+m)×2m
+ , C◦ ∈ R2m×(n+m)

+ needs to be adequately represented diagonally. These
are represented in accordance with Lemma 1 as follows:

A• =



−a•11 a•12 · · · a•1n 0 · · · 0
a•21 −a•22 · · · a•2n 0 · · · 0

...
. . .

a•n1 a•n2 · · · −a•nn 0 · · · 0
cp11 cp12 · · · cp1n −1 · · · 0

...
...

. . .
cpr1 cpr2 · · · cprn 0 · · · −1


=

[{
a•ij
}n+m

i,j=1

]
, (48)

A•Θ(i, i) = diag
[
−a•1,1 · · · −a•nn −1 · · · −1

]
, (49)

A•Θ(i, i + h) = diag
[

a•1,1+h · · · a•n+m−h,n+m a•n+m−h+1,1 · · · a•n+m,h

]
, h = 1, . . . , n + m− 1, (50)

B• =



b•11 · · · b•1m 0 · · · 0
...

...
b•n1 · · · b•nm 0 · · · 0
0 · · · 0 1 · · · 0
...

...
. . .

0 · · · 0 0 · · · 1


=



b•T1
...

b•Tn
b•Tn+1

...
b•Tn+m


, B•d = diag

[
b•T1 · · · b•Tn b•Tn+1 · · · b•Tn+m

]
, (51)

C◦ =
[

C 0
0 Im

]
=
[
c◦1 · · · c◦n c◦n+1 · · · c◦n+m

]
, C•d = diag

[
c◦1 · · · c◦n c◦n+1 · · · c◦n+m

]
. (52)

To re-make the design construction in linear matrix inequality forms from the given
bilinear structure, the related matrices are constructed in this way

L =

[
0T 1

In+m−1 0

]
, S = L⊗ I2m , JT =

[
I2m · · · I2m

]
, C•dh = ShTC•d Lh (53)

and the associated block-diagonal gain representation matrix

K◦ =
[

KP −K I
0 0

]
, K•d = diag

[
K◦ · · · K◦

]
= In+m ⊗ K◦. (54)

is constructed via the same recipe.
Thus, the main result can now be presented and proven.

Theorem 1. Let C ∈ Rm×n
+ , B ∈ Rn×r

+ take the forms (33), where B1 ∈ Rr×r
+ is a regular positive

definite diagonal matrix and for a given positive scalar ε ∈ R+ the matrix A• ∈M(n+m)×(n+m)
−+

is Metzler and B•, B•w ∈ R
(n+m)×2m
+ are non-negative and C◦ ∈ R2m×(n+m)

+ is non-negative,
then the closed-loop built on (1), (2) under PID control (21) is stable if there exist positive definite
diagonal matrices P ∈ R(n+m)×(n+m)

+ , H ∈ R2m×2m
+ and a non-negative matrix R ∈ R2m×2m

+
such that for h = 1, 2, . . . n + m− 1,

P = PT � 0 , H = HT � 0 , (55)

AΘ(i, i)P− B•dR•dC•d ≺ 0 , (56)

Lh AΘ(i, i + h)LhTP− LhB•dShTR•dC•d � 0 , (57)

A•P+PA•T − B•dR•d J JTC•d − C•Td J JTR•Td B•Td ≺ 0 , (58)
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C•dP = HdC•d , (59)

where
R , Rd = In+m ⊗ R , Hd = In+m ⊗ H . (60)

are structured matrix variables.
Within a feasible solution with a suitable positive ε fixing a diagonal positive definite KD,

the gain K◦ ∈ R2m×2m
+ representing not fixed design parameters is

K◦ =
[

KP −K I
0 0

]
= RH−1. (61)

Proof of Theorem 1. For a stable realization of A•c , it yields according to Lyapunov in-
equality and relation (19)

A•c P + PA•Tc =

=
n

∑
h=0

(A•Θ(i, i + h)LhT − B•dK•dC•dhLhT)P +
n

∑
h=0

P(A•Θ(i, i + h)LhT − B•dK•dC•dhLhT)T ≺ 0 .
(62)

Then, using the above (11) it follows that

B•dK•dC•dhLhT = B•dK•dShTC•d LhLhT

= B•d(In+m ⊗ K◦)(LhT ⊗ I2m)C•d
= B•d(LhT ⊗ I2m)(In+m ⊗ K◦)C•d
= B•dShTK•dC•d .

(63)

Since there is an admissible change of parameters, the product K•dC•d can be written
as follows

K•dC•d =

K◦H
. . .

K◦H


H−1

. . .
H−1

C•d

= Rd H−1
d C•d ,

(64)

where
R = K◦H, Rd = In+m ⊗ K◦ . (65)

and making this substitution, (16) allows

A•Θ(i, i)P− B•dK•d Hd H−1
d C•dP ≺ 0 , (66)

A•Θ(i, i + h)LhTP− B•dShTK•d HdH−1
d C•dP � 0 . (67)

It can be easily derived when prescribing

H−1
d C•d = C•dP−1 (68)

that (66), (67) imply (56), (57) and (68) gives (59), while the left multiplication of (67) by Lh

retains diagonal structures of LMIs.
To avoid additional structured variable’s phenomena in the design conditions [19], it

can be taken as

A•c P + PA•Tc = (A• − B•K◦C◦)P + P(A• − B•K◦C◦)T

= A•P + PA•T − B•K◦C◦P− PC◦TK◦TB•T

= A•P + PA•T − B•dRd J JTC•d − C•Td J JTRT
d B•Td

≺ 0 ,

(69)
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Thus, (58) follows from the inequality (69) and verifies the system stability. This ends
the proof.

4. Illustrative Numerical Example

An Unstable Metzler linear MIMO system (1), (2) is considered to illustrate the design
step with relation to the system matrix parameters

A =


−3.380 2.208 4.715 2.676

1.881 −4.290 2.050 0.675
2.067 4.273 −6.654 2.893
1.148 2.273 1.343 −2.104

, b =


0.0410 0

0 0.0203
0.0114 0.0315
0.0114 0.0170

,

C = Cp =

[
1 0 0 0
0 1 0 0

]
, CB =

[
0.0410 0

0 0.0203

]
.

Fixing the tuning parameter ε = 0.01 while solving the design problem results in

KD =

[
0.2415 0

0 0.4877

]
,

E◦−1 =



1.0100 0 0 0 0 0
0 1.0100 0 0 0 0

0.0028 0.0155 1 0 0 0
0.0028 0.0084 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

, A• =



−3.4138 2.2301 4.7622 2.7028 0 0
1.8998 −4.3329 2.0705 0.6818 0 0
2.0868 4.2126 −6.6092 2.9109 0 0
1.1544 2.2432 1.3732 −2.0909 0 0

1 0 0 0 −1 0
0 1 0 0 0 −1

,

B• =



0.0414 0 0 0
0 0.0205 0 0

0.0115 0.0318 0 0
0.0115 0.0172 0 0

0 0 1 0
0 0 0 1

 =



b•T1
b•T2
b•T3
b•T4
b•T5
b•T6


, B•d = diag

[
b•T1 b•T2 b•T3 b•T4 b•T5 b•T6

]
,

C◦ =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 =
[
c◦1 c◦2 c◦3 c◦4 c◦5 c◦6

]
, C•d = diag

[
c◦1 c◦2 c◦3 c◦4 c◦5 c◦6

]
,

A•Θ(i, i) = −diag
[
3.4138 4.3329 6.6092 2.0909 1 1

]
,

A•Θ(i, i + 1) = diag
[
2.2301 2.0705 2.9109 0 0 0

]
,

A•Θ(i, i + 2) = diag
[
4.7622 0.6818 0 0 1 1

]
,

A•Θ(i, i + 3) = diag
[
2.7028 0 0 1.1544 0 0

]
,

A•Θ(i, i + 4) = diag
[
0 0 2.0868 2.2432 0 0

]
.

A•Θ(i, i + 5) = diag
[
0 1.8998 4.2126 1.3732 0 0

]
.

and the standard parameters that condition the desired specification on the design are
set as

L =

[
0T 1
I5 0

]
, S = L⊗ I4, JT =

[
I4 I4 I4 I4 I4 I4

]
.
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The solution of (55)–(59), obtained using the SeDuMi package [24] in the Matlab
environment, is represented by the set of matrix variables

P = diag
[
0.1222 0.0621 0.0636 0.0316 0.9642 0.9005

]
,

R =


4.6495 2.2279 −1.4873 −1.5368
4.1173 5.5149 −1.8031 −1.8720

0 0 0 0
0 0 0 0

, H = diag
[
0.1222 0.0621 0.9642 0.9005

]
,

which imply the PID control law parameters

K◦ =
[

KP −K I
0 0

]
=


38.0328 35.8501 −1.5425 −1.7065
33.6799 88.7411 −1.8700 −2.0788

0 0 0 0
0 0 0 0

,

KP =

[
38.0328 35.8501
33.6799 88.7411

]
, K I =

[
1.5425 1.7065
1.8700 2.0788

]
.

PID control with these parameters and with the above-defined KP stabilizes the
closed-loop system. It is translated into the closed-loop system matrix A•c of the structure

A•c =



−4.9887 0.7455 4.7622 2.7028 0.0639 0.0707
1.2093 −6.1524 2.0705 0.6818 0.0383 0.0426
0.5802 0.9816 −6.6092 2.9109 0.0771 0.0856
0.1394 0.3073 1.3732 −2.0909 0.0498 0.0553

1 0 0 0 −1 0
0 1 0 0 0 −1

.

which is purely Metzler and Hurwitz, with the stable eigenvalue spectrum

ρ(A•c ) =
{
−0.3789 −1.0000 −1.2251 −4.2814 −6.8640 −8.0918

}
.

Although the matrix A•c is not diagonally dominant, its structure and eigenvalues
guarantee that with these PID controller parameters and given non-negative system pa-
rameters B, C, a positive closed-loop system performance is achieved. The purpose of the
example is primarily to illustrate the desired design procedure.

In Table 1, the main designed parameters presented are dependent on the value of the
tuning parameter ε.

It is obvious that by increasing value of ε, the dominant eigenvalue of the closed-loop
structure in the complex plane of the eigenvalues is closer to the imaginary axis, i.e., the
dominant time constant is larger. Given all the parameters of the PID controller, the value
of tuning parameter ε = 0.01 is a very good compromise. Moreover, it can be verified that
for ε > 0.3, the closed-loop system is unstable. Using the function [Y, T, X] = step(SYS) of
the Matlab environment, one can easily verify that the closed-loop system state trajectory
is aperiodic.
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Table 1. The designed parameters dependency on the value of tuning parameter ε.

ε = 0.001 ε = 0.01 ε = 0.1

KD

[
0.0244 0

0 0.0492

] [
0.2415 0

0 0.4877

] [
2.2173 0

0 4.4783

]
KP

[
38.1003 36.0151
33.3901 90.5284

] [
38.0328 35.8501
33.6799 88.7411

] [
37.6024 34.0588
35.8858 73.3742

]
K I

[
1.5693 1.7415
1.9075 2.1252

] [
1.5425 1.7065
1.8700 2.0788

] [
1.3098 1.4182
1.5143 1.6492

]

ρ(A•c )

−0.3876, −1.0000
−1.2304, −4.2752
−6.8264, −8.1135


−0.3789, −1.0000
−1.2251, −4.2814
−6.8640, −8.0918


−0.2826, −1.0000
−1.1755, −4.3410
−7.2581, −7.8932


Purely real negative eigenvalues are conditional on the use of positive systems because

they guarantee aperiodic positive trajectories of state variables for a non-negative initial
state of the system. However, they do not guarantee an overshoot during their evolutions,
which sometimes needs to be suppressed. Unfortunately, standard methods for tuning PID
controller parameters [25,26] for these structures cannot be used for overshoot suppressing.
Methods based on the principle of the D-stability circle region [27] come into consideration,
but due to the bilinear structure of the synthesis conditions, it is not possible to guarantee an
optimal overshoot suppressing also by using this approach. This sub-area of the synthesis
problems will therefore be preferred in authors’ future research.

5. Discussion

The matching conditions restrict the structure of the input system matrix and mea-
sured system output variables into a hard constraint on the Metzler non-negative system
parameters and limit the PID MIMO implementation. If the matching conditions are satis-
fied, the D-parameter of the defined PID control law can be tuned to support the Metzler
structure of the system matrix, as it can be seen comparing A• and A. Considering such
support and the feasibility of LMIs design, a closed-loop with a Metzler structure of the
dynamics matrix can be expected using the PID controller structure.

Such synthesis task has in general many degrees of freedom in defining structures of
the Cp matrix. For a given Metzler MIMO system, C = Cp means the necessary minimal
number of measured state variables, which is not changed if any of the necessary measured
state variables for the implementation of the D-component part of PID are not used in the
construction of the I-component part. The structure of the matrix C = Cp was chosen to
demonstrate solutions with equal measured state impact also on the I-component part.
For the above-considered structure of B, an additional measured state variable can be
included only in the I-component part but the matching conditions imply that a strictly
Metzler A•c cannot be obtained.

To the best of the authors’ knowledge, no comparable results are available for the de-
sign of PID control of MIMO Metzler linear systems. In the authors’ opinion, the proposed
method is one that gives constraint limits on conditions for a class of switched positive
systems. Exposing the principle details, the approach can be adapted for studying the PI
control of strictly Metzler MIMO linear systems, where similar results can be expected.

6. Conclusions

This paper completes a design method for the synthesis of PID control for Metzler
continuous-time MIMO linear systems. The closed-loop purely Metzler system matrix
structure is proposed when exploiting a tuned diagonal D-part gain matrix and the square
positive D-part and I-part gain matrices. The newly formulated exposition of the problem
treatments of the existing matching conditions were provided by a measurement assign-
ment through the output matrix structure to find an LMI representation of the design
conditions. Maintaining parametric system constraints by the set of LMIs, the design condi-
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tions were completed by Lyapunov matrix inequality, guaranteeing closed-loop asymptotic
stability within a feasible solution.

Since the analysis is linear, evidently, one can see the dependence of the resulting
PID gains on Metzler parameters of the system. The proposed approach lends itself to
algorithm formalization through LMIs. The theory yields results that have otherwise not
been derived for PID control of a given class of Metzler systems. The development of an
approach for Metzler systems with an extended set of parametric constraints is a topic of
future research.
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Abbreviations
The following abbreviations are used in this manuscript:

LME Linear Matrix Equality
LMI Linear Matrix Inequality
PID controller Proportional-Integral-Derivative controller
SISO system Single-Input Single-Output system
MIMO system Multiple-Input Multiple-Output system

Notations
The following basic notations are used in this manuscript:

q(t), u(t), y(t) state, input and output vectors of variables
A, B, C nominal system matrix parameters
AΘ, AΘ(i, i + h) rhombic matrix of A and its diagonals
L, S = L⊗ Im circulant permutation matrix and its Kronecker extension
e(t), ė(t) control error and its derivative
p(t), wr integrator output and control reference signal
Kp, K I , KD PID controller matrix parameters
A◦, B◦, C◦, E◦, K◦ system matrix parameters of the closed-loop structure
A•, B•, K•d by the tuning step for recomputed system matrices of the closed-loop structure
B•d , C•d , K•d associated block diagonal matrix structures
P, H, R, Rd = In+m ⊗ K◦ matrix variables of LMIs and LME and used Kronecker extension
In, ε (n× n) identity matrix, a real positive tuning parameter

All other notations are defined in the given context fluently.
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