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Abstract: In this paper, we prove that, for compact warped product submanifolds Mn in an Euclidean
space En+k, there are no stable p-currents, homology groups are vanishing, and M3 is homotopic to
the Euclidean sphere S3 under various extrinsic restrictions, involving the eigenvalue of the warped
function, integral Ricci curvature, and the Hessian tensor. The results in this paper can be considered
an extension of Xin’s work in the framework of a compact warped product submanifold, when the
base manifold is minimal in ambient manifolds.

Keywords: warped product submanifolds; euclidean spaces; homology group; homotopic; funda-
mental groups; stable currents

1. Introduction and Preliminaries

The geometric structure and topological properties of submanifolds in different ambi-
ent spaces have been studied on a large scale during the past few years. Many results have
shown that there is a close relationship between the non-existence of stable currents and
the vanishing homology groups of submanifolds in a different class of ambient manifolds
by using the pinching condition of the second fundamental form [1]. In [1], Lawson and
Simons provided the optimization of the second fundamental form, which forces homol-
ogy to vanish in a range of intermediate dimensions, and also the nonexistence of stable
currents in submanifolds of simply connected space form. They obtained the following
theorem, which is the key result of that paper.

Theorem 1 ([1,2]). Let Mn be a compact n-dimensional submanifold of the space form M̃(c) of
constant curvature c ≥ 0 and the second fundamental form B, and p, q are any positive integers
such that p + q = n. If the inequality

p

∑
α=1

n

∑
β=p+1

(
2||B(eα, eβ)||2 − g

(
B(eα, eα), B(eβ, eβ)

))
< pqc (1)

is satisfied, then there are no stable p-currents on Mn and

Hp(Mn,Z) = Hq(Mn,Z) = 0

for any p ∈ Mn and an orthonormal frame
{

ei
}

1≤i≤n of tangent space TMn, where Hi(Mn,Z) is
the i-th homology group of Mn with integer coefficients.

As an application of Ricci curvature, Vlachos [3] proved the following result due to
Theorem 1.
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Theorem 2 ([3]). Let Mn be a compact oriented n-dimensional submanifold of (n+ k)-dimensional
Euclidean space En+k and assume that, for each unit vector X, the Ricci curvature is satisfied:

Ric(X) > δ1(n)g(AHX, X), (2)

where AH is the shape operator with respect to the mean curvature H, and δ1(n) is a constant given
by δ1(n) = n(n− 3)/(n− 1) if n is odd and δ1(n) = n− 2 if n is even. Then there are no stable
currents in Mn. Moreover, Mn is homeomorphic to Sn.

To show that the result (2) is optimal, we pay attention to a minimal submanifold
of CPn of the constant holomorphic sectional curvature 2n

n+1 into Sn(n+2)−1, that was
constructed in [4] by Wallah. Furthermore, if n = 2, we have φn : CPn −→ En(n+2)

satisfies Ric(X) = δ1(2n)g(AHX, X) for each unit tangential vector X [3]. On the other
hand, CP2 is not homeomorphic to S4 and this means that the pinching condition (2)
is optimal. Moreover, using Theorem 1 in [5], it was proved that if compact oriented n-
dimensional submanifold of (n+m)-dim space form Fn+k

c satisfies the second fundamental
form pinching condition S < a

(
n, k, |H|, c

)
, for any integral number k such that 0 < k < n,

the p-th homology groups are vanishing, Hp(Mn,Z) = 0, for all p ∈ {k, · · · , n− k}, and if
the fundamental group π1(Mn) is finite and simply connected, Mn is homeomorphic to
Sn. Using Theorem 1, Xu and Gu [6] extended the pinching condition in terms of the Ricci
curvature. They also showed that, for a compact submanifold Mn in space form Fn+k

c , if
it satisfies Ric > (n− 2)(c + H2) then Mn is homeomorphic to Sn, where H is the mean
curvature of Mn and c is a constant sectional curvature. Motivated by the non-existence
of stable currents or stable submanifolds, a number of topological properties have been
studied in [2,5,7–14] by using Theorem 1.

Inspired by the above-mentioned aspects, we want to obtain some similar results
for warped product submanifold theory where the second fundamental form pinching
condition will be replaced by the warping function. It is interesting and meaningful to
know how the topological and geometrical of warped product submanifolds is affected by
the main intrinsic invariant and main extrinsic curvature invariant. Taking advantage of
the Nash embedding theorem [15] and Nolker [16], we will prove the nonexistence stable
integral p-currents in a compact warped product submanifold in a flat space or a Euclidean
space En+k. We provide some basic notions needed in this paper.

Let Mn be isometrically immersed into a Riemannian manifold M̃ with induced metric
g. If ∇ and ∇⊥ are the induced Riemannian connections on the tangent bundle TM and
the normal bundle T⊥M over Mn, respectively, then the Gauss and Weingarten formulas
are given by

∇̃UV = ∇UV + B(U, V), (3)

∇̃Uξ = −AξU +∇⊥Uξ (4)

for each U, V ∈ X(TM) and ξ ∈ X(T⊥M), where B and Aξ are the second fundamental
form and the shape operator (corresponding to the normal vector field ξ), respectively [17].
They are related as follows: g(B(U, V), ξ) = g(AξU, V), where g denotes the Riemannian
metric on M̃ as well as the metric induced on Mn. The Gauss equation for a submanifold
M is given by:

R̃
(
X1, Y1, Z1, W1

)
=R(X1, Y1, Z1, W1) + g

(
B(X1, Z1), B(Y1, W1)

)
− g
(
B(X1, W1), B(Y1, Z1)

)
, (5)

for X1, Y1, Z1, W1 ∈ X(TM), where R̃ and R are the curvature tensors on M̃ and Mn,
respectively [17]. In M̃, we choose a local orthonormal frame {e1, e2, · · · , en, en+1, · · · , en+k}.
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The mean curvature vector H for a local orthonormal frame {e1, e2, · · · , en} on Mn is
defined by

||H||2 =
1
n2

n+k

∑
r=n+1

( n

∑
i=1

Br
ii

)
. (6)

In addition, we set

Br
ij = g(B(ei, ej), er), 1 ≤ i, j ≤ n & n + 1 ≤ r ≤ n + k. (7)

And we give another Riemannian intrinsic invariant’s definition named the scalar
curvature of Mn, we denoted by τ(Tx Mn), at some x in Mn, is given by the following:

τ(Tx Mn) = ∑
1≤α<β≤n

Kαβ, (8)

where Kαβ = K
(
eα ∧ eβ

)
. The (8) is equivalent to below equation, which will be frequently

used in subsequent proofs:

2τ(Tx Mn) = ∑
1≤α<β≤n

Kαβ, 1 ≤ α, β ≤ n. (9)

Similarly, the scalar curvature τ(Lx) of an L−plane is provided by the following:

τ(Lx) = ∑
1≤α<β≤n

Kαβ. (10)

If plane sections are spanned by eα and eβ at x, sectional curvature of Mn and M̃n+k

are denoted by Kαβ and K̃αβ, respectively. Thus, Kαβ and K̃αβ are the intrinsic and extrinsic
sectional curvatures of the span {eα, eβ} at x [18]. Taking advantage of Gauss Equations (5)
and (8), we have

∑
1≤α<β≤n+k

Kαβ = ∑
1≤α<β≤n+k

K̃αβ +
n+k

∑
r=n+1

(
Br

ααBr
ββ − (Br

αβ)
2
)

. (11)

On the other hand, the idea of warped product manifolds was originally introduced
by Bishop and O’Neill [19] for manifolds of negative curvature. Assume that Np

1 and Nq
2

are two Riemannian manifolds with their Riemannain metrics g1 and g2, respectively. Let
f be a smooth function defined on Np

1 . A warped product manifold is Mn = Np
1 × f Nq

2
with n = p + q and the Riemannian metric g = g1 + f 2g2. Assume that Mn = Np

1 × f Nq
2 is

a warped product manifold, then for any X ∈ Γ(TN1) and Z ∈ Γ(TN2), we find that

∇ZX = ∇XZ = (X ln f )Z. (12)

Thus, the function f is called a warping function on Mn. The following lemma is a
direct consequence of the warped product manifolds:

Lemma 1 ([19]). Let M = N1 × f N2 be a warped product manifold. Then we have

(i) ∇ZX = ∇XZ = (X f )
f Z,

(ii) ∇ZW = ∇′ZW − g(Z, W)∇ ln f ,

for any X, Y ∈ X(TN1) and Z, W ∈ X(TN2), where ∇ and ∇′ denote the Levi–Civita
connections on M and N2, respectively. Further, ∇(ln f ) is the gradient of ln f , given by

g(∇ ln f , X) = X(ln f ). (13)
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Thus, by using (i) of Lemma 1, we have

R(X, Z)Y =
H f (X, Y)

f
Z, (14)

where H f is a Hessian tensor of f . Let {e1, . . . , en} be an local orthonormal frame of vector
field Mn, thus the squared norm of the gradient of the positive differentiable function ϕ for
an orthonomal frame {e1, . . . , en} is defined as:

||∇ϕ||2 =
n

∑
i=1

(
ei(ϕ)

)2. (15)

Let ϕ be a differential function defined on Mn. The gradient ~∇ϕ is given by:

g(~∇ϕ, X) = Xϕ, and ~∇ϕ =
n

∑
i=1

ei(ϕ)ei, (16)

and the Laplacian ∆ϕ of ϕ is defined as:

∆ϕ = −
n

∑
i=1
{(∇ei ei)ϕ− ei(ei(ϕ))}

=
n

∑
i=1

g(∇ei gradϕ, ei) = trHess(ϕ). (17)

Remark 1. It should be noted that we consider the opposite sign of Chen [20] of the Laplacian of
the function ϕ, that is ∆ = d

dt on the real line

Moreover, because the units vector fields X and Z are tangent to Np
1 , Nq

2 , respectively,
we get:

K(X ∧ Z) = g(R(X, Z)X, Z) = (∇XX) ln f g(Z, Z)− g
(
∇X((X ln f )Z), Z

)
= (∇XX) ln f g(Z, Z)− g

(
∇X(X ln f )Z + (X ln f )∇XZ, Z

)
= (∇XX) ln f g(Z, Z)− (X ln f )2 − X(X ln f ). (18)

Suppose that {e1, · · · en} is an orthonormal frame for Mn, then summing up over the
vector fields such that

p

∑
i=1

n

∑
j=p+1

K(ei ∧ ej) =
p

∑
i=1

n

∑
j=p+1

(
(∇ei ei) ln f − ei(ei ln f )− (ei ln f )2

)
,

it implies that

p

∑
i=1

n

∑
j=p+1

K(ei ∧ ej) = −
q∆ f

f
. (19)

The following remarks are consequences of Lemma 1:

Remark 2. A warped product manifold Mn = Np
1 × f Nq

2 is said to be trivial or simply a Rieman-
nian product manifold if the warping function f is constant.

Remark 3. If Mn = Np
1 × f Nq

2 is a warped product manifold, then Np
1 is totally geodesic and Nq

2
is a totally umbilical submanifold of Mn, respectively.
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2. Main Results

In this section, we present the main results of this paper.

Theorem 3. Let ϕ : Mp+q = Np
1 × f Nq

2 −→ Ep+q+k be a Np
1 -minimal isometric immersion

from a compact warped product submanifold Mp+q into an (p + q + k)-dimensional Euclidean
space Ep+q+k, satisfying the following inequality

f ∆ f < 2q‖∇ f ‖2, (20)

where ∆ f and ∇ f are the Laplacian and the gradient of the warping function f . Then, Mp+q

satisfies the following:

(i) There do not exist stable p-currents in Mp+q and

Hp(Mp+q,Z) = Hq(Mp+q,Z) = 0

for all integers p, q such that p + q = n, where Hi(Mp+q,Z) is the i-th homology groups of
Mn with integer coefficients.

(ii) The fundamental group π1(Mp+q) is vanished, that is, π1(Mp+q) = 0.
(iii) If p + q = 3, then M3 is homotopic to a Euclidean sphere S3.

Motivated by the geometric rigidity Theorem 3, the second aim of this paper is to
prove a new topological theorem for compact warped product submanifolds in terms of
the Ricci curvature and using the eigenvalues of the Laplacian of the warping function. In
particular, we can give the following topological sphere theorem:

Theorem 4. Let ϕ : Mp+q = Np
1 × f Nq

2 −→ Ep+q+k be a Np
1 -minimal isometric immersion

from a compact warped product submanifold Mp+q into an (p + q + k)-dimensional Euclidean
space Ep+q+k and the warping function f is an eigenfunction of the Laplacian of Mn associated to
the first positive eigenvalue λ1 satisfying the following inequality:

∫
Mn

{
‖∇2 f ‖2 + Ric(∇ f ,∇ f )

}
dV >

(λ2
1

2q

)(
−
∫

Mn
f 2dV

)
, (21)

for integral Hessian tensor ∇2 f of the warping function f and integral Ricci curvature along the
gradient ∇ f . Then, Mp+q satisfies the following:

(i) There do not exist stable p-currents in Mp+q and

Hp(Mp+q,Z) = Hq(Mp+q,Z) = 0

for all integers p, q such that p + q = n, where Hi(Mp+q,Z) is the i-th homology groups of
Mn with integer coefficients.

(ii) The fundamental group π1(Mp+q) is vanished, that is, π1(Mp+q) = 0.
(iii) If p + q = 3, then M3 is homotopic to a Euclidean sphere S3.

As an immediate application of Theorem 4, we can now give the following:

Corollary 1. Assume that ϕ : Mp+q = Np
1 × f Nq

2 −→ Ep+q+k is an Np
1 -minimal isometric

immersion from a compact warped product submanifold Mp+q into a (p + q + k)-dimensional
Euclidean space Ep+q+k satisfying the following inequality:

∫
Mn

p

∑
i=1
‖B
(
∇ f , ei

)
‖2dV <

∫
Mn

{
‖∇2 f ‖2 +

(∆ f )2

2q

}
dV. (22)

Then, Mp+q satisfies the following:
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(i) There do not exist stable p-currents in Mp+q and

Hp(Mp+q,Z) = Hq(Mp+q,Z) = 0,

for all integers p, q such that p + q = n, where Hi(Mp+q,Z) is the i-th homology groups of
Mn with integer coefficients.

(ii) The fundamental group π1(Mp+q) is vanished, that is, π1(Mp+q) = 0.
(iii) If p + q = 3, then M3 is homotopic to a Euclidean sphere S3.

Another interesting result, which is a direct consequence of Corollary 1, is the following:

Corollary 2. Assume that ϕ : Mp+q = Np
1 × f Nq

2 −→ Ep+q+k is an Np
1 -minimal isometric

immersion from a compact warped product submanifold Mp+q into a (p + q + k)-dimensional
Euclidean space Ep+q+k such that ∇ f ∈ KerB and satisfies the following:

∫
Mn

{
‖∇2 f ‖2 +

(∆ f )2

2q

}
dV > 0, (23)

where ∇2 f is the Hessian of the warped function f . Then, Mp+q holds the following:

(i) There do not exist stable p-currents in Mp+q and

Hp(Mp+q,Z) = Hq(Mp+q,Z) = 0,

for all integers p, q such that p + q = n, where Hi(Mp+q,Z) is the i-th homology groups of
Mn with integer coefficients.

(ii) The fundamental group π1(Mp+q) is vanished, that is, π1(Mp+q) = 0.
(iii) If p + q = 3, then M3 is homotopic to a Euclidean sphere S3.

Here we consider that the base of the warped product submanifold is Ricci-flat and
we find the results below as a corollary of Theorem 4:

Corollary 3. Let ϕ : Mp+q = Np
1 × f Nq

2 −→ Ep+q+k be an Np
1 -minimal isometric immersion

from a compact warped product submanifold into a Euclidean space Ep+q+k with base manifold Np
1

is Ricci flat and satisfies the following:∫
Mn

f ∆ f dV <
( 2q

λ1

) ∫
Mn
‖∇2 f ‖2dV, (24)

where λ1 is an eigenvalue of the warped function f . Then, Mp+q holds the following:

(i) There do not exist stable p-currents in Mp+q and

Hp(Mp+q,Z) = Hq(Mp+q,Z) = 0,

for all integers p, q such that p + q = n, where Hi(Mp+q,Z) is the i-th homology groups of
Mn with integer coefficients.

(ii) The fundamental groups π1(Mp+q) is vanished, that is, π1(Mp+q) = 0.
(iii) If p + q = 3, then M3 is homotopic to a Euclidean sphere S3.

Theorem 3 is a main topological sphere theorem for a compact warped product sub-
manifold without the assumption that Mn is simply connected. Moreover, our result
becomes more significant due to involving the new pinching conditions in terms of the
warping function, integral of the squared norm of the Hessian tensor, integral Ricci curva-
ture and the first non-zero eigenvalue of the warped function [21]. And we could find out
more about the applications and meanings of physics in some articles [22–26] about these
topics. From the perspective of applied physics, the main results of this paper have great
physical significance.
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3. Proof of Main Results

In the first case, we assume that the warped product submanifold isometrically im-
mersed in a Euclidean En+k with codimension k and this proves the result.

3.1. Proof of Theorem 3

Let dim(N1) = p and dim(N2) = q and consider {e1, e2, · · · , ep}, and {e∗p+1, · · · , e∗n}
to be orthonormal frames of TN1 and TN2, respectively. Then, from Gauss Equation (5) for
a Euclidean space En+k, we have

p

∑
α=1

n

∑
β=p+1

{
2||B(eα, eβ)||2−g

(
B(eα, eα), B(eβ, eβ)

)}
=

n+k

∑
r=n+1

p

∑
α=1

n

∑
β=p+1

(
Br

αβ

)2

+
p

∑
α=1

n

∑
β=p+1

{
||B(eα, eβ)||2 − g

(
B(eα, eβ), B(eα, eβ)

)}
. (25)

From Gauss Equation (5) for the Euclidean space En+k, we get further

p

∑
α=1

n

∑
β=p+1

{
2||B(eα, eβ)||2−g

(
B(eα, eα), B(eβ, eβ)

)}
=

n+k

∑
r=n+1

p

∑
α=1

n

∑
α=p+1

(
Br

αβ

)2

+
p

∑
α=1

n

∑
β=p+1

g
(

R(eα, eβ)eα, eβ

)
. (26)

From R(eα, eβ)eα = H f (eα ,eα)
f eβ in (14), we derive

p

∑
α=1

n

∑
β=p+1

g
(

R(eα, eβ)eα, eβ

)
=

q
f

p

∑
α=1

g
(
∇eα∇ f , eα

)
. (27)

Thus, from (26) and (27), we derive

p

∑
α=1

n

∑
β=p+1

{
2||B(eα, eβ)||2−g

(
B(eβ, eβ), B(eα, eα)

)}

=
q
f

p

∑
α=1

g
(
∇eα∇ f , eα

)
+

n+k

∑
r=n+1

p

∑
α=1

n

∑
α=p+1

(
Br

αβ

)2
. (28)

Computing the Laplacian ∆ f , on Mn, one obtains:

∆ f =
n

∑
i=1

g
(
∇ei (∇ f ), ei

)
=

p

∑
α=1

g
(
∇eα(∇ f ), eα

)
+

n

∑
β=p+1

g
(
∇eβ

(∇ f ), eβ

)
.
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From the hypothesis of a warped product submanifold, Np
1 is totally geodesic in Mn.

It implies that grad f ∈ X(TN1), and from Lemma 1 (i)–(ii), we obtain

∆ f =
1
f

n

∑
j=p+1

g(ej, ej)||∇ f ||2 +
p

∑
α=1

g
(
∇eα(∇ f ), eα

)
.

Multiply the above equation by 1
f , we get:

∆ f
f

=
1
f

p

∑
α=1

g
(
∇eα(∇ f ), eα

)
+ q||∇(ln f )||2.

After some computations, we find that

q
f

p

∑
α=1

g
(
∇eα(∇ f ), eα

)
=

q∆ f
f
− q2||∇ ln f ||2. (29)

Thus, from (28) and (29), one obtains:

p

∑
α=1

q

∑
β=1

{
2||B(eα, eβ)||2−g

(
B(eβ, eβ), B(eα, eα)

)}

=
n+k

∑
r=n+1

p

∑
α=1

q

∑
β=1

(Br
αβ)

2 +
q∆ f

f
− q2||∇ ln f ||2.

(30)

Using the Gauss Equation (5) for Euclidean space En+k, we find that

n2||H||2 = ||B||2 + ∑
1≤A<B≤n

K(eA ∧ eB). (31)

The above equation can be written for the warped product manifold Mn and from the
viewpoint of (6) and (14) as follows:

n+k

∑
r=n+1

(
n

∑
A=1

Br
AA

)2

=
n+k

∑
r=n+1

p

∑
i,j=1

(Br
ij)

2 +
n+k

∑
r=n+1

n

∑
a,b=p+1

(Br
ab)

2

+ 2
n+k

∑
r=n+1

p

∑
α=1

n

∑
β=p+1

(Br
αβ)

2 +
p

∑
α=1

n

∑
β=p+1

K(eα ∧ eβ)

+ ∑
1≤i<j≤p

K(ei ∧ ej) + ∑
1≤a<b≤q

K(ea ∧ eb). (32)

Using (11) and (19) in the above equation, we derive

n+k

∑
r=n+1

(
n

∑
A=1

Br
AA

)2

=
n+k

∑
r=n+1

p

∑
i,j=1

(Br
ij)

2 +
n+k

∑
r=n+1

n

∑
a,b=p+1

(Br
ab)

2

+ 2
n+k

∑
r=n+1

p

∑
α=1

n

∑
β=p+1

(Br
αβ)

2 +
q∆ f

f

+ ∑
1≤i<j≤p

K̃(ei ∧ ej) + ∑
p+1≤a<b≤n

K̃(ea ∧ eb)

+
n+k

∑
r=n+1

∑
1≤i<j≤p

(
Br

iiB
r
jj − (Br

ij)
2
)

+
n+k

∑
r=n+1

∑
p+1≤a<b≤n

(
Br

aaBr
bb − (Br

ab)
2
)

. (33)
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Thus, using the flatness of the space En+k and making some rearrangements in the
last equation, one obtains:

n+k

∑
r=n+1

(
n

∑
A=1

Br
AA

)2

=
n+k

∑
r=n+1

p

∑
i,j=1

(Br
ij)

2 +
n+k

∑
r=n+1

n

∑
a,b=p+1

(Br
ab)

2

+ 2
n+k

∑
r=n+1

p

∑
α=1

n

∑
β=p+1

(Br
αβ)

2 +
q∆ f

f
−

n+k

∑
r=n+1

∑
1≤i<j≤p

(Br
ij)

2

+
n+k

∑
r=n+1

∑
1≤i<j≤p

Br
iiB

r
jj +

n+k

∑
r=n+1

(
(Br

ii)
2 + · · ·+ (Br

pp)
2
)

−
n+k

∑
r=n+1

(
(Br

ii)
2 + · · ·+ (Br

pp)
2
)
+

n+k

∑
r=n+1

∑
p+1≤a<b≤n

Br
aahr

bb

−
n+k

∑
r=n+1

∑
p+1≤a<b≤n

(Br
aa)

2 +
n+k

∑
r=n+1

(
(Br

p+1p+1)
2 + · · ·+ (Br

nn)
2
)

−
n+k

∑
r=n+1

(
(Br

p+1p+1)
2 + · · ·+ (Br

nn)
2
)

. (34)

After some rearrangements of the above equation, we get

n+k

∑
r=n+1

(
n

∑
A=1

Br
AA

)2

=
n+k

∑
r=n+1

p

∑
i,j=1

(Br
ij)

2 +
n+k

∑
r=n+1

n

∑
a,b=p+1

(Br
ab)

2

+ 2
n+k

∑
r=n+1

p

∑
α=1

n

∑
β=p+1

(Br
αβ)

2 +
q∆ f

f

+
n+k

∑
r=n+1

{
∑

1≤i<j≤p
Br

iiB
r
jj + (Br

11)
2 + · · ·+ (Br

pp)
2

}

−
n+k

∑
r=n+1

{
∑

1≤i<j≤p
(Br

ij)
2 + (Br

11)
2 + · · ·+ (Br

pp)
2

}

+
n+k

∑
r=n+1

{
∑

p+1≤a<b≤n
Br

aaBr
bb + (Br

p+1p+1)
2 + · · ·+ (Br

nn)
2

}

−
n+k

∑
r=n+1

{
∑

p+1≤a<b≤n
(Br

ab)
2 + (Br

p+1p+1)
2 + · · ·+ (Br

nn)
2

}
. (35)

Using the binomial theorem and the fact that the base manifold Np
1 of a warped

product manifold Np
1 × f Nq

2 is minimal, then it is not hard to check that:
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n+k

∑
r=n+1

(
n

∑
A=p+1

Br
AA

)2

=
n+k

∑
r=n+1

p

∑
i,j=1

(Br
ij)

2 +
n+k

∑
r=n+1

n

∑
a,b=p+1

(Br
ab)

2

+ 2
n+k

∑
r=n+1

p

∑
α=1

n

∑
β=p+1

(Br
αβ)

2 +
q∆ f

f

+
n+k

∑
r=n+1

(
(Br

ii)
2 + · · ·+ (Br

pp)
2
)
−

n+k

∑
r=n+1

p

∑
i,j=1

(Br
ij)

2

+
n+k

∑
r=n+1

(
(Br

p+1p+1)
2 + · · ·+ (Br

nn)
2
)

−
n+k

∑
r=n+1

n

∑
a,b=p+1

(Br
ab)

2. (36)

Then, we obtain that:

2
n+k

∑
r=n+1

p

∑
α=1

n

∑
β=p+1

(Br
αβ)

2 = − q∆ f
f

. (37)

From (30) and (37), we get:

p

∑
α=1

n

∑
β=p+1

{
2||B(eα, eβ)||2−g

(
B(eβ, eβ), B(eα, eα

)}
=

q∆ f
f
− q2||∇ ln f ||2 − q∆ f

2 f
,

which is equivalent to

p

∑
α=1

n

∑
β=p+1

{
2||B(eα, eβ)||2 − g

(
B(eβ, eβ), B(eα, eα)

)}
=

q∆ f
2 f
− q2||∇ ln f ||2. (38)

From our assumption (20) and (38), we obtain

p

∑
α=1

n

∑
β=p+1

{
2||B(eα, eβ)||2 − g

(
B(eβ, eβ), B(eα, eα)

)}
< 0. (39)

Applying Theorem 1 for constant holomorphic section curvature c = 0, we obtain
that there are no stable p-currents in Mn and Hp(Mn,Z = Hq(Mn,Z), which completes the
proof of the first case of the Theorem.

In addition, if n ≥ 4, we deduce that Hp(Mn,Z) = 0. Suppose that the fundamental
group π1(Mn) is finite. From Hn−p(Mn,Z) = 0 = Hq(Mn,Z) = 0 and the universal
coefficient theorem, we infer that Hn−p(Mn,Z) has no torsion and neither does Hp(Mn,Z)
by the Poincare duality. Because the π1(Mn) is finite, we have Hp(Mn,Z) = 0 and
Hq(Mn,Z) = 0, then Mn is the homology sphere. By considering the ambient manifold M̃
of Mn’s Riemannian universal covering , the compactness of Mn , the Equation (39) and
the Myer’s theorem, we could obtain that M̃ is compact. Because the M̃ is a homology
sphere, and the fundamental group is π1(M̃) = 0, and is the homotopy sphere as well,
therefore applying the results from

(
Freedman n = 4 [7], Smale n ≥ 5 [27]

)
, we get that

Mn is homotopic to the Euclidean sphere Sn. As an immediate consequence of Sjerve [28],
we get that the fundamental group π1(Mn) = 0, on Mn. This completes the second case of
Theorem 3.



Symmetry 2021, 13, 1587 11 of 14

From the case (i), there do not exist stable integral p-currents in a warped product sub-
manifold Mn and their homology groups are vanished, Hp(Mn,Z) = Hq(Mn,Z) = 0, for
all positive integer p , q such that p + q = n. Moreover, Equation (39) shows that the Ricci
curvature on Mn is positive. Therefore, using the result of R. S. Hamilton [29] for n = 3, we
conclude that M3 is a three dimensional spherical space form and hence π1(M) = 0, it is
homotopic to a Euclidean sphere S3. This is the complete proof of Theorem 3.

3.2. Proof of Theorem 4

If f is a first eigenfunction of the Laplacian ∆ f = div(∇ f ) of Mn associated to the
first non zero eigenvalue λ1, that is, ∆ f = −λ1 f , then we recall now Bochner formula
(see, e.g., [30]), which states that for a differentiable function f defined on a Riemannian
manifold, the following relation holds:

1
2

∆‖∇ f ‖2 = ‖∇2 f ‖2 + Ric(∇ f ,∇ f ) + g
(
∇ f ,∇(∆ f )

)
.

Integrating the above equation, using the Stoke’s theorem, we get∫
Mn
‖∇2 f ‖2dV +

∫
Mn

Ric(∇ f ,∇ f )dV +
∫

Mn
g
(
∇ f ,∇(∆ f )

)
dV = 0. (40)

Now, using ∆ f = −λ1 f and making some rearrangement in Equation (40), we derive

∫
Mn
‖∇ f ‖2dV =

1
λ1

( ∫
Mn
‖∇2 f ‖2dV +

∫
Mn

Ric(∇ f ,∇ f )dV
)

. (41)

As we assume that Equation (22) holds, that is

∫
Mn

{
‖∇2 f ‖2 + Ric(∇ f ,∇ f )

}
dV >

(λ2
1

2q

)(
−
∫

Mn
f 2dV

)
. (42)

Combining the Equations (40) and (42), we get

∫
Mn
‖∇ f ‖2dV >

1
λ1

(λ2
1

2q

)(
−
∫

Mn
f 2dV

)
, (43)

which is equivalent to the following:

2q
∫

Mn
‖∇ f ‖2dV > −

∫
Mn

f ( f λ1)dV. (44)

Using ∆ f = −λ1 f , we get

2q
∫

Mn
‖∇ f ‖2dV >

∫
Mn

f ∆ f dV. (45)

Then condition (2) is replaced by the above pinching condition in Theorem 3 for a
Euclidean space Ep+q+k. Then, from the above equation and invoking Theorem 3, we get
the final conclusion of our theorem. This completes the proof of the theorem.

3.3. Proof of Corollary 1

As we know that Mn is an NP
1 -minimal compact warped product submanifold, then

from Gauss equation is given by:

Ri
jkl = δikδjl − δilδjk +

p+q+k

∑
r=1

(
Br

ikBr
jl − Br

ilB
r
jk

)
,



Symmetry 2021, 13, 1587 12 of 14

which implies the following:

Ri
jij = δiiδjj − δijδji +

p+q+k

∑
r=1

(
Br

iiB
r
jj − Br

ijB
r
ji

)
. (46)

Taking into account that Np
1 is a minimal submanifold and using the argument of the

Ricci curvature for an Euclidean space, we get:

Ric(ei, ej) = −
p+q+k

∑
r=1

p

∑
l=1

Br
ilB

r
jl .

The above equation yields that

Ric( fiei, ej f j) = −
p+q+k

∑
r=1

p

∑
l=1

Br
ilB

r
jl fi f j. (47)

Taking the trace of Equation (47), we get

Ric(∇ f ,∇ f ) = −
p

∑
i=1
‖B
(
∇ f , ei

)
‖2.

Inserting the above equation into (21), we derive that

∫
Mn

{
‖∇2 f ‖2 −

p

∑
i=1
‖B
(
∇ f , ei

)
‖2
}

dV >
( 1

2q

)(
−
∫

Mn
(λ1 f )2dV

)
,

which implies the following from the fact that ∆ f = −λ1 f in the above equation:

∫
Mn

{
‖∇2 f ‖2 −

p

∑
i=1
‖B
(
∇ f , ei

)
‖2
}

dV >
( 1

2q

)(
−
∫

Mn
(∆ f )2dV

)
. (48)

Thus we obtain the required result (22). This completes the proof of the corollary.

3.4. Proof of Corollary 2

Using the hypothesis of corollary, ∇ f ∈ KerB, which implies that B(∇ f , ei) = 0.
Using this condition in (22), we can easily obtain the required result.

3.5. Proof of Corollary 3

As we assume that Mn is Ricci-flat, then Ric(∇ f ,∇ f ) = 0. Using these conditions in
Equation (43), we obtain required result.

4. Conclusions

When the base manifold is minimal in ambient manifolds, the results in this paper can
be considered an extension of Xin’s [2] work in the framework of compact warped product
submanifolds. We proved a compact warped product submanifold Mn in a Euclidean
space En+k, that there are no stable p-currents, homology groups vanish, and that M3 is
homotopic to the Euclidean sphere S3 under various extrinsic restrictions, involving the
eigenvalue of the warped function, integral Ricci curvature and the Hessian tensor. In our
next work, we will combine the singularity theory presented in [31–34] to study compact
warped product submanifold Mn in a Euclidean space En+k.
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