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Abstract: Unrelated parallel machine scheduling problems (UPMSP) with various processing con-
straints have been considered fully; however, a UPMSP with deteriorating preventive maintenance
(PM) and sequence-dependent setup time (SDST) is seldom considered. In this study, a new differen-
tiated shuffled frog-leaping algorithm (DSFLA) is presented to solve the problem with makespan
minimization. The whole search procedure consists of two phases. In the second phase, quality eval-
uation is done on each memeplex, then the differentiated search processes are implemented between
good memeplexes and other ones, and a new population shuffling is proposed. We conducted a
number of experiments. The computational results show that the main strategies of DSFLA were
effective and reasonable and DSFLA was very competitive at solving UPMSP with deteriorating PM
and SDST.

Keywords: shuffled frog-leaping algorithm; sequence-dependent setup time; preventive mainte-
nance; parallel machines; scheduling

1. Introduction

The parallel machine scheduling problem (PMSP) is a typical scheduling problem
that can be categorized into three types: identical PMSP, uniform PMSP, and unrelated
PMSP (UPMSP). As the generalization of the other two types, UPMSP has attracted great
attention, and a number of results have been obtained to solve UPMSP with various
processing constraints, such as random breakdown and random rework [1–4].

Preventive maintenance (PM) often exists in many actual manufacturing cases, can
effectively prevent potential failures and serious accidents in parallel machines, and is
often required to be considered in UPMSP. Regarding UPMSP with maintenance, Yang
et al. [5] studied UPMSP with aging effects and PM to minimize the total machine load and
proved that the problem remained polynomially solvable when a maintenance frequency
on every machine is given.

Tavana et al. [4] presented a three-stage maintenance scheduling model for UPMSP
with aging effects and multi-maintenance activities. Wang and Liu [6] proposed an im-
proved non-dominated sorting genetic algorithm-II for multi-objective UPMSP with multi-
resources PM. Gara-Ali et al. [7] provided several performance criteria and different
maintenance systems and gave a new method to solve the problem with deteriorating and
maintenance. Lei and Liu [8] proposed an artificial bee colony (ABC) with division for
distributed UPMSP with PM.

Deteriorating maintenance means that the length of maintenance activity is not con-
stant and depends on the running time of the machine. UPMSP with deteriorating mainte-
nance has also been studied. Cheng et al. [9] and Hsu et al. [10] provided some polynomial
solutions. Lu et al. [11] considered UPMSP with parallel-batching processing, deteriorating
jobs, and deteriorating maintenance and presented a mixed integer programming model
and a hybrid ABC with tabu search (TS).
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In many real-life industries, such as the chemical, printing, metal processing, and
semiconductor industries, SDST often cannot be ignored [12]. UPMSP with SDST has
been extensively addressed since the pioneering work of Parker et al. [13]. Kurz and
Askin [14] proposed several heuristics. Arnaout et al. [15] designed an improved ant
colony optimization with a pheromone re-initialization method. Vallada and Ruiz [16]
presented a genetic algorithm to minimize the makespan. Lin and Ying [17] developed a
hybrid ABC for UPMSP with machine-dependent setup times and SDST.

Caniyilmaz et al. [18] applied an ABC algorithm to solve UPMSP with processing set
restrictions, an SDST, and a due date. Diana et al. [19] presented an improved immune
algorithm by introducing a local search and a new selection operator. Wang and Zheng [20]
proposed an estimation of distribution algorithm and gave five local search strategies.
Ezugwu and Akutsah [21] proposed an improved firefly algorithm refined with a local
search. Fanjul-Peyro et al. [22] presented an exact algorithm. Bektur and Sarac [23]
introduced a TS and a simulated annealing algorithm for UPMSP with SDST, machine
eligibility restrictions and a common server. Cota et al. [24] developed a multi-objective
smart pool search algorithm for green UPMSP with SDST.

For UPMSP with PM and SDST, Avalos-Rosales et al. [25] developed an efficient meta-
heuristic based on a multi-start strategy to minimize the makespan, and Wang and Pan [26]
presented a novel imperialist competitive algorithm with an estimation of distribution
algorithm to optimize the makespan and total tardiness.

SDST and deteriorating maintenance are common processing constraints and often
exist simultaneously in the real-life production process; however, the previous works
mainly deal with UPMSP with one of these two constraints, few papers focus on UPMSP
with maintenance and SDST [25,26] and UPMSP with deteriorating PM and SDST is hardly
studied. It is necessary to investigate UPMSP with deteriorating PM and SDST due to
their extensive existences in production. On the other hand, meta-heuristics, including
ABC, have been applied to solve UPMSP with various processing constraints, such as
PM and SDST. As a meta-heuristic, by observing, imitating, and modeling the search
behavior of frogs for the location with the maximum amount of available food, the shuffled
frog-leaping algorithm (SFLA) is seldom used to handle UPMSP.

SFLA has a fast convergence speed and effective algorithm structure containing
local search and global information exchanges [27]. It has been widely applied to solve
various optimization problems, such as topology optimization and production scheduling
problems [28–45]. The existing works on scheduling problems revealed that SFLA has
great potential in solving UPMSP with deteriorating PM and SDST. On the other hand, the
same search process and parameters are adopted in all memeplexes, and the differentiated
search process is seldom used, which can effectively intensify the exploration ability and
avoid falling local optima; thus, it is necessary to investigate the possible applications of
SFLA with new optimization mechanisms for UPMSP with SDST and PM.

In this study, UPMSP with deteriorating PM and SDST is considered, and a new dif-
ferentiated shuffled frog-leaping algorithm (DSFLA) is applied to minimize the makespan.
The entire search procedure is composed of two phases. In the second phase, the memeplex
quality is evaluated on each memeplex to divide all memeplexes into good memeplexes
and others, then the differentiated search processes are implemented between good meme-
plexes and others, and a new population shuffling is proposed. We conduct experiments to
test the effect of the main strategies and the search advantages for DSFLA.

The remainder of the paper is organized as follows. The problem is described in
Section 2 followed by an introduction to SFLA in Section 3. DSFLA for the considered
problem is reported in Section 4. Numerical experiments on DSFLA are reported in
Section 5, the conclusions are summarized in the final section, and some topics of future
research are provided.
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2. Problem Description

UPMSP with deteriorating PM and SDST is composed of n jobs J1, J2, · · · , Jn and m
unrelated parallel machines M1, M2, · · · , Mm. Each job can be processed on any one of m
machines. The processing time pkj of job Jj depends on the performance of its processing
machine Mk. The processing times on different machines are usually different.

On machine Mk, job is processed in a time interval between two consecutive main-
tenance activities, and the length of the interval is indicated as uk, and wk denotes the
duration of each maintenance. For deteriorating maintenance, wk is not constant and
depends on Mk and the starting time of maintenance, wk = ck + dk × tk, where ck, dk are
constant, and tk indicates the starting time of maintenance on Mk. There are some intervals
for processing on each machine. If the processing of a job cannot be completed in a process-
ing interval, the job cannot be processed in the current interval and should be moved to
the next interval.

For SDST, skij is the setup time for processing job Jj after job Ji on machine Mk, sk0j
indicates the setup time of machine Mk to process the first job Jj after a maintenance activity,
and skj0 is the setup time of machine Mk to perform a maintenance activity after the job Jj.

There have the following constraints on jobs and machines.

� Each job and machine is available at time zero.
� Each job can be processed on only one machine at a time.
� Operations cannot be interrupted.
� Preemption is not allowed.

The problem is composed of the scheduling sub-problem and machine assignment
sub-problem. The goal of the problem is to minimize the makespan.

Let Cπ(j) be a completion time of job j in schedule π, and the makespan can be defined
by Cmax(π) = maxj=1,...,n{Cπ(j)}. Thus, the objective is to find a schedule π that minimizes
the makespan C∗max = minπ∈Π{Cmax(π)}, where Π is the set of all feasible schedules π.

An illustrative example is provided. Tables 1 and 2 give the processing time and setup
time. There are two machines and eight jobs. Data on deteriorating PM are shown in
Figure 1, where ck = 1 and dk = 0.1 for all machines.

Table 1. Processing time.

Job 1 2 3 4 5 6 7 8

M1 56 57 51 30 70 38 42 62
M2 58 55 34 69 34 57 69 50

Table 2. Setup times s1jk and s2jk.

s1jk k = 0 1 2 3 4 5 6 7 8 s2jk k = 0 1 2 3 4 5 6 7 8

j = 0 0 6 10 6 9 8 8 6 7 j = 0 0 10 9 6 9 5 8 8 7
1 8 0 10 5 7 10 8 10 7 1 5 0 7 9 9 7 9 8 6
2 8 5 0 6 7 9 8 5 8 2 8 7 0 8 10 6 7 7 5
3 7 7 9 0 7 5 9 9 7 3 10 6 7 0 6 10 8 5 5
4 5 7 7 10 0 6 10 6 9 4 6 10 9 5 0 7 9 10 7
5 8 10 6 7 10 0 9 6 5 5 10 7 10 9 9 0 8 6 6
6 8 7 7 9 8 6 0 8 10 6 6 6 10 7 7 6 0 5 8
7 6 9 8 9 3 9 7 0 10 7 6 7 9 5 8 8 6 0 8
8 8 10 10 5 7 5 5 6 0 8 10 9 8 6 7 6 7 9 0

When no PM is considered, any two jobs on any one machine are symmetrical, that
is, exchanging them does not change the makespan. When PM is handled, any two jobs
on a machine between time 0 and the first PM or two consecutive PMs, because of the
above, are reasonable; thus, the consideration of PM has impact on the optimization of the
considered UPMSP.
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Figure 1. A schedule of the example.

3. Introduction to SFLA

In SFLA, a solution is defined as the position of a frog, and there is a population
of possible solutions defined by a set of virtual frogs. After the initial population P is
produced, the following steps, which are population division, memeplex search, and
population shuffling, are repeated until the stopping condition is met.

Population division is as follows. After all solutions are sorted, suppose that
Fit1 ≥ Fit2 ≥ · · · ≥ FitN , and then solution xk is allocated into memeplex k(mod s) + 1,
where k(mod s) indicates the remainder of k

/
s, Fiti is the fitness of solution xi, and s

indicates the number of memeplexes.
The search process in memeplexMl is shown below. xw is used as optimization object,

then a new solution x′w is produced by Equation (2) with xw and xb. If the new one is better
than xw, then replace xw with x′w; otherwise, xw and xg are used to generate a solution x′w
by Equation (3). If x′w has better fitness than xw, then x′w becomes the new xw; otherwise, a
randomly obtained solution directly substitutes for xw, where xw, xb and xg are the worst
solution and best solution in memeplexMl and the best solution of P.

x′w = xw + rand× (xb − xw) (1)

x′w = xw + rand× (xg − xw) (2)

where rand is a random number following uniform distribution in [0.1].
A new population P is constructed by shuffling all evolved memeplexes.
As stated above, all memeplexes are often evolved by the same search process and

parameters [29,32,33] and the differentiated search in memeplexes is seldom considered.
When the differentiated search operators and parameters are introduced, the search ability
will be intensified, and local optima can be effectively avoided, as a result, the search
efficiency is greatly improved. In this study, DSFLA is presented to solve UPMSP with
deteriorating PM and SDST.

4. DSFLA for UPMSP with Deteriorating PM and SDST

DSFLA is composed of two phases, and the differentiated search is implemented in
the second phase.

4.1. Initialization, Population Division, and the First Phase

UPMSP consists of two sub-problems: machine assignment and scheduling, and two-
string representation is often applied to indicate the solution of UPMSP [46,47]; however,
two strings are often dependent each other, and it is difficult to design and apply global
search or local search on each string independently. In this study, a solution of the problem
is represented as a machine assignment string

[
Mθ1 , Mθ2 , · · · , Mθn

]
and a scheduling string

[q1, q2, · · · , qn], where Mθj is the assigned parallel machine for job Jj, j = 1, 2, · · · , n, and ql
is real number and corresponds to Jl . These two strings are independent.

Lei and Liu [8] analyzed why a scheduling string is introduced because of the above
mentioned changes of symmetry. The decoding process is described below. First, we
decide on a machine for each job according to each machine assignment string, and then on
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each machine Mk, for all jobs Ji, Ji+1, · · · , Jj allocated on Mk—that is, Mθi = Mθi+1 , · · · ,=
Mθj = Mk. The processing sequence of these jobs is decided by the ascending order of
ql , l ∈ [i, j], i < j, and they process jobs and deal with maintenance on Mk sequentially.

After the initial population P is randomly produced, population division is performed
in the following way. Decide the best s solutions from P and sort them in the descending
order of their objective. Then, the first solution is allocated into memeplexM1, the second
solution is assigned into M2, and so on. Then, binary tournament selection is used to
allocate other solutions into memeplexes: randomly select two solutions xi and xj, and then,
if xi (xj) is better than xj (xi). Then, xi (xj) is included intoM1. If two solutions have the
same objective, then stochastically choose one of them and add it intoM1. The unchosen
solution goes back to population P. Repeat the above steps for deciding a solution for
M2,M3, · · · ,Ms, and then repeat the above procedure until all solutions are assigned.
Obviously, N = s× θ, where θ denotes the size of each memeplex.

There are two phases in the search process of DSFLA. The steps of the first phase are
identical with SFLA in Section 3. The search process inMi is shown below. Repeat the
following steps R1 times: decide xw, xb ∈ Mi, execute two-point crossover on machine
assignment string of xw and xb, if the obtained solution x is better than xw, then replace xw
with x; otherwise, apply two-point crossover on a scheduling string between xw and xb. If
the generated solution x has a smaller makespan than xw, x becomes the new xw, where R1
is an integer.

In the first phase, global search is only used because of its good exploration ability
in the early search stage. In the second phase, the differentiated search processes are
implemented based on memeplex quality evaluation.

4.2. The Second Phase

The evaluation of memeplex quality is seldom considered in SFLA. In this study,
memeplex quality is evaluated according to solution quality and evolution quality. For
memeplexMl , its quality Meql is defined by

Meql = α1 ×
msqmax −msql

msqmax −msqmin
+ α2 ×

mvql −mvqmin

mvqmax −mvqmin
(3)

where α1, α2 are real number, msql and mvql indicate solution quality and evolution
quality ofMl , respectively, msqmax = max

l=1,2,··· ,s
{msql}, msqmin = min

l=1,2,··· ,s
{msql}, mvqmax

and mvqmin represent the maximum and minimum evolution quality of all memeplexes,
respectively.

After all solutions inMl are sorted in the ascending order of makespan, let H1 indicate
the set of the first θ/2 solutions except xb and H2 is the set of the remained θ/2 solutions
inMl ,

msql = Cmax(xb) + β1 × C̄max(H1) + β2 × C̄max(H2) (4)

where C̄max(Hi) is the average makespan of all solutions in Hi, i = 1, 2, βi.i = 1, 2 is a
real number.

Solutions of H1 are better than those of H2; therefore, we set β1 > β2 to reflect this
feature. β1 = 0.4 and β2 = 0.1 are obtained by experiments.

Let Imx indicate the improved number of x between the first generation and the
current generation. When x ∈ Ml is chosen as an optimization object, such as xw, in
general SFLA, if an obtained solution x′ is better than x, then Imx = Imx + 1. Sex is the
total search times from the first generation to the current generation.

mvql = ∑x∈Ml
Imx

/
∑x∈Ml

Sex (5)

For solution xi, its actxi is used to evaluate its evolution quality and is computed by

actxi = Imxi /Sexi (6)
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The second phase is shown as follows.

(1) Perform population division, compute Meql for all memeplexes, sort them in descend-
ing order of Meql , and construct set Θ =

{
Ml
∣∣Meql > Meq, l ≤ η × θ

}
.

(2) For each memeplex Ml , Ml /∈ Θ, repeat the following steps R1 times if |T | > 0,
execute global search between xb and a randomly chosen y ∈ T ; else perform global
search between xb and a solution y ∈ Ml with acty ≥ actx for all x ∈ Ml .

(3) For each memeplexMl ∈ Θ,

1 sort all solutions inMl in the ascending order of makespan, suppose Cmax(x1) ≤
Cmax(x2) ≤ · · · ≤ Cmax(xθ), and construct a set ϕ =

{
xi

∣∣∣distxi < dist, i ≤ θ/2
}

.

2 Repeat the following steps R2 times, and randomly choose a solution xi ∈ Ml\ϕ;
if actxi > 0.5, then select a solution y ∈ ϕ by roulette selection based on Pry,
execute global search between xi and y, and update memory T ; else execute
global search between xi and a solution z with actz ≥ actxi for all xi ∈ Ml and
update memory T .

(4) Execute multiple neighborhood searches on each solution x ∈ ϕ.
(5) Perform new population shuffling.

where distxi = |Cmax(xi)− Cmax(xb)| is defined for each solution xi ∈ Ml and dist is the
average value of all distxi inMl . η is a real number and set to be 0.4 by experiments, Meq
indicates the average quality of all memeplexes, Θ is the set of good memeplexes, and Pry
is a probability and defined by

Pry =
|ϕ| − ranky

|ϕ| ×
Imy

∑x∈ϕ Imx
(7)

where ranky is an integer and decided by ranking according to makespan in the first step
of step (3) in the above Algorithm.

In the second phase, after all memeplexes are sorted in the descending order of Meql ,
suppose Meq1 ≥ Meq2 ≥ · · ·Meqs.

Memory T is used to store the intermediate solutions. The maximum size |T |max is
given in advance. We set |T |max to be 200 by experiments. When the number of solutions
exceeds |T |max, a solution x can be added into T when x is better than the worst solution
of T and substitutes for the worst one.

Six neighborhood structures are used. N1 is shown below. Randomly select a job from
the machine Mk with the largest Ck

max and move it into the machine Mg with the smallest
Cg

max, where Ck
max and Cg

max are the completion time of the last processed job on Mk and
Mg, respectively. N2 is performed in the following way. Decide on a machine Mk with
the largest Ck

max and a job Ji with the largest processing time pki on Mk, randomly choose
a machine Mg, g 6= k and a job Jj with the largest pgj and exchange Ji and Jj between Mk
and Mg.

N3 is described as follows. Randomly select two machines Mk and Mg and exchange
a job Ji with the largest pki and a job Jj with the largest pgj between these two machines.
N1,N2,N3 only act on the machine assignment string.

N4,N5,N6 are performed on a scheduling string by swapping two randomly chosen
genes, inserting a randomly selected gene into a new randomly decided position, and
inverting genes between two stochastically positions k1, k2, k1 < k2.

Multiple neighborhood search is performed in the following way. For solution x, let
u = 1, repeat the following steps V times: produce a solution z ∈ Nu(x), u = u + 1, let
u = 1 if u = 7, and if z is better than x, then replace x with z and Imx = Imx + 1.

Global search is executed in the same way of the first phase.
In the existing SFLA [29,32,33], a new population P is constructed by using s evolved

memeplexes. In this study, new population shuffling is done in the following way: γ best
solutions of T and s memeplexes are added into new population P, and γ worst solutions
of P are removed. We test by experiments and set γ = 0.1× |T |max.
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Some worst solutions of P can be updated by solutions of T , that is, solutions of P can
be improved by memeplex search or shuffling.

In the second phase, the set Θ is composed of good memeplexes with better quality
than other memeplexes, in the search process for a good memeplex, a global search of
optimization object x is implemented according to actx, and then multiple neighborhood
search acts on the solutions in ϕ. Only global search is executed for other memeplexes;
moreover, different parameters, R1, R2, R1 6= R2, are used, and, as a result, differentiated
search is implemented.

4.3. Algorithm Description

The detailed steps of DSFLA are shown below.

(1) Initialization. Randomly produce initial population P with N solutions, and let initial
T be empty.

(2) Population division. execute search process within each memeplex.
(3) Perform population shuffling.
(4) If the stopping condition of the first phase is not met, then go to step (2).
(5) Execute the second phase until the stopping condition is met.

The computational complexity is O(N × R1 × L), where L is the repeated number of
steps 2–3.

Unlike the previous SFLA [29,32,33], DSFLA has the following features. (1) Quality
evaluation is done for all memeplexes according to the solution quality and evolution
quality and all memeplexes are categorized into two types: good memeplexes and other
memeplexes. (2) The differentiated search is implemented by different search strategies and
parameters for two types of memeplexes; as a result, the exploration ability is intensified;
and the possibility of falling into local optima diminishes greatly.

5. Computational Experiments

Extensive experiments were conducted on a set of instances to test the performance of
DSFLA for UPMSP with deteriorating PM and SDST. All experiments were implemented
by using Microsoft Visual C++ 2019 and run on 8.0 G RAM 2.30 GHz CPU PC.

5.1. Instances and Comparative Algorithms

We used 70 instances, which has n ∈ {15, 20, 25, 30, 35} and m ∈ {2, 4, 6, 8}, or
n ∈ {50, 70, 90, 100, 120, 150, 170, 200, 220, 250} and m ∈ {10, 15, 20, 25, 30}, pki ∈ [50, 70],
setup time from [5,10], ck = 1, dk = 0.1, and uk = max1≤i≤n{pki + sk0i + ski0} for ma-
chine Mk.

We proposed a hybrid particle swarm optimization and genetic algorithm (HP-
SOGA) [48] for UPMSP. It can be applied to our UPMSP after the decoding procedure
of DSFLA is adopted, and thus we selected it as a comparative algorithm. Lu et al. [11]
presented ABC-TS for an unrelated parallel-batching machine scheduling problem with de-
teriorating jobs and maintenance. Avalos-Rosales et al. [25] applied a multi-start algorithm
(MSA) to solve UPMSP with PM and SDST. These two algorithms can be directly used to
solve UPMSP with SDST and deteriorating PM and possess good performance; therefore,
they are chosen as comparative algorithms.

The general SFLA in Section 3 was also implemented, in which global search between
two solutions is performed in the same way as the first stage of DSFLA. The comparison
between DSFLA and SFLA is to show the effect of the main strategies of DSFLA.

5.2. Parameter Settings

In DSFLA, the stopping condition is the maximum number max_it of objective func-
tion evaluations. We found that DSFLA can converge fully. We also tested this condition
for other comparative algorithms when max_it is 105. We also found that the above max_it
was appropriate; thus, we used this stopping condition.
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DSFLA possesses other main parameters: N, s, R1, R2, V, and max_it1, where max_it1
denotes the maximum number of objective function evaluations in the first phase.

The Taguchi method [49] was used to decide the settings for parameters. We selected
instance 150× 20 for parameter tuning. The levels of each parameter are shown in Table 3.
There were 27 parameter combinations according to the orthogonal array L27(36).

Table 3. Parameters and their levels.

Parameters
Factor Level

1 2 3

N 60 80 100
s 4 5 10

R1 30 50 70
R2 80 100 120
V 220 240 260

max _it1 5000 10,000 15,000

DSFLA with each combination run 10 times independently for the chosen instance.
The results of MIN and the S/N ratio are shown in Figure 2, in which the S/N ratio
is defined as −10× log10(MIN2) and MIN is the best solution found in 10 runs. From
Figure 2, DSFLA with following combination N = 80, s = 5, R1 = 50, R2 = 100, V = 240
and max_it1 = 104 obtained better results than DSFLA with other combinations; therefore,
the above combination was adopted.

321
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321 321 321 321 321
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Figure 2. Results of MIN and the S/N ratio.

5.3. Results and Analyses

DSFLA was compared with SFLA, ABC-TS, HPSOGA, and MSA. All parameters
except the stopping conditions of ABC-TS, HPSOGA, and MSA were directly adopted
from the original references. For SFLA, there were no R1, R2, V and max_it1, and the other
parameters were given the same settings as DSFLA. Each algorithm randomly ran 10 times
for each instance. Tables 4–6 show the computational results of all algorithms, in which
AVG is the average value of the obtained 10 elite solutions in 10 runs, and SD is the
standard deviation of 10 elite solutions.
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Table 4. Computational results of five algorithms on the metric MIN.

Instance DSFLA SFLA HPSOGA ABC-TS MSA Instance DSFLA SFLA HPSOGA ABC-TS MSA

15 × 2 942 963 946 976 947 120× 10 1889 2085 1908 2188 1889
15 × 4 365 368 379 381 375 120× 15 1005 1151 1165 1403 1008
15 × 6 251 259 252 263 256 120× 20 667 812 813 995 667
15 × 8 153 156 164 165 157 120× 25 510 645 646 822 521
20 × 2 1343 1368 1340 1395 1404 120× 30 391 519 516 677 388
20 × 4 500 509 504 514 514 150× 10 2854 3097 2858 3543 2854
20 × 6 367 375 367 379 368 150× 15 1413 1617 1614 1884 1413
20 × 8 258 260 260 267 258 150× 20 985 1150 1166 1184 994
25 × 2 2031 2076 2076 2061 2078 150× 25 673 825 810 1008 673
25 × 4 779 794 804 794 755 150× 30 526 664 673 821 521
25 × 6 491 499 498 499 493 170× 10 3650 3977 3650 4534 3654
25 × 8 365 367 365 376 368 170× 15 1867 1881 1877 2422 1872
30 × 2 2730 2765 2796 2804 2736 170× 20 1177 1358 1207 1613 1176
30 × 4 943 962 963 979 952 170× 25 827 989 1010 1179 827
30 × 6 515 517 517 623 517 170× 30 682 820 824 988 668
30 × 8 380 382 380 391 382 200× 10 5171 5721 5176 5638 5179
35 × 2 3888 3978 3931 3945 3933 200× 15 2480 2491 2513 2753 2485
35 × 4 1162 1164 1163 1175 1164 200× 20 1418 1620 1636 1869 1419
35 × 6 645 653 650 665 657 200× 25 1011 1196 1204 1389 1004
35 × 8 494 504 500 517 499 200× 30 822 991 999 1168 829
50 × 10 514 524 523 667 516 220× 10 6458 7046 7131 7936 6459
50 × 15 376 379 381 507 379 220× 15 2853 3138 2856 3989 2865
50 × 20 260 268 273 368 260 220× 20 1650 1894 1897 2443 1652
50 × 25 162 262 259 276 163 220× 25 1184 1405 1600 1633 1202
50 × 30 159 160 170 271 160 220× 30 994 1166 1191 1397 983
70 × 10 820 829 828 986 820 250× 10 8908 9685 9784 9680 8916
70 × 15 511 520 519 658 514 250× 15 3614 4020 4076 4079 3651
70 × 20 382 389 386 520 379 250× 20 2175 2440 2488 2777 2177
70 × 25 267 375 276 395 269 250× 25 1418 1841 1888 1891 1420
70 × 30 263 269 273 389 264 250× 30 1189 1389 1422 1615 1173
100× 10 1398 1566 1401 1647 1399 300× 10 14,919 16,333 14,924 16,359 14,919
100× 15 814 829 824 1004 819 300× 15 5175 5726 6387 6241 5175
100× 20 524 650 643 818 520 300× 20 2859 3524 3615 3598 2861
100× 25 390 513 502 652 393 300× 25 1908 2484 2495 2503 1908
100× 30 382 393 395 523 376 300× 30 1420 1882 1909 2145 1422

Table 5. Computational results of five algorithms on the metric AVG.

Instance DSFLA SFLA HPSOGA ABC-TS MSA Instance DSFLA SFLA HPSOGA ABC-TS MSA

15 × 2 942 963 946 976 947 120× 10 1889 2098 1910 2198 1890
15 × 4 365 368 380 382 375 120× 15 1005 1178 1168 1419 1008
15 × 6 251 260 254 267 256 120× 20 669 819 818 1007 668
15 × 8 153 160 165 173 158 120× 25 511 662 658 826 523
20 × 2 1343 1368 1342 1395 1404 120× 30 393 523 522 681 389
20 × 4 500 509 506 517 514 150× 10 2855 3103 2861 3569 2856
20 × 6 367 375 369 383 369 150× 15 1413 1626 1624 1905 1414
20 × 8 258 261 262 268 258 150× 20 993 1162 1168 1195 996
25 × 2 2031 2076 2076 2062 2078 150× 25 673 831 818 1026 673
25 × 4 779 794 804 797 755 150× 30 526 668 691 826 521
25 × 6 491 499 498 505 493 170× 10 3653 3984 3650 4539 3655
25 × 8 365 367 365 381 368 170× 15 1868 1896 1881 2433 1872
30 × 2 2730 2765 2796 2805 2736 170× 20 1179 1372 1218 1619 1185
30 × 4 943 963 965 983 953 170× 25 827 1001 1013 1191 828
30 × 6 515 518 518 625 518 170× 30 684 825 837 1005 669
30 × 8 380 383 384 400 383 200× 10 5172 5723 5177 5678 5179
35 × 2 3888 3978 3931 3946 3934 200× 15 2480 2504 2520 2783 2485
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Table 5. Cont.

Instance DSFLA SFLA HPSOGA ABC-TS MSA Instance DSFLA SFLA HPSOGA ABC-TS MSA

35 × 4 1162 1164 1163 1177 1164 200× 20 1421 1641 1644 1886 1420
35 × 6 646 654 651 667 658 200× 25 1012 1202 1215 1401 1005
35 × 8 495 505 503 519 501 200× 30 827 998 1007 1188 829
50 × 10 515 524 525 674 517 220× 10 6459 7049 7133 7947 6459
50 × 15 377 379 384 515 380 220× 15 2853 3141 2858 3995 2890
50 × 20 261 268 275 385 261 220× 20 1650 1912 1919 2459 1653
50 × 25 163 262 264 280 165 220× 25 1185 1410 1616 1645 1204
50 × 30 159 167 171 273 160 220× 30 996 1176 1196 1410 984
70 × 10 821 829 831 1003 822 250× 10 8909 9691 9788 9701 8918
70 × 15 512 520 521 667 515 250× 15 3615 4029 4084 4087 3651
70 × 20 382 389 391 524 380 250× 20 2177 2471 2498 2784 2177
70 × 25 268 375 278 396 270 250× 25 1419 1855 1899 1906 1421
70 × 30 263 269 276 392 267 250× 30 1190 1404 1429 1621 1173
100× 10 1400 1566 1403 1652 1400 300× 10 14,921 16,335 14,927 16,364 14,920
100× 15 815 829 827 1019 823 300× 15 5176 5734 6388 6269 5175
100× 20 526 650 651 825 521 300× 20 2860 3546 3618 3627 2862
100× 25 390 513 513 667 394 300× 25 1909 2502 2502 2508 1909
100× 30 384 393 397 529 378 300× 30 1421 1897 1916 2165 1423

Table 6. Computational results of five algorithms on the metric SD.

Instance DSFLA SFLA HPSOGA ABC-TS MSA Instance DSFLA SFLA HPSOGA ABC-TS MSA

15 × 2 0.00 0.00 0.00 0.00 0.60 120× 10 0.00 8.72 1.20 10.06 0.75
15 × 4 0.00 0.00 0.90 0.46 0.66 120× 15 1.50 9.40 2.84 5.83 0.00
15 × 6 0.65 1.20 1.77 2.22 0.30 120× 20 0.87 3.50 5.10 5.85 0.66
15 × 8 1.50 2.21 1.04 2.30 1.57 120× 25 0.66 5.83 11.31 2.75 1.64
20 × 2 0.00 0.00 2.10 0.00 0.46 120× 30 1.47 2.21 5.76 3.10 0.94
20 × 4 0.00 0.00 2.29 2.32 0.49 150× 10 1.25 3.69 4.27 9.70 1.86
20 × 6 0.00 0.43 1.73 1.61 1.75 150× 15 0.80 7.45 10.06 11.95 0.54
20 × 8 0.64 0.60 2.28 0.83 0.54 150× 20 2.80 5.70 2.49 5.55 1.18
25 × 2 0.00 0.00 0.00 0.80 1.20 150× 25 0.00 3.24 3.75 7.00 1.31
25 × 4 0.00 0.00 0.00 1.04 0.00 150× 30 0.00 2.46 7.35 3.10 0.30
25 × 6 0.40 0.00 0.30 2.92 0.00 170× 10 0.98 5.54 2.02 2.76 2.19
25 × 8 0.00 0.30 0.00 2.27 0.40 170× 15 0.49 8.59 4.23 6.99 0.00
30 × 2 0.00 0.00 0.00 0.40 0.00 170× 20 0.60 5.84 10.41 5.12 2.97
30 × 4 0.00 0.92 2.40 1.60 1.36 170× 25 1.20 5.24 3.67 4.68 1.72
30 × 6 0.00 0.66 1.03 1.20 1.09 170× 30 1.86 3.87 11.79 6.68 0.64
30 × 8 0.63 0.93 3.78 4.61 1.81 200× 10 1.10 1.26 1.15 13.37 3.25
35 × 2 0.00 0.00 0.00 0.49 0.64 200× 15 0.30 9.48 5.87 10.91 0.30
35 × 4 0.00 0.30 0.00 3.15 0.60 200× 20 1.99 10.41 6.59 5.95 1.36
35 × 6 1.18 0.84 0.23 1.43 0.30 200× 25 0.30 3.81 8.62 6.43 0.50
35 × 8 0.77 0.91 3.22 1.75 1.94 200× 30 3.33 5.29 5.41 7.42 0.78
50 × 10 0.49 2.68 1.94 3.68 0.80 220× 10 0.40 1.75 1.84 6.78 0.30
50 × 15 0.40 1.52 3.03 4.76 0.87 220× 15 1.02 2.96 3.16 3.11 11.20
50 × 20 0.15 1.65 2.19 5.80 0.38 220× 20 0.30 8.56 8.77 11.27 3.04
50 × 25 2.70 1.64 5.19 2.26 1.89 220× 25 1.94 3.22 7.75 5.72 2.69
50 × 30 0.00 1.62 1.16 1.71 0.49 220× 30 0.48 5.39 5.05 6.95 0.98
70 × 10 1.02 3.75 1.11 9.89 2.12 250× 10 1.19 3.81 4.67 7.66 0.81
70 × 15 1.10 2.56 2.94 4.61 1.76 250× 15 0.46 4.72 5.90 4.36 0.00
70 × 20 0.49 1.92 4.85 2.87 1.30 250× 20 1.08 13.19 8.65 4.07 0.90
70 × 25 2.77 2.03 1.01 1.76 0.89 250× 25 2.10 7.69 9.60 9.52 1.76
70 × 30 0.65 2.00 2.46 2.09 1.36 250× 30 0.49 6.70 8.72 7.08 0.49
100× 10 1.85 5.68 1.20 2.17 0.54 300× 10 1.37 2.27 3.41 4.04 0.66
100× 15 1.50 1.90 2.70 5.06 3.36 300× 15 0.46 5.14 3.67 9.68 0.30
100× 20 1.30 2.83 5.44 4.52 1.25 300× 20 1.56 8.65 2.39 14.59 1.81
100× 25 0.35 2.25 11.52 5.51 1.34 300× 25 0.50 11.93 4.63 4.57 1.40
100× 30 0.53 3.76 1.59 3.95 1.46 300× 30 0.50 7.12 3.73 6.80 1.04
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Table 7 describes the computational times of DSFLA and its comparative algorithms,
in which the unit of time is seconds. Figure 3 gives a box plot of all algorithms, in which
DM (DA)(DS) indicates the MIN (AVG) (SD) of an algorithm minus the MIN (AVG) (SD)
of DSFLA. Figure 4 reveals the convergence curves of two instances.

Table 7. The computational times of DSFLA, HPSOGA, ABC-TS, and MSA.

Instance DSFLA HPSOGA ABC-TS MSA Instance DSFLA HPSOGA ABC-TS MSA

15 × 2 0.25 0.19 0.63 0.10 120 × 10 3.56 3.88 12.42 3.04
15 × 4 0.22 0.20 0.35 0.17 120 × 15 3.28 3.77 7.53 4.50
15 × 6 0.24 0.23 0.27 0.20 120 × 20 2.94 3.73 5.70 5.64
15 × 8 0.33 0.23 0.23 0.20 120 × 25 2.77 3.86 4.69 7.43
20 × 2 0.20 0.31 1.22 0.28 120 × 30 2.74 4.02 4.77 9.53
20 × 4 0.28 0.40 0.59 0.30 150 × 10 4.79 5.10 20.41 4.90
20 × 6 0.27 0.40 0.43 0.36 150 × 15 4.12 5.29 14.93 5.91
20 × 8 0.22 0.40 0.36 0.29 150 × 20 3.82 5.38 10.08 7.10
25 × 2 0.24 0.41 2.10 0.31 150 × 25 3.27 5.55 7.71 11.27
25 × 4 0.19 0.46 0.93 0.38 150 × 30 3.55 5.53 7.18 12.94
25 × 6 0.27 0.47 0.66 0.38 170 × 10 5.60 6.64 28.42 5.26
25 × 8 0.20 0.47 0.55 0.40 170 × 15 4.80 6.42 18.54 6.23
30 × 2 0.22 0.48 3.25 0.41 170 × 20 4.06 7.30 12.97 8.32
30 × 4 0.37 0.49 1.36 0.46 170 × 25 3.59 8.62 10.17 10.86
30 × 6 0.37 0.57 0.94 0.57 170 × 30 3.95 8.20 9.06 12.14
30 × 8 0.23 0.56 0.73 0.58 200 × 10 7.31 10.33 39.29 7.85
35 × 2 0.33 0.55 5.81 1.36 200 × 15 5.76 8.48 25.82 9.22
35 × 4 0.33 0.65 1.97 1.34 200 × 20 5.00 8.57 19.34 9.60
35 × 6 0.27 0.62 1.29 1.30 200 × 25 4.64 8.88 14.62 10.07
35 × 8 0.35 0.70 1.21 1.39 200 × 30 4.77 9.11 13.03 11.11

50 × 10 1.85 0.97 2.20 1.72 220 × 10 8.50 10.66 48.66 8.03
50 × 15 1.63 1.01 1.29 1.93 220 × 15 6.70 8.98 33.07 9.93
50 × 20 1.70 1.20 1.08 0.86 220 × 20 5.64 8.94 24.60 10.01
50 × 25 1.58 1.21 6.04 1.81 220 × 25 5.03 9.03 18.63 11.16
50 × 30 1.80 0.96 5.86 2.24 220 × 30 5.20 9.06 16.30 11.54
70 × 10 2.22 1.62 3.45 2.27 250 × 10 10.17 11.91 69.33 10.14
70 × 15 2.01 1.78 2.49 2.43 250 × 15 8.16 10.08 42.52 10.95
70 × 20 2.06 1.78 1.98 2.59 250 × 20 6.94 10.45 31.35 11.06
70 × 25 1.98 1.83 1.74 2.73 250 × 25 5.86 10.40 25.25 10.96
70 × 30 2.12 2.02 1.63 2.02 250 × 30 6.11 10.59 22.36 11.62
100 × 10 3.06 2.63 7.95 2.49 300 × 10 13.85 15.42 103.58 13.51
100 × 15 2.67 2.78 5.27 2.67 300 × 15 10.31 14.77 79.38 14.03
100 × 20 2.61 2.74 3.94 2.37 300 × 20 8.87 14.23 59.08 14.16
100 × 25 2.46 3.19 3.35 3.01 300 × 25 7.88 14.02 54.39 14.58
100 × 30 2.50 3.24 3.09 3.62 300 × 30 7.73 14.99 56.85 15.04
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Figure 3. Box plot of all algorithms.
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Figure 4. Convergence curves of DSFLA and its comparative algorithms.

As shown in Tables 4–6, SFLA could not produce better MIN than DSFLA on any
instances and obtains bigger MIN than SFLA by at least 100 for most instances. DSFLA
had better convergent performance than SFLA. DSFLA generated smaller AVG than SFLA
on all instances, and the differences of AVG between the two algorithms were significant.

DSFLA performed better than SFLA for the average performance. The SD of SFLA
was also worse than that of DSFLA for most instances, and SFLA was inferior to DSFLA
regarding search stability. DSFLA performed notably better when compared with SFLA.
This conclusion can also be drawn from Figure 3; thus, new strategies, such as differentiated
search, had a positive impact on the performance of DSFLA.

It can be seen from Table 4 that DSFLA produced smaller MIN compared with
HPSOGA and ABC-TS for nearly all instances and generated a worse MIN than MSA
for only 11 instances. DSFLA converged better than its comparative algorithms. The
convergence performance differences between DSFLA and its comparative algorithm can
also be seen from the box plot and convergence curves in Figures 3 and 4.

The results in Table 5 show that DSFLA obtained a better AVG over HPSOGA and
ABC-TS for nearly all instances and possessed a smaller AVG than MSA for most instances.
DSFLA had a better average performance than its three comparative algorithms. This
conclusion can also be drawn from Figure 3. Table 6 and Figure 3 reveal that DSFLA had
better stability than its three comparative algorithms; thus, we concluded that DSFLA can
provide promising results for solving UPMSP with deteriorating PM and SDST.

The good performances of DSFLA mainly resulted from its new strategies in the
second phase. The differentiated search was implemented by memeplex quality evaluation
and different search combinations of global search and multiple neighborhood search.
These strategies effectively intensified the exploration ability and avoided the search falling
into local optima. As a result, a high search efficiency was obtained; thus, DSFLA is a very
competitive method for the considered UPMSP.

6. Conclusions

UPMSP with various processing constraints has been extensively considered. This
paper addressed UPMSP with deteriorating PM and SDST and provided a new algorithm
named DSFLA to minimize the makespan. In DSFLA, two search phases exist, memeplex
quality evaluation is performed, and the differentiated search processes between two kind
of memeplexes are implemented in the second phase. A new population shuffling was also
presented. A number of computational experiments were conducted. The computational
results demonstrated that DSFLA had promising advantages, such as good convergence
and stability in solving the considered UPMSP.
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UPMSP with at least two actual constraints, such as PM, SDST, and learning effects,
may attract attention. We will continue to focus on these UPMSP by using meta-heuristics,
including ABC and the imperialist competitive algorithm. Uncertainty often cannot be
neglected and should be added into scheduling problems. UPMSP with uncertainty and
energy-related elements, etc. is our future topic. Reinforcement learning has been used to
solve scheduling problems and we will pay attention to meta-heuristics with reinforcement
learning for UPMSP with various processing constraints.
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