
symmetryS S

Article

Modeling and Optimization for Multi-Objective Nonidentical
Parallel Machining Line Scheduling with a Jumping Process
Operation Constraint

Guangyan Xu 1, Zailin Guan 1, Lei Yue 2,*, Jabir Mumtaz 3 and Jun Liang 1

����������
�������

Citation: Xu, G.; Guan, Z.; Yue, L.;

Mumtaz, J.; Liang, J. Modeling and

Optimization for Multi-Objective

Nonidentical Parallel Machining Line

Scheduling with a Jumping Process

Operation Constraint. Symmetry 2021,

13, 1521. https://doi.org/10.3390/

sym13081521

Academic Editors: Juan

Alberto Rodríguez Velázquez and

Alejandro Estrada-Moreno

Received: 13 July 2021

Accepted: 13 August 2021

Published: 18 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechanical Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China; xuguangyan@hust.edu.cn (G.X.); zlguan@hust.edu.cn (Z.G.);
liangjun@alumni.hust.edu.cn (J.L.)

2 School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510000, China
3 College of Mechanical and Electronic Engineering, Wenzhou University, Wenzhou 325000, China;

jabir.mumtaz@me.uol.edu.pk
* Correspondence: leileiyok@gzhu.edu.cn

Abstract: This paper investigates the nonidentical parallel production line scheduling problem
derived from an axle housing machining workshop of an axle manufacturer. The characteristics
of axle housing machining lines are analyzed, and a nonidentical parallel line scheduling model
with a jumping process operation (NPPLS-JP), which considers mixed model production, machine
eligibility constraints, and fuzzy due dates, is established so as to minimize the makespan and
earliness/tardiness penalty cost. While the physical structures of the parallel lines in the NPPLS-
JP model are symmetric, the production capacities and process capabilities are asymmetric for
different models. Different from the general parallel line scheduling problem, NPPLS-JP allows for
a job to transfer to another production line to complete the subsequent operations (i.e., jumping
process operations), and the transfer is unidirectional. The significance of the NPPLS-JP model
is that it meets the demands of multivariety mixed model production and makes full use of the
capacities of parallel production lines. Aiming to solve the NPPLS-JP problem, we propose a hybrid
algorithm named the multi-objective grey wolf optimizer based on decomposition (MOGWO/D).
This new algorithm combines the GWO with the multi-objective evolutionary algorithm based
on decomposition (MOEA/D) to balance the exploration and exploitation abilities of the original
MOEA/D. Furthermore, coding and decoding rules are developed according to the features of
the NPPLS-JP problem. To evaluate the effectiveness of the proposed MOGWO/D algorithm, a
set of instances with different job scales, job types, and production scenarios is designed, and the
results are compared with those of three other famous multi-objective optimization algorithms.
The experimental results show that the proposed MOGWO/D algorithm exhibits superiority in
most instances.

Keywords: nonidentical parallel production lines; axle housing machining; mixed model production;
eligibility constraint; fuzzy due date; grey wolf optimizer

1. Introduction

Flow shop scheduling problems are the most common and widely studied problems
in the manufacturing industry, and the examined problems are usually simplified versions
of the real flow shop scheduling problem so as to reduce the difficulty of modeling and
solving these problems. These oversimplified schemes often cannot perfectly solve such
scheduling problems in the actual environment. In real-world manufacturing situations,
some special constraints or uncertainties must usually be considered and handled, such as
sequence-dependent setup times [1–3], the kinds of parallel machines under study [4,5],
machine eligibility constraints [6–9], resource constraints [10,11], and fuzzy stochastic

Symmetry 2021, 13, 1521. https://doi.org/10.3390/sym13081521 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym13081521
https://doi.org/10.3390/sym13081521
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13081521
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13081521?type=check_update&version=3

Symmetry 2021, 13, 1521 2 of 24

demand [12,13]. Considerations of these additional constraints and uncertainties make
the developed scheduling models closer to real production scenarios, but also increase
their scheduling complexity. Because of product iteration requirements and the diversified
needs of customers, production systems must often address multivariety production
on multiple production lines. This is very common in manufacturing enterprises such
as those in the automobile industry and household appliance industry, as well as for
construction machinery manufacturers. When coping with these situations, the equipment
configurations of multiple lines may be different for meeting multivariety production. In
this paper, we study this nonidentical parallel production line scheduling problem. To
improve the machine utilization and shorten the waiting times of the jobs to be processed,
a jumping process operation is often used. This means that if a certain process operation
of a job is finished, it can move to another production line to complete the subsequent
process operations. This jumping process operation is unidirectional. To solve this kind of
scheduling problem, nonidentical parallel line scheduling with a jumping process operation
(NPPLS-JP) is proposed; this is also in essence a parallel production line scheduling problem.
Notably, the proposed NPPLS-JP problem is an NP-hard problem because of its complexity.

This NPPLS-JP problem is derived from the axle housing machining workshop of an
axle manufacturer. Axle housing is an important part of axle production; it usually adopts
make-to-stock (MTS) production and make-to-order (MTO) assembly. The machining of
an axle housing is shown in Figure 1. The axle manufacturer adopts nonidentical parallel
production lines for axle housing machining. There are two parallel production lines (A and
B) in the axle housing machining workshop, and each production line is installed linearly,
as shown in Figure 1. The physical structures of the two production lines are symmetrical.
Each production line contains five stages corresponding to five operations, and the parallel
machines at any stage of each line are identical. The corresponding stages of production
lines A and B have similar functions, but the configurations of the machines in the different
lines are different in order to meet the needs of multivariety mixed production. In this
production situation, the production load of each stage on any line is not easy to balance
via a simple scheduling scheme.

Symmetry 2021, 13, x FOR PEER REVIEW 2 of 26

parallel machines under study [4,5], machine eligibility constraints [6–9], resource
constraints [10,11], and fuzzy stochastic demand [12,13]. Considerations of these
additional constraints and uncertainties make the developed scheduling models closer to
real production scenarios, but also increase their scheduling complexity. Because of
product iteration requirements and the diversified needs of customers, production
systems must often address multivariety production on multiple production lines. This is
very common in manufacturing enterprises such as those in the automobile industry and
household appliance industry, as well as for construction machinery manufacturers.
When coping with these situations, the equipment configurations of multiple lines may
be different for meeting multivariety production. In this paper, we study this nonidentical
parallel production line scheduling problem. To improve the machine utilization and
shorten the waiting times of the jobs to be processed, a jumping process operation is often
used. This means that if a certain process operation of a job is finished, it can move to
another production line to complete the subsequent process operations. This jumping
process operation is unidirectional. To solve this kind of scheduling problem, nonidentical
parallel line scheduling with a jumping process operation (NPPLS-JP) is proposed; this is
also in essence a parallel production line scheduling problem. Notably, the proposed
NPPLS-JP problem is an NP-hard problem because of its complexity.

This NPPLS-JP problem is derived from the axle housing machining workshop of an
axle manufacturer. Axle housing is an important part of axle production; it usually adopts
make-to-stock (MTS) production and make-to-order (MTO) assembly. The machining of
an axle housing is shown in Figure 1. The axle manufacturer adopts nonidentical parallel
production lines for axle housing machining. There are two parallel production lines (A
and B) in the axle housing machining workshop, and each production line is installed
linearly, as shown in Figure 1. The physical structures of the two production lines are
symmetrical. Each production line contains five stages corresponding to five operations,
and the parallel machines at any stage of each line are identical. The corresponding stages
of production lines A and B have similar functions, but the configurations of the machines
in the different lines are different in order to meet the needs of multivariety mixed
production. In this production situation, the production load of each stage on any line is
not easy to balance via a simple scheduling scheme.

Turning of spindle
nose and flange face Spindle nose grinding Combined machining I Combined machining IIboring and turning of

bedding face and inner bore

Figure 1. The composition of an axle housing machining line.

According to the different vehicle models, there are eight types of axle housing
products that can be processed on line A and line B with multivariety mixed model
production; all types of products are processed through five operations, as shown in
Figure 1. Two types of axle housing products have machine eligibility constraints, and the
operation “combined machining I” can only be performed at the corresponding machines
in production line B; the others can finish processing on any line independently. For
different types of axle housing, the different processing times required for the same
operation on the same machine and the different mixing ratios of the various axle housing
types increase the complexity of the scheduling problems. It is difficult to balance all the
stages of each production line, so a jumping process operation is adopted to address this
problem by allowing a job to be processed on two production lines. For example, when

Figure 1. The composition of an axle housing machining line.

According to the different vehicle models, there are eight types of axle housing
products that can be processed on line A and line B with multivariety mixed model
production; all types of products are processed through five operations, as shown in
Figure 1. Two types of axle housing products have machine eligibility constraints, and the
operation “combined machining I” can only be performed at the corresponding machines in
production line B; the others can finish processing on any line independently. For different
types of axle housing, the different processing times required for the same operation on the
same machine and the different mixing ratios of the various axle housing types increase
the complexity of the scheduling problems. It is difficult to balance all the stages of each
production line, so a jumping process operation is adopted to address this problem by
allowing a job to be processed on two production lines. For example, when the operation
“combined machining I” is finished on line A, the job is transferred to line B to complete

Symmetry 2021, 13, 1521 3 of 24

the subsequent machining operations; this is called the jumping process operation, and
the stage “combined machining I” is called the jumping process point. A jumping process
operation is unidirectional, which means that the axle housings processed on line A are
allowed to be transferred to production line B, but not the other way around. Appropriate
jumping process operations can reduce waiting times, improve the utilization rate of
equipment, balance the production capacity of each stage, and ensure the due date of
each order.

From the above description of a production system, it can be seen that the axle housing
machining line scheduling problem has the following characteristics: (1) The configurations
of the multiple production lines are similar but not the same. (2) Mixed multivariety
production is adopted to organize production. (3) Several jobs with special types have
machine eligibility constraints. (4) The jumping process operation is unidirectional in the
production process. This problem can be regarded as a variant and extension of the flow
shop scheduling problem or general parallel production line scheduling problems, and it
involves four key decision-making processes, namely: job sequencing decisions, parallel
line decisions, parallel machine decisions, and job jumping process operation decisions. It is
obvious that the NPPLS-JP problem proposed in this paper is a rather complex scheduling
optimization problem.

Because of the fierce competition in the market and the diversified needs of cus-
tomers, the NPPLS-JP problem is widespread in manufacturing environments and has
an important impact on the manufacturing efficiency of production systems. However,
there is no relevant research on this topic in the existing literature, so the study in this
paper is of exploratory and practical significance. In this paper, we establish a scheduling
model for the NPPLS-JP problem, which involves multivariety mixed model production,
multiline scheduling, and machine eligibility constraints. The objectives are to minimize
the makespan and earliness/tardiness penalty in a production cycle. In the NPPLS-JP
model, to more closely approximate the actual production environment, the due date of
a production order denoted by the fuzzy earliness/tardiness penalty model [14], and a
hybrid algorithm combining the grey wolf optimization algorithm and the multi-objective
evolutionary algorithm based on decomposition (MOEA/D) are proposed to solve the
NPPLS-JP problem.

The remainder of this paper is organized as follows. Section 2 reviews the literature
relevant to multivariety mixed model production, parallel line scheduling, and multi-
objective optimization. Section 3 gives a general statement of the NPPLS-JP problem and
establishes a production-based, order-oriented, multi-objective scheduling model. Section 4
proposes the multi-objective grey wolf optimizer based on decomposition (MOGWO/D)
for NPPLS-JP and describes the procedures in detail. Section 5 tests the performance
of the proposed MOGWO/D algorithm by comparing it with three other famous multi-
objective algorithms based on a set of designed test instances, and the experimental results
are analyzed. Section 6 summarizes the research content and discusses the direction of
future research.

2. Literature Review

Mixed model production refers to the production of a variety of products on a single
production line to increase the flexibility of the line and meet the multivariety and small-
batch production demands. For multiproduct demands, mixed model production is widely
adopted by manufacturing enterprises, especially in assembly workshops [15,16]. Because
of the widespread application of mixed model production, many scholars are devoted to
research in this field and have made many achievements [17–21].

Mcmullen et al. [22] studied the mixed model scheduling problem with the considera-
tion of a setup time. They presented a bean search heuristic method to obtain an efficient
front. Leu and Hwang [23] proposed a resource-constrained mixed-production flow shop
scheduling system for mixed precast production task problems and developed a search
method based on a genetic algorithm (GA) to minimize the output makespan under re-

Symmetry 2021, 13, 1521 4 of 24

source constraints and mixed production. Wang et al. [24] studied final assembly line
scheduling, which considers order scheduling and mixed model sequencing simultane-
ously, and combined the original artificial bee colony (ABC) algorithm with some steps
of the GA and Pareto optimality to solve this problem. Bahman et al. [25] constructed a
mixed-integer linear programming model with a tighter linear relaxation for a realistic
automotive industry assembly line, including a set of specific requirements involving
moving workers and limited workspace. Alghazi and Kurz [26] proposed a mixed model
line-balancing integer program for mixed model assembly lines with the aim of minimizing
the number of chemical workers; a constraint programming model was established to
address larger assembly line balancing problems.

Parallel line scheduling problems are very common in both mass production and
multiproduct production. Parallel line production can enhance the stability and flexibility
of the production system and improve production efficiency. When one production line
breaks down, not all production activities are stopped. All parallel lines may have the same
number of processing stages, the pieces of equipment in the same stage are similar and can
complete the same production processes, and every line can substitute for all other lines to
produce all or some types of the desired products [27]. However, in some situations, the
configurations of the machines in different lines are nonidentical; this situation is more
convenient for the production of multiple products. For example, two types of equipment
in different production lines can independently complete the operation of milling surfaces,
but the machining accuracies are different.

Haq et al. [28] studied the line scheduling problem with multiple parallel processing
in job shops. Each job can only be processed on a particular line and is not allowed
to move between parallel lines. Meyr and Mann et al. [29] introduced a new solution
approach to determine the lot-sizing and scheduling problem for parallel production
lines with the consideration of scarce capacity; sequence-dependent setup times; and the
deterministic, dynamic demands of multiple products. Mumtaz et al. [30] investigated the
multiple assembly line scheduling problem for a printed circuit board (PCB) assembly and
developed a hybrid spider monkey optimization approach with an improved replacement
strategy to solve it. Rajeswari et al. [27] presented parallel flow line scheduling with a
dual objective to minimize the tardiness and earliness of jobs. All parallel flow lines had
similar sets, and the authors developed a hybrid algorithm that used a GA and particle
swarm optimization (PSO) to incorporate greedy randomized adaptive search to address
the problem. Ebrahimipour et al. [31] proposed linear programming and a bagged binary
knapsack to address the multiple production line scheduling problem. Mumtaz et al. [32]
developed a mixed-integer programming model for the multilevel planning and scheduling
problem of parallel PCB assembly lines, and a hybrid spider monkey optimization (HSMO)
algorithm was proposed.

Multi-objective optimization refers to a situation where more than one conflicting
objective is to be optimized simultaneously. It is often impossible to obtain an optimal solu-
tion as in a single-objective optimization problem, but a set of tradeoff solutions, namely,
nondominated solutions, can be used to choose the most suitable solution according to the
actual requirements. Therefore, it is more applicable to the actual situation, which requires
the consideration of multiple indicators affecting decision making. As it is conducive to
obtaining an ideal decision making effect, multi-objective optimization has a wider appli-
cation field and more practical value. MOEAs are global optimization algorithms based
on populations that simulate the evolution process of natural organisms. Since the whole
solution set can be obtained in one run, MOEAs have become some of the mainstream
algorithms in multi-objective optimization. According to their selection mechanisms,
MOEAs can be classified into three classes [33]: Pareto-based algorithms, indicator-based
algorithms, and decomposition-based algorithms. The Pareto-based method was first
proposed by Goldberg et al. [34] and has been widely studied since then. Many classi-
cal multi-objective optimization algorithms are based on the Pareto relation, and many
have been proposed based on the Pareto dominance relationship, such as the famous

Symmetry 2021, 13, 1521 5 of 24

SPEA [35], SPEA2 [36], and NSGA-II [37]. The indicator-based method uses performance
evaluation indicators to guide the search process and the choice of solutions [38,39]. The
MOEA/D was first proposed by Zhang and Hui in 2007 [40], and it is the most representa-
tive multi-objective optimization algorithm based on decomposition. Different from the
classical multi-objective optimization algorithms, it decomposes an input multi-objective
optimization problem (MOP) into a series of single-objective optimization subproblems
by using a set of uniformly distributed weight vectors and optimizing these subproblems
simultaneously. Since the MOEA/D was proposed, it has attracted increasing attention
from scholars, improvements and applications for the MOEA/D are constantly emerging,
and it has become one of the best multi-objective optimization algorithms.

Li and Landa-Silva et al. [41] proposed evolutionary multi-objective simulated an-
nealing (EMOSA), which incorporates a simulated annealing algorithm and introduces an
adaptive search strategy. The experimental results showed that the algorithm obtained a
good effect in terms of solving the multi-objective knapsack problem and multi-objective
salesman problem. Tan et al. [42] developed a multi-objective meme algorithm based
on decomposition, which integrates a simplified quadratic approximation (SQA) into
the MOEA/D as a local search operator to balance its local and global search strategies.
Wang et al. [43] designed a multi-objective particle swarm optimization algorithm based on
decomposition (MPSO/D). This algorithm adopts relevant measures to ensure that only one
solution is present in each subregion in oder to maintain solution diversity, and the fitness is
calculated by the crowding distance. Ke and Zhang et al. [44] proposed the MOEA/D-ACO
algorithm, which incorporates ant colony optimization (ACO) into the MOEA/D; they
then tested the performance of the proposed algorithm in 12 instances and obtained good
results. Alhindi et al. [45] developed a hybrid algorithm called MOEA/D-GLS, which
integrated guided local search (GLS) with the MOEA/D to promote the exploitation ability
of the original MOEA/D. The experimental results showed that the proposed MOEA/D-
GLS was superior to the original MOEA/D. Zhang et al. [46] proposed MOEA/D-EGO to
address expensive MOPs. In this method, the input problem is decomposed into several
subproblems, and a prediction model is established for each subproblem based on the
evaluated points in order to reduce modeling costs and improve the prediction quality.
Wang et al. [47] proposed adaptive replacement strategies by adjusting the problem size
dynamically for the MOEA/D. This approach can balance the diversity and convergence
of the MOEA/D.

However, according to the no free lunch theorem [48], no algorithm can solve all of
the optimization problems in all of the fields. Because of the continuous emergence of
new optimization problems, the existing algorithms cannot solve these new optimization
problems well, so new algorithms or improved algorithms are needed. The MOEA/D
algorithm exhibits good diversity in solving MOPs; its characteristics include simplicity,
few parameters, and better result distributions. In this paper, the MOGWO/D, which
incorporates the GWO into the MOEA/D, is proposed to solve the NPPLS-JP problem.

3. Problem Description and Mathematical Modeling
3.1. Problem Definition and Assumption

Suppose that O orders are processed in L production lines, the job types for each order
are the same and those for different orders may be different, and the operations of each
type of job are predetermined and similar. All production lines have the same number of
stages, and the machine configurations may be different. If parallel machines exist in some
stages of the production line, they are identical parallel machines. Some types of jobs may
have machine eligibility constraints, namely some job operations must be carried out on
specific machines at certain stages of some production lines. For any production line l, if s
is set as the jumping process operation point, it means that after processing is completed in
stage s, the job can be transferred to line l′ to continue the processing of the subsequent
operations (l 6= l′ and l, l′ ∈ {1, 2, · · · , L}); the jumping process operation is unidirectional.

Symmetry 2021, 13, 1521 6 of 24

The scheduling objectives are to minimize the makespan and the earliness/tardiness
penalty cost.

In addition, there are usually several complicated constraints and perturbations in
the real-world production environment. To prevent the loss of generality and reduce the
computational complexity of the scheduling model, some modeling assumptions are given,
as follows.

(1) The type, quantity, and due date of each order are known.
(2) The jobs in each order are of the same type.
(3) All the machines in the production system are available at the beginning.
(4) The processing times and setup times of the jobs on each machine do not overlap.
(5) Each job can be processed on only one machine at any time, each machine can process

only one job at any time, and operations cannot be interrupted.
(6) For each job, the jumping operation can only occur once.
(7) The jumping process operation point is singular, fixed, and unidirectional.
(8) The setup time and machine breakdown time are ignored.

Meanwhile, to solve the NPPLS-JP problem more conveniently, the concept of a virtual
production line is introduced. This means that if there is a jumping process operation
point in the manufacturing process of a job of a certain type, all the stages in two different
production lines that can complete the processing of jobs of this type are regarded as a new
production line, namely, a virtual production line.

In a real-world production environment, a breach of the order due dates is not always
unacceptable. In general, a few occurrences of tardiness are allowed, to achieve the smallest
due date penalty cost across the total orders. Here, the fuzzy due date is used to deal
with this situation. Trapezoidal fuzzy due date and triangular fuzzy due date are two
common fuzzy due dates that have been investigated in the literature regarding scheduling
problems [14,49–51]. Most researchers choose the type of fuzzy due date depending on
the research background and problem characteristics. In our research, neither early nor
late completion were the best solutions for the automobile industries. Completing the
production order in advance will increase the inventory cost, while the order delay will
lead to customer penalty loss. Finishing and delivering the orders in a given period is the
most feasible result. Therefore, the trapezoidal fuzzy due date and earliness/tardiness
penalty cost model was adopted in this scheduling problem according to the real-world
production requirement.

As shown in Figure 2a–b, (a) is the trapezoidal fuzzy due date and earliness/tardiness
penalty cost model, (b) is the corresponding satisfaction model of the fuzzy due date.
Model (a) shows each order has a corresponding trapezoidal fuzzy due date that is denoted
by a trapezoidal fuzzy number do =

(
d1

o , d2
o , d3

o , d4
o
)
, and the earliness/tardiness penalty

cost coefficients are αo and βo, respectively. A completion time before d1
o it means that

the orders are produced prematurely, and additional inventory costs are generated; if
the completion time comes after d4

o , the production order seriously violates the due date
requirement. These two cases are both unacceptable, so the satisfaction is 0, and the maxi-
mal earliness/tardiness penalty is imposed. If the completion time is in the time interval
[d1

o , d2
o] or [d3

o , d4
o], the due date penalty costs decrease and increase linearly, respectively,

and the corresponding due date satisfaction is just the opposite. Only in the time interval
[d2

o , d3
o] are the completion times reasonable, and the due date penalty cost in this case is 0.

Therefore, the production orders should be arranged optimally in terms of time according
to different due dates and earliness/tardiness penalty costs.

Symmetry 2021, 13, 1521 7 of 24Symmetry 2021, 13, x FOR PEER REVIEW 7 of 26

1.0

00

(b) (a)

𝑑𝑜2

𝑑𝑜1

𝑑𝑜4

𝑑𝑜3

𝑑𝑜1

𝑑𝑜2

𝑑𝑜3

𝑑𝑜4

𝛼𝑜

𝛽𝑜

Sa
tis

fa
ct

io
n

Due date

Ea
rli

ne
ss

/ta
rd

in
es

s
pe

na
lty

 c
os

t
Due date

Figure 2. The earliness/tardiness penalty cost and satisfaction model. (a) The earliness/tardiness penalty cost; (b) The
satisfaction model.

3.2. Mathematical Modeling
A mathematical model for the proposed NPPLS-JP problem is established using the

above notations, and the two objective functions, which minimize the makespan and
earliness/tardiness penalty cost, are formulated as Equations (1) and (2), respectively.

{ }1 m ax oM in Cf = (1)

2
1

O

o
o

Min f P
=

=

(2)

where the calculation formulas of the completion time and due earliness/tardiness penalty
for order o are formulated as Equations (3) and (4), respectively:

{ },max o iioC Cu i J= ∈

(3)

1

2
1 2

2 1

32

3
3 4

34

4

 0

o o o

o o
o o o o

o o

o o o o

o o
o o o o

o o

o o o

C d
d C d C d
d d

P d C d o O
C d d C d
d d

C d

α

α

β

β

<
 − ⋅ ≤ <
 −
= ≤ ≤ ∈
 − ⋅ ≤ <

−
 ≥

(4)

The constraints are as follows:

()
()

()'

1
'

, , , ,
1 1

1 ; 1
lsL

i s l i s
l s=

sX Y i J s = s+
−

=
= ∈

(5)

()
()

()
()'

1
'

, , , ,
1 1

1 ; 1
l

SL

i s l i s s
l s= s

X Y i J s = s+
−

= +
= ∈

(6)

Figure 2. The earliness/tardiness penalty cost and satisfaction model. (a) The earliness/tardiness
penalty cost; (b) The satisfaction model.

3.2. Mathematical Modeling

A mathematical model for the proposed NPPLS-JP problem is established using the
above notations, and the two objective functions, which minimize the makespan and
earliness/tardiness penalty cost, are formulated as Equations (1) and (2), respectively.

Min f1 = max{Co} (1)

Min f2 =
O

∑
o=1

Po (2)

where the calculation formulas of the completion time and due earliness/tardiness penalty
for order o are formulated as Equations (3) and (4), respectively:

Co = max{ui,oCi} i ∈ J (3)

Po =

αo Co < d1
o

αo· d
2
o−Co

d2
o−d1

o
d1

o ≤ Co < d2
o

0 d2
o ≤ Co ≤ d3

o o ∈ O

βo·Co−d3
o

d4
o−d3

o
d3

o ≤ Co < d4
o

βo Co ≥ d4
o

(4)

The constraints are as follows:

L

∑
l=1

(sl−1)

∑
s=1

(
Xi,s,lYi,s,s′

)
= 1 i ∈ J; s′ = (s + 1) (5)

L

∑
l=1

(S−1)

∑
s=(sl+1)

(
Xi,s,lYi,s,s′

)
= 1 i ∈ J; s′ = (s + 1) (6)

Yi,sl ,(sl+1)= 0, 1 i ∈ J (7)

L

∑
l=1

(
Xi,s,lXi,s′ ,l

)
= Xi,s,s′ i ∈ J; s ∈ {1, 2, · · · , (S− 1)}; s′ = (s + 1) (8)

Msl

∑
k=1

Xk,i,s,l = Xi,s,l i ∈ J; s ∈ S; l ∈ L (9)

Xi,s,l ≤
O

∑
o=1

Nt

∑
t=1

L

∑
l=1

xi,oxo,txt,s,l i ∈ J; s ∈ S; l ∈ L (10)

L

∑
l=1

Msl

∑
k=1

Xk,i,s,l = 1 i ∈ J; s ∈ S (11)

Z
k,i,i′ ,s,l

+ Z
k,i′ ,i,s,l

≤ Xk,s,i,l i, i′ ∈ J; i 6= i′; s ∈ S; k ∈ Ms,l ; l ∈ L (12)

Symmetry 2021, 13, 1521 8 of 24

Zk,i,i′ ,s,l + Zk,i′ ,i,s,l ≤ Xk,s,i′ ,l i, i′ ∈ J; i 6= i′; s ∈ S; k ∈ Ms,l ; l ∈ L (13)

Ck,s,i′ ,l′Xk,s,i′ ,l′ + M
(
1− Zk,i,i′ ,s,l

)
≥ Ck,s,i,lXk,s,i,l +

O
∑

o=1

Nt
∑

t=1
(ptt,k,sxo,txi,o)Xk,s,i′ ,l′

i, i′ ∈ J; i 6= i′; s ∈ S; k ∈
{

Ms,l ∪Ms,l′
}

; l, l′ ∈ L
(14)

C
k′,s′,i,l′Xk′,s′,i,l′ + M(1− X

k′,s′,i,l′) ≥ Ck,s,i,lXk,s,i,l +
O
∑

o=1

Nt
∑

t=1

(
ptt,k′ ,s′xo,txi,o

)
Xk′ ,s′ ,i,l′

s ∈ {1, 2, · · · , S− 1}; s′ = (s + 1); k ∈ Ms,l ; k′ ∈ Ms′ ,l′ ; l, l′ ∈ L
(15)

Among the above constraints, constraints (5)–(7) together define the jumping process
operation. Constraint (5) defines the operations before the jumping process operation
point (including the operation on the jumping process operation stage), which can only
be completed in one production line. Constraint (6) restricts all of the operations after
the jumping process operation point for each job that can only be processed on the same
production line. Constraint (7) states the jumping process operation for any job may
or may not occur after completing another jumping process operation, and the three
constraints together guarantee that the jumping process operation can only occur once at
most. Constraint sets (8) and (9) define the relationships between several decision variables.
Constraint (10) states that the processing of each job operation must satisfy the machine
eligibility constraints. Constraint (11) ensures that each operation of a job can only be
processed on one machine. Constraint sets (12) and (13) together restrict the processing
sequence of two jobs on a machine to only one possible result. Constraint (14) guarantees
that one machine can only process one job at a time, which means that the completion
time of the current job is longer than the sum of the completion time of the immediate
predecessor job and the processing time of the current job. Constraint (15) ensures that
a job is processed by only one machine at a time, that is, the completion time of the job
operation is greater than the sum of the completion time of the immediate predecessor
operation and the processing time of the current operation.

4. Proposed MOGWO/D Algorithm

The MOEA/D provides a general framework that allows any single objective to be
applied to the subproblems of a MOP [41]. Compared with the other multi-objective
optimization algorithms, such as the Pareto-based optimization algorithms, MOEA/D has
less computational complexity, and its results have better diversity. In this section, we
present a hybrid algorithm that combines GWO with MOEA/D, and uses the mechanism
of searching for prey in the GWO algorithm to enforce a balance between exploration
and exploitation. According to the characteristics of the NPPLS-JP problem, problem-
specific encoding and decoding rules are given, and some main procedures in the proposed
MOGWO/D are also stated in detail.

4.1. Original GWO

The GWO was inspired by the leadership hierarchy and hunting behaviors of grey
wolves [52]. In GWO, initial populations are used to simulate the grey wolf group, which
is divided into four hierarchies; the solutions with the best, second, and third fitness
values are α, β, and δ, respectively, are utilized to find the optimal solution by simulating
the hunting process of grey wolves. In the process of hunting, the location of the prey
is unknown. Therefore, to simulate the hunting behavior of grey wolves and the prey
behavior from the perspective of mathematical modeling, suppose that α, β, and δ are
closest to the potential position of the prey. Under the guidance of α, β, and δ, the position
vector is updated to approximate the optimal solutions in the search space.

The main procedure of wolf hunting includes encircling prey and hunting, and the
mathematical models for grey wolves approaching and encircling their prey are as follows:

→
D =

∣∣∣∣→C · →Xp(t)−
→
X(t)

∣∣∣∣ (16)

Symmetry 2021, 13, 1521 9 of 24

→
X(t + 1) =

→
Xp(t)−

→
A ·
→
D (17)

→
A = 2

→
a ·→r1 −

→
a (18)

→
C = 2

→
r2 (19)

In Equations (16) and (17),
→
Xp indicates the position vector of the prey and

→
X is the

position vector of the grey wolf.
→
A and

→
C are coefficient vectors, and the calculation

methods are shown in Equations (18) and (19). By changing the value of the vector
→
A, the

search process can be guided. When |
→
A| > 1, α, β, and δ diverge from each other, which is

good for global search; when |
→
A| < 1, α, β, and δ converge to the prey, which contributes

to the local search. The parameter
→
C is generated randomly to help grey wolves jump out

of the local optima.
In Equations (18) and (19),

→
r1 and

→
r2 are randomly generated in [0, 1], and the values

of the parameter
→
a linearly decrease from 2 to 0 over the course of the iterations. During

the process of hunting, the position vectors are updated using the following equations:

→
X1 =

→
Xα −

→
A1 ·

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣ (20)

→
X2 =

→
Xβ −

→
A2 ·

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣ (21)

→
X3 =

→
Xδ −

→
A3 ·

∣∣∣∣→C3 ·
→
Xδ −

→
X
∣∣∣∣ (22)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(23)

In Equations (20)–(23),
→
Xα,

→
Xβ, and

→
Xδ are the position vectors of α, β, and δ, respec-

tively, and
→
X denotes the current position vector that needs to be updated.

4.2. MOGWO/D Algorithm Framework

The proposed MOGWO/D is a hybrid algorithm that integrates GWO into MOEA/D.
Similar to the original MOEA/D, the MOGWO/D algorithm decomposes the input multi-
objective problem into a series of single-objective scalar optimization subproblems by
utilizing a set of uniformly distributed weight vectors and a scalar function. Here, we use
the Tchebycheff method to construct each subproblem; then, subproblem i can be described
as follows [40]:

Minimize gte(x|λi, z∗) = max
1≤j≤m

{
λ

j
i | fi(x)− z∗m|

}
(24)

where z∗i is the i-th component of reference point
(
z∗1, z∗2, · · · , z∗m

)T, z∗i = min{ fi(x)|x ∈ Ω},
i = 1, 2, · · · , m, λi =

(
λ1

i , λ2
i , · · · , λm

i
)T . The purpose is to minimize each single-

objective function gte(xi|λi, z∗), and each subproblem uses the approach of the GWO to
update its position vectors. It is worth noting that finding accurate reference points is
difficult and time-consuming work, so the best objective values z = (z1, z2, · · · , zm)T

method is used in the initial population as the initial reference point, and to update the
reference point over the course of iterations by generations.

As the normalization method for objectives is conducive to increase the uniformness
of the obtained solutions when the input objectives are disparately scaled [40], we used

Symmetry 2021, 13, 1521 10 of 24

a simple normalization method to replace fi and obtained a normalization Tchebycheff
approach, as follows.

Minimize gte(x|λi, z∗) = max
1≤j≤m

{
λ

j
i

∣∣∣∣∣ fi(x)− z∗i
znad

i − z∗i

∣∣∣∣∣
}

(25)

where z∗ is the reference point and znad =
{

znad
1 , znad

2 , · · · , znad
m

}
is the nadir point in the

objective space. In our calculation, z∗ is replaced by z in Step 2.3 of Algorithm 1, and the
maximum value of fi(x) in the current population is the substitute for znad

i . This calculation
strategy can meet the needs of the algorithm.

Algorithm 1 MOGWO/D

Input:
A multiobjective problem;
A stopping criterion;
A set of uniformly spread weight vectors

{
λ1, λ2, · · · , λN};

N : population size (equal to the number of the weight vectors or subproblems);
T : neighborhood size;
T′: the number of position vectors in the neighborhood to be updated of a subproblem (where

T′ < T).
Output:

External population, EP for short.
Step 1) Initialization:

Step 1.1) Set EP = ∅;
Step 1.2) Generate a set of uniformly distributed weight vectors

{
λ1, λ2, · · · , λN}, calculate

the Euclidean distances of any pair of weight vectors, for
∀i = 1, 2, · · · , N, defines a set B(i) = {i1, i2, · · · , iT}, λi1 , λi2 , · · · , λiT are T closest weight
vectors of the weight vecto λi.

Step 1.3) Randomly generate an initial population
{

x1, x2, · · · , xN} or use a problem-specific
approach. The objective of each position vector is calculated and labeled as

FVi, FVi = F
(

xi
)

, i = 1, 2, · · · , N.

Step 1.4) Initialize
z = (z1, z2, · · · , zm)

T , zi = min
{

fi
(

x1), fi
(

x2), · · · , fi
(

xN)}, i = 1, 2, · · ·m.

Step 1.5) Calculate gte
(

xj
∣∣∣λi, z∗

)
for each j ∈ B(i), and the three best position vectors are

labeled as xα, xβ and xδ, respectively corresponding to weight vector λi.
Step 2) Update:

for i = 1, 2, · · · ,N, do
Step 2.1) Randomly select T

′
indexes k1, k2, · · · , kT′ from B(i), then yield a set of new position

vectors xk1
, xk2 , · · · , xkT′

according to the Equations (20)–(23) by the guidance of

xi
αxi

β, and xi
δ, set PS(i) =

{
xk1

, xk2 , · · · , xkT′

}
.

Step 2.2) Update of xi
α, xi

β and xi
δ. Comparing the value of gte

(
x′
∣∣∣λi, z

)
with

gte
(

xi
α

∣∣∣λi, z
)

, gte
(

xi
β

∣∣∣λi, z
)

and gte
(

xi
δ

∣∣∣λi, z
)

, x′ ∈ PS(i), then update xi
α, xi

β and xi
δ with the

three best position vectors of all.

Step 2.3) Update of z. For each j = 1, 2, · · · , m, if f j

(
xi

α

)
< zj, set zj = f j

(
xi

α

)
.

Step 2.4) Update of neighborhood. For each

j ∈ B(i), if
(

xi
α ,

∣∣∣λj, z
)}
≤ gte

(
xj
∣∣∣λj, z

)
, set xj = xi

α , and update of FVj = f
(

xi
α

)
.

Step 2.5) Update of EP. Add f
(

xi
α

)
to EP if no vectors in EP dominate f

(
xi

α

)
; if the number of

vectors exceeds the EP capacity, the kth nearest neighbor method is used as a truncation strategy.

If the vectors in EP are dominated by f
(

xi
α

)
, remove from EP.

Step 3) Stopping criterion:
If the stopping criteria is satisfied, stop running and output EP. Otherwise, return to Step 2.

Symmetry 2021, 13, 1521 11 of 24

Similar to the original MOEA/D, the MOGWO/D algorithm (Algorithm 1) also
optimizes a number of scalar optimization subproblems simultaneously in one iteration,
thus improving the optimization efficiency of the proposed algorithm.

4.3. Generate a Set of Uniform Weight Vectors

In Step 1.2 of Algorithm 1, a simplex-lattice design [53] is adopted to generate a
set of uniformly distributed weight vectors λi =

(
λi

1, λi
2, · · · , λi

m
)
, i ∈ N, and m is the

dimensionality of the objective space. For each λi,
m
∑

j=1
λi

j=1, and λi
j ∈
{

0, 1
H , 2

H , · · · , H
H

}
,

H is a predetermined positive integer determined according to the sizes of the problems, so,
a total of Cm−1

H+m−1 weight vectors are obtained. For each λi, the Euclidean distance to any
weight vector is calculated, defining a set B(i) = {i1, i2, · · · , iT}, in which λi1 , λi2 , · · · , λiT

are the indexes of the T closest weight vectors to λi; then, B(i) is called neighborhood of
λi (including λi itself, as λi is the closest weight vector to itself, of which the Euclidean
distance is 0). At the same time, the response of xi to λi also generates a neighborhood,
and each individual in the neighborhood corresponds to each weight vector determined
by B(i).

4.4. Encoding and Decoding

In the proposed MOGWO/D algorithm, the encoding method is similar to the original
GWO, and the initial population is randomly generated from a uniform distribution. All
position vectors in the initial population are continuous, but the scheduling solutions to the
proposed combinatorial optimization problem are not, so a decoding approach is needed
to convert the continuous position vectors to the scheduling solutions.

In the proposed NPPLS-JP problem, each position vector needs to include two pieces
of information, a job permutation and a production line sequence, and the production line
sequence corresponds to the job permutation. Suppose that there are O orders in a planning
cycle; if the number of jobs in the order o is No, then there are a total of N = ∑O

o=1 No
jobs in this planning cycle, and each position vector in the population is represented
as xi = [xi

1, xi
2, · · · , xi

N , |xi
(N+1), · · · , xi

2N]. For convenience of expression, the first N
position values are marked as Part 1, which corresponds to the job permutation, and the last
N position values are marked as Part 2, which corresponds to the production line sequence.

Part 1 and Part 2 are decoded independently. The decoding methods for Part 1 and
Part 2 are different because the machining operations of the jobs of some types have
machine eligibility constraints. The selection of the production line involves the decoded
information of Part 1, that is, the decoding process of Part 2 depends on the obtained jobs’
permutation. To discretize the continuous position vectors, the ranked-order value (ROV)
rule [54] is used in the decoding processes of Part 1 and Part 2.

For each position value in Part 1 of the position vector, the ROV rule is used to generate
ROVs according to the position values in ascending order. If identical position values exist,
the ROVs increase from left to right, and then the ROV permutation is obtained. Then, the
N1 smallest values are picked and all are assigned a value of V1. V1 is the order number
of order 1, and N1 is the size of order 1; similarly, ROVs (N1 + 1) to N2 are picked and
assigned V2. V2 is the order number of order 2, and N2 is the size of order 2. In the same
way, the job permutation is obtained.

For Part 2, first, as in Part 1, the ROV sequence is obtained according to the position
values in Part 2 in ascending order. The next step is different from Part 1. For each ROV
in Part 2, the same ROV in Part 1 is found, the corresponding order number is obtained,
and then its job type is determined. Then, the job type in the first column of the given line
selection information table is found, and the corresponding number of optional lines in
the second column is obtained. Next, the remainder of the current ROV divided by the
number of available lines is obtained. Finally, the corresponding production line number
in the third column is found according to the calculated remainder, and the production line
number is assigned to the position in Part 2 corresponding to current ROV. In the same

Symmetry 2021, 13, 1521 12 of 24

way, the production line sequence is obtained. This decoding method for Part 2 can prevent
increases in the calculation cost due to invalid solutions caused by the selection of unusable
production lines.

A simple example, as shown in Table 1, is used to demonstrate the decoding rules.
The sizes of the three orders are two, three, and one, and the total number of jobs is 6six.
The detailed decoding process for the example is shown in Figure 3.

Table 1. The data used in the example.

Order No. Number of Jobs Job Type

1 2 3
2 3 1
3 1 2

Symmetry 2021, 13, x FOR PEER REVIEW 13 of 26

A simple example, as shown in Table 1, is used to demonstrate the decoding rules.
The sizes of the three orders are two, three, and one, and the total number of jobs is 6six.
The detailed decoding process for the example is shown in Figure 3.

Table 1. The data used in the example.

Order No. Number of Jobs Job Type
1 2 3
2 3 1
3 1 2

Part 1 Part 2
-3.2 -0.4 3.8 -3.1 0.7 4.63.8 -2.4 2.3 -3.3 -1.9 -0.6

1 3 5 2 4 66 2 5 1 3 4

2 2 2 3 1 13 1 2 1 2 2

Position vector

ROV value

Solution

Jobs permutation Production lines sequence
Figure 3. An example of decoding.

In this example, there are a total of five jobs. Each position value of the position vector
is taken from the uniform distribution U[−6, 6] so that the position vector 𝑥 = [3.8, −2.4,
2.3, −3.3, −1.9, −0.6, −3.2, −0.4, 3.8, −3.1, 0.7, 4.6] can be obtained, where Part 1 is [3.8, −2.4,
2.3, −3.3, −1.9, −0.6], and Part 2 is [−3.2, −0.4, 3.8, −3.1, 0.7, 4.6]. For the decoding process,
the production line selection information used in Part 2 is given in Table 2.

Table 2. The line selection information of the example.

Job Types Available Quantity
Optional Lines

0 1 2
1 2 1 2
2 3 1 2 3
3 3 1 2 3

4.5. Updating the Position Vectors
The Tchebycheff approach is adopted to decompose the input MOP into 𝑁 single-

objective optimization subproblems and to optimize them simultaneously. The
neighborhood of each subproblem is defined based on the distances between their weight
vectors. Adjacent subproblems have similar approximate solutions, so each subproblem
is optimized, and only the information of neighboring subproblems is used. For every
generation, 𝑇 position vectors corresponding to the subproblems are updated, where 𝑇
is a positive integer smaller than the neighborhood size, and these 𝑇 position vectors are
randomly selected from the neighborhood corresponding to the subproblem.

Each selected position vector of each subproblem is updated, and this information is
used in its neighborhood. First, position vectors are updated according to Equations (20)–
(23) through the guidance of the current three best position vectors 𝑥 , 𝑥 , and 𝑥 , and
the position vector set 𝑃𝑆 = 𝑥 ,𝑥 , ⋯ , 𝑥 of the subproblem is obtained. Second,
calculating the 𝑔 value of every position vector in the 𝐺𝑆(𝑖) = 𝑃𝑆 ∪ 𝑥 , 𝑥 , 𝑥
corresponding to 𝜆 . Then, 𝑥 , 𝑥 , and 𝑥 are updated with the best, second best, and
third best position vectors in the GS(i) corresponding to the weight vector 𝜆 , where 𝑥
is the optimal solution to the current subproblem. After that, the reference point is

Figure 3. An example of decoding.

In this example, there are a total of five jobs. Each position value of the position vector
is taken from the uniform distribution U[−6, 6] so that the position vector x = [3.8, −2.4,
2.3, −3.3, −1.9, −0.6, −3.2, −0.4, 3.8, −3.1, 0.7, 4.6] can be obtained, where Part 1 is [3.8,
−2.4, 2.3, −3.3, −1.9, −0.6], and Part 2 is [−3.2, −0.4, 3.8, −3.1, 0.7, 4.6]. For the decoding
process, the production line selection information used in Part 2 is given in Table 2.

Table 2. The line selection information of the example.

Job Types Available
Quantity

Optional Lines

0 1 2

1 2 1 2
2 3 1 2 3
3 3 1 2 3

4.5. Updating the Position Vectors

The Tchebycheff approach is adopted to decompose the input MOP into N single-
objective optimization subproblems and to optimize them simultaneously. The neighbor-
hood of each subproblem is defined based on the distances between their weight vectors.
Adjacent subproblems have similar approximate solutions, so each subproblem is opti-
mized, and only the information of neighboring subproblems is used. For every generation,
T′ position vectors corresponding to the subproblems are updated, where T′ is a positive
integer smaller than the neighborhood size, and these T′ position vectors are randomly
selected from the neighborhood corresponding to the subproblem.

Symmetry 2021, 13, 1521 13 of 24

Each selected position vector of each subproblem is updated, and this information is
used in its neighborhood. First, position vectors are updated according to Equations (20)–
(23) through the guidance of the current three best position vectors xα, xβ, and xδ, and the
position vector set PS = {x1,x2, · · · , xT′} of the subproblem is obtained. Second, calculating
the gte value of every position vector in the GS(i) = PS ∪

{
xα, xβ, xδ

}
corresponding to

λi. Then, xα, xβ, and xδ are updated with the best, second best, and third best position
vectors in the GS(i) corresponding to the weight vector λi, where xα is the optimal solution
to the current subproblem. After that, the reference point is updated by calculating the
objectives with xα; if f j(xα) < zj, then zj = f j(xα). Third, the neighborhood of the current
subproblem is updated with respect to each position vector to the weight vectors of the
neighborhood; for each j ∈ B(i), if gte(xα

∣∣λi, z∗
)
≤ gte(xj

∣∣λj, z∗
)
, xj = xα and FVj = f (xα)

simultaneously. The pseudocode for implementing the update process in one iteration is
shown in Algorithm 2.

Algorithm 2 The update process of one iteration

While(stopping condition is not satisfied){
//Main loop
for(i = 1; i ≤ N; i++)
{//optimize N subproblems simultaneously
idxes = getRandoms(T

′
, B(i));

selectedPop = getIndividuals(neighborhood, idxes);

PS(i)= updateIndividuls
(

selectedPop, xα, xβ, xδ

)
;

sortedPop = sort(PS(i));
xα = sortedPop(0);
xβ = sortedPop(1);
xδ = sortedPop(2);
updateZ(xα); //update the reference point;
updateNeighborhood(xα);
updateEP(xα);

}
}

4.6. Updating the External Population (EP)

After obtaining the best position vector xα of every subproblem in each generation,
the EP needs to be updated. If the condition that F(xα) is not dominated by the individuals
in the EP, F(xα) is added to the EP, and the individuals that are dominated by F(xα)
are removed.

In the search process of the algorithm, excess individuals are added to the EP. Too many
nondominated individuals are not of great significance for solving practical problems, but
they increase the difficulty of the data analysis. Therefore, a special truncation strategy is
used to maximize the retention of nondominated solution characteristics while maintaining
the appropriate EP size. In this strategy, the kth nearest neighbor method [36] is used
here to evaluate the individuals in the EP, and the calculation approach for the kth nearest
neighbor distance is as follows.

D(i) =
1

σk
i + 2

(26)

k =
√
|P|+ |EP| (27)

where D(i) is the inverse function of the Euclidean distance from individual i to its k-th
nearest neighbor, which is used to reflect the density information of the objective space.
σk

i is the kth nearest Euclidean distance of individual i, where the value of k is calculated
using Equation (27), and |P| and |EP| are the population size and external population size,
respectively. The smaller the D(i) value is, the more scattered the solutions are.

Symmetry 2021, 13, 1521 14 of 24

5. Computational Experiments and Results Analysis

NPPLS-JP is a novel multiline scheduling problem derived from a real-world man-
ufacturing workshop; it is an extension of regular flow shop scheduling problems that
has no related research. Therefore, there are no benchmarks available for the proposed
MOGWO/D algorithm. In this section, test experiments are designed to assess the perfor-
mance of the proposed MOGWO/D algorithm by comparing the results obtained on the
proposed NPPLS-JP problem with those of three other famous multi-objective optimization
algorithms, i.e., NSGA-II [37], MOGWO [55], and MOPSO [56], in terms of three metrics.
The results illustrate the effectiveness of the proposed MOGWO/D algorithm.

5.1. Evaluation Metrics

Different from single objective optimization problems, MOPs involve the simultaneous
optimization of multiple conflicting objectives. An improvement of one objective results in
the deterioration of another objective, so MOP algorithms usually obtain a set of tradeoff
solutions in terms of the desired objectives, namely, nondominated solutions. There is
no absolute optimum among these solutions, and fitness functions cannot evaluate their
effectiveness, so a set of metrics is needed to evaluate the performance of multi-objective
algorithms for solving MOPs. If the obtained Pareto front is closer to the Pareto optimal
front, covering the extreme regions as much as possible, and the nondominated solutions
are uniformly distributed in the obtained Pareto front, this means that the obtained results
have better convergence and distribution effects. In this paper, the following three metrics
are used:

(1) Generational distance (GD) [57]. The GD is the most common multi-objective indicator
for convergence. It is used to calculate the mean Euclidean distance between the
obtained Pareto front and the Pareto optimal front. The calculation formula for the
GD is as follows.

GD =

√
∑
|OF|
i=1 d2

i

|OF| (28)

where di is the Euclidean distance from point i of the obtained Pareto front to the
closest point in the Pareto optimal front, and |OF| is the number of nondominated
solutions in the obtained Pareto front; therefore, GD denotes the mean value of the
closest distance from each point in the obtained Pareto front to the Pareto optimal
front. A smaller GD value indicates that the obtained Pareto front is closer to the
Pareto optimal front; namely, the obtained Pareto front has good convergence. When
GD equals zero, the obtained Pareto front is located at the Pareto optimal front.

(2) Inversed generational distance (IGD) [58]. This metric is a variant of the GD and is a
comprehensive performance indicator. This metric represents the mean Euclidean
distance from the points in the Pareto optimal front to the obtained Pareto front. The
formulation of the IGD is as follows.

IGD =

√
∑
|PF|
i=1 D2

i

|PF| (29)

where |PF| denotes the number of points in the Pareto optimal front and Di is the
Euclidean distance from point i in the Pareto optimal front to the closest point in the
obtained Pareto front. A smaller IGD value indicates better convergence and diversity
for the obtained Pareto front. In our experiments, the nondominated solutions ob-
tained from all independent runs of the four algorithms on each instance are regarded
as the Pareto optimal front of that instance.

Symmetry 2021, 13, 1521 15 of 24

(3) Spread (∆) [37]. ∆ is the diversity metric of the multi-objective optimization that can
measure the distribution and spread of solutions. ∆ is calculated as follows.

4 =
∑m

j=1 de
j + ∑n

i=1

∣∣∣di − d
∣∣∣

∑m
j=1 de

j + nd
(30)

where m is the number of objectives and n is the number of solutions in the obtained
Pareto front. de

j is the minimum Euclidean distance from the nondominated solutions
in the obtained Pareto front to the extreme point j of the Pareto optimal front, and di is
the Euclidean distance of the closest pairwise points in the obtained Pareto front, and
d is the average value of di. A smaller value of ∆ represents a better distribution and
increased diversity. The calculation of ∆ is simple and does not require knowledge
of the whole Pareto optimal front, it uses only the extreme objectives of the Pareto
optimal front.

5.2. Instance Generation

In the ideal situation, the proposed MOGWO/D algorithm is suitable for all kinds of
problems that meet the model definition of NPPLS-JP with different numbers of parallel
production lines and jobs, different mixing ratios of job types, and different configurations
of production lines. Here, by combining the production system and customers’ demand
data to generate a set of instances, the performance of the proposed MOGWO/D algorithm
is tested. Therefore, we evaluated the effectiveness of the proposed algorithm in different
production scenarios by varying the order quantity and order capacity. In the experiment
in this section, we only considered the case with two parallel production lines, and gave
three production scenarios with different configurations, four different numbers of orders,
and three different order capacities; thus, a tally of 3 × 4 × 3 = 36 instances were generated
by the combination of the three factors.

The three production scenarios are shown in Figure 4a–c, each with two nonidentical
parallel production lines, and each production line consisting of five stages corresponding
to five operations of eight types of jobs. The three production scenarios consist of two
general flow lines, a general flow production line and a hybrid flow production line, and
two hybrid flow lines. The machines of each production scenario are taken from Table 3.
Notably, the machine configuration for the first line in Scenario (b) is the same as that of the
first line in Scenario (a), and the machines configuration for the second line in Scenario (c) is
the same as that of the second line in Scenario (b). All of the parallel machines are identical
parallel machines in each line of any production scenario. Table 3 also gives the processing
time of each operation of the eight types of jobs on each machine. “_” indicates that jobs of
the current type cannot be processed on the corresponding machines. Therefore, if the next
operation of a job cannot be processed on the current line, the jumping process operation
will occur. The production line selection information for decoding is shown in Table 4.

Table 3. The optional machines and the processing times for each type of job.

Job
Types

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20

1 41 41 30 30 39 39 34 34 42 42 31 31 − − 26 26 49 49 23 23
2 40 40 31 31 42 42 34 34 40 40 32 32 − − 23 23 50 50 23 23
3 40 40 32 32 38 38 32 32 41 41 32 32 47 47 26 26 52 52 24 24
4 39 39 32 32 41 41 32 32 39 39 29 29 48 48 26 26 52 52 24 24
5 42 42 34 34 40 40 34 34 39 39 30 30 − − 24 24 51 51 24 24
6 40 40 35 35 39 39 31 31 42 42 31 31 − − 23 23 46 46 22 22
7 39 39 32 32 40 40 32 32 40 40 33 33 54 54 24 24 54 54 24 24
8 43 43 31 31 42 42 31 31 43 43 34 34 57 57 26 26 56 56 26 26

Symmetry 2021, 13, 1521 16 of 24

Table 4. Production line selection information for the experiments.

Type Available
Quantity

Optional Lines

0 1 2

1 2 2 3 -
2 2 2 3 -
3 3 1 2 3
4 3 1 2 3
5 3 2 3 -
6 3 2 3 -
7 3 1 2 3
8 3 1 2 3

Symmetry 2021, 13, x FOR PEER REVIEW 17 of 26

Table 3. The optional machines and the processing times for each type of job.

Job

Types

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 𝑴𝟓 𝑴𝟔 𝑴𝟕 𝑴𝟖 𝑴𝟗 𝑴𝟏𝟎 𝑴𝟏𝟏 𝑴𝟏𝟐 𝑴𝟏𝟑 𝑴𝟏𝟒 𝑴𝟏𝟓 𝑴𝟏𝟔 𝑴𝟏𝟕 𝑴𝟏𝟖 𝑴𝟏𝟗 𝑴𝟐𝟎

1 41 41 30 30 39 39 34 34 42 42 31 31 − − 26 26 49 49 23 23

2 40 40 31 31 42 42 34 34 40 40 32 32 − − 23 23 50 50 23 23

3 40 40 32 32 38 38 32 32 41 41 32 32 47 47 26 26 52 52 24 24

4 39 39 32 32 41 41 32 32 39 39 29 29 48 48 26 26 52 52 24 24

5 42 42 34 34 40 40 34 34 39 39 30 30 − − 24 24 51 51 24 24

6 40 40 35 35 39 39 31 31 42 42 31 31 − − 23 23 46 46 22 22

7 39 39 32 32 40 40 32 32 40 40 33 33 54 54 24 24 54 54 24 24

8 43 43 31 31 42 42 31 31 43 43 34 34 57 57 26 26 56 56 26 26

Table 4. Production line selection information for the experiments.

Type Available Quantity
Optional Lines

0 1 2
1 2 2 3 -
2 2 2 3 -
3 3 1 2 3
4 3 1 2 3
5 3 2 3 -
6 3 2 3 -
7 3 1 2 3
8 3 1 2 3

M3

(a)

M5

M7

M13 M17M9

M11 M15 M19

M1

M3

(b)

M5 M13 M17M9M1

M4

M7

M8

M11

M12

M15

M16

M19

M20

M3

(c)

M4

M7

M8

M11

M12

M15

M16

M19

M20

M1

M2

M5

M6

M9

M10

M13

M14

M17

M18

Line 1

Line 2

Line 1

Line 2

Line 1

Line 2

Figure 4. The three different production scenarios. (a) Scenario 1; (b) Scenario 2; (c) Scenario 3. Figure 4. The three different production scenarios. (a) Scenario 1; (b) Scenario 2; (c) Scenario 3.

The number of orders O = {2, 4, 6, 8} and the capacity of order o is No, where
No = {10, 20, 30}. As the jobs in each order are of the same type, O represents not only
the number of orders, but also the number of job types in the production cycle, and both O
and No determine the total number of jobs. Each instance is denoted in the form “x_y_z”,
where x represents the production scenario taken from the three scenarios described earlier
in Figure 4a–c, y is the total number of orders (corresponding to the first y types in Table 1),
and z is the number of jobs in each order. For example, 1_4_10 represents the instance in
scenario 1 that includes four orders, and there are 10 jobs in each order.

For each order in the instances, the trapezoidal fuzzy number for the trapezoidal fuzzy
due date is generated as follows. First, a uniform distribution U

[
0.8× NJ , 3× NJ

]
is given,

where NJ = No ×
S
∑

s=1
pts, No is the number of jobs in order o, S is the number of operations

in the job, and pts is the maximum processing time for each job operation in order o at any
available machine, as shown in Table 3. Then, four integers are randomly taken from the
uniform distribution U

[
0.8× NJ , 3× NJ

]
. The last four time points are sorted in ascending

Symmetry 2021, 13, 1521 17 of 24

order, as required for the trapezoidal fuzzy due date. The earliness/tardiness penalty
coefficients of all orders are set to 5 and 15, respectively.

There are 36 instances to be tested using the proposed MOGWO/D algorithm and
the three compared algorithms. For experimentation, the four algorithms are all coded
in Java, and all instances are run on an HP Pavilion m4 notebook PC with a Windows 10
Professional 64-bit operating System, 8 GB of RAM, and an Intel Core i5 CPU at 2.60 GHz.

5.3. Parameter Settings

From the 36 instances generated above, we can see that the jobs in each instance have
eight different scales: 20, 40, 60, 80, 120, 160, 180, and 240. For instances with different job
sizes, different population sizes and numbers of iterations should be set so as to obtain
the best optimization performance for the algorithms; thus, four different population
sizes are given in Table 5. For fairness, MOGWO and MOPSO used the same encoding
and decoding method as the proposed MOGWO/D algorithm. Because of the different
mechanisms, the encoding and decoding methods of NSGA-II are slightly different. In the
NSGA-II algorithm, Part 1 and Part 2 use a permutation encoding scheme [59] to obtain
independent encodings, both of which are natural number permutations. The decoding
scheme is similar to that of the proposed MOGWO/D algorithm; the only difference is that
the individuals in the population are discrete, and these discrete values are natural number
permutations. They can be regarded as ROVs, and then decoded according to the decoding
rules in Section 4. Unlike the other three algorithms, the encodings in NSGA-II do not need
to be discretized first.

Table 5. The parameter settings for the four algorithms.

MOGWO/D NSGA-II MOGWO MOPSO

Population size (N): 60
and iterations: 300

(20 and 40 jobs)

Population size (N): 60
and iterations: 300

(20 and 40 jobs)

Population size (N): 60
and iterations: 300

(20 and 40 jobs)

Population size (N): 60
and iterations: 300

(20 and 40 jobs)

Population size (N): 100
and iterations: 500

(60 and 80 jobs)

Population size (N): 100
and iterations: 500

(60 and 80 jobs)

Population size (N): 100
and iterations: 500

(60 and 80 jobs)

Population size (N): 100
and iterations: 500

(60 and 80 jobs)

Population size (N): 240
and iterations: 800
(120 and 160 jobs)

Population size (N): 240
and iterations: 800
(120 and 160 jobs)

Population size (N): 240
and iterations: 800
(120 and 160 jobs)

Population size (N): 240
and iterations: 800
(120 and 160 jobs)

Population size (N): 300
and iterations: 1000
(180 and 240 jobs)

Population size (N): 300
and iterations: 1000
(180 and 240 jobs)

Population size(N): 300
and iterations: 1000
(180 and 240 jobs)

Population size (N): 300
and iterations: 1000
(180 and 240 jobs)

The external population size:
N Crossover rate: 0.9 The external population size:

N The external archive size: N

The neighborhood size: 20 (for
all instances) Mutation rate: 0.1 The inertia weight wo = 0.4

T′ = 6 (for all instances) The acceleration coefficients
c1 = c2 = 2.0

In addition, in NSGA-II, a binary tournament is used to as a selection operator for
Part 1 and Part 2, the partial mapped crossover (PMX) and swap operation are used as
the crossover operator of the two parts, and the insert operation is used as the mutation
operator of both parts. The other parameter settings of the four algorithms are also shown
in Table 5.

Each instance is run 30 times independently for the proposed MOGWO/D algorithm
and the other three comparison algorithms.

Symmetry 2021, 13, 1521 18 of 24

5.4. Experimental Results Analysis

Table 6 presents the means and standard deviations of the three metrics for the
MOGWO/D algorithm—NSGA-II, MOGWO, and MOPSO. By comparing the GD, IGD,
and Spread values of the four multi-objective algorithms, it can be seen in Table 6 that
the proposed MOGWO/D algorithm has better results in the vast majority of instances.
Specifically, with regard to the convergence metric GD, the MOGWO/D algorithm achieves
the best results for 33 instances; it is inferior to MOGWO on the “2_8_10” and “2_8_20”
instances and inferior to MOPSO on “3_4_30”, but the differences are very small. For the
spread metric, MOGWO/D algorithm achieves the optimal scheme in 34 instances; it is
only inferior to MOGWO on “2_8_10” and inferior to NSGA-II on “3_4_30”, but still better
than MOPSO. Regarding the comprehensive metric IGD, 34 instances obtained the best
metrics values with the MOGWO/D algorithm, only instance “2_ 8_10” was slightly better
when using MOGWO, and NSGA-II is superior to MOGWO/D algorithm on “3_4_30”.
Furthermore, the standard deviations achieved for the three metrics for these instances by
the MOGWO/D algorithm were better than those of the other three comparison algorithms
in the vast majority of instances.

Table 6. Means and deviations of the three metrics obtained by MOGWO/D, NSGA-II, MOGWO, and MOPSO.

Problems
MOGWO/D NSGA-II MOGWO MOPSO

GD IGD ∆ GD IGD ∆ GD IGD ∆ GD IGD ∆

1_2_10
3.11E-2 3.93E-3 2.62E-1 7.52E-2 1.20E-2 7.96E-1 6.52E-2 1.02E-2 7.56E-1 8.50E-2 1.33E-2 7.70E-1
6.73E-3 8.93E-4 4.68E-2 8.07E-3 1.62E-3 8.51E-2 7.80E-3 2.01E-3 /6.50E- 1.06E-2 1.67E-3 7.80E-2

1_4_10
1.38E-2 4.36E-3 3.57E-1 3.32E-2 1.47E-2 8.15E-1 2.86E-2 1.18E-2 8.62E-1 3.82E-2 1.69E-2 7.71E-1
5.11E-3 1.03E-3 6.08E-2 1.05E-2 3.66E-3 1.00E-1 9.12E-3 3.19E-3 9.77E-2 1.32E-2 3.93E-3 7.77E-2

1_6_10
7.45E-3 2.09E-3 6.24E-1 5.82E-2 8.47E-3 7.61E-1 2.96E-2 4.17E-3 7.50E-1 8.15E-2 1.08E-2 6.43E-1
9.70E-3 6.04E-4 6.19E-2 6.83E-2 1.19E-2 5.64E-1 3.16E-2 3.61E-3 5.55E-1 1.29E-1 1.68E-2 5.35E-1

1_8_10
1.70E-3 1.05E-3 3.90E-1 8.44E-3 4.70E-3 8.74E-1 4.62E-3 2.88E-3 8.31E-1 1.27E-2 6.14E-3 6.97E-1
8.40E-4 4.09E-4 2.95E-2 3.99E-3 3.14E-3 2.23E-1 1.72E-3 1.26E-3 5.83E-2 1.06E-2 5.77E-3 4.15E-1

1_2_20
2.36E-2 1.74E-2 3.81E-1 3.46E-2 4.84E-2 1.01E + 00 3.94E-2 4.60E-2 1.02E + 00 2.54E-2 5.02E-2 9.70E-1
3.96E-2 8.09E-3 1.95E-1 4.16E-2 5.90E-3 7.97E-2 4.96E-2 9.25E-3 1.44E-1 2.30E-2 3.68E-3 4.40E-2

1_4_20
1.12E-2 4.20E-3 3.64E-1 2.20E-2 1.02E-2 7.68E-1 2.00E-2 9.37E-3 7.80E-1 2.48E-2 1.11E-2 7.60E-1
5.60E-3 2.48E-3 4.85E-2 8.89E-3 4.67E-3 4.50E-2 8.78E-3 4.78E-3 5.88E-2 1.04E-2 4.81E-3 8.10E-2

1_6_20
3.49E-2 1.94E-2 4.68E-1 3.59E + 01 4.37E-2 9.65E-1 3.83E + 01 4.08E-2 9.36E-1 3.74E + 01 4.69E-2 9.96E-1
1.56E-2 4.78E-3 7.30E-2 1.32E + 02 1.05E-2 1.97E-1 1.43E + 02 1.04E-2 2.23E-1 1.27E + 02 1.32E-2 2.16E-1

1_8_20
3.02E + 01 3.22E-3 5.40E-1 8.49E + 01 7.62E-3 8.48E-1 7.42E + 01 7.19E-3 9.86E-1 9.41E + 01 9.05E-3 7.21E-1
6.97E + 01 2.23E-3 9.90E-2 1.69E + 02 6.33E-3 5.76E-1 1.67E + 02 5.32E-3 4.56E-1 1.69E + 02 7.71E-3 6.13E-1

1_2_30
4.34E-2 5.87E-3 1.93E-1 1.51E-1 1.69E-2 7.50E-1 1.16E-1 1.45E-2 7.12E-1 1.77E-1 1.89E-2 7.55E-1
2.94E-2 1.03E-3 7.06E-2 3.79E-2 3.32E-3 1.02E-1 3.69E-2 2.81E-3 9.66E-2 3.80E-2 3.85E-3 1.00E-1

1_4_30
3.26E-2 1.08E-2 3.92E-1 5.55E-2 2.68E-2 8.50E-1 5.43E-2 2.41E-2 8.14E-1 5.57E-2 2.82E-2 8.27E-1
1.98E-2 7.54E-3 5.74E-2 2.93E-2 1.55E-2 6.21E-2 3.06E-2 1.54E-2 7.18E-2 2.82E-2 1.54E-2 6.66E-2

1_6_30
4.64E + 01 1.60E-1 4.35E-1 6.90E + 01 3.61E-1 8.93E-1 5.37E + 01 3.44E-1 8.81E-1 1.23E + 02 3.75E-1 9.42E-1
2.02E + 02 9.72E-2 6.76E-2 3.00E + 02 2.10E-1 1.23E-1 2.33E + 02 2.10E-1 1.44E-1 4.29E + 02 2.12E-1 1.51E-1

1_8_30
1.76E + 02 3.22E + 00 6.02E-1 3.62E + 02 1.07E + 01 1.28E + 00 2.77E + 02 8.59E + 00 1.29E + 00 3.94E + 02 1.50E + 01 1.27E + 00
1.35E + 02 4.78E + 00 7.64E-2 1.71E + 02 1.10E + 01 6.85E-2 1.74E + 02 1.05E + 01 1.12E-1 1.84E + 02 1.06E + 01 5.52E-2

2_2_10
1.69E-3 1.05E-3 3.76E-1 6.66E-3 5.14E-3 1.02E + 00 4.83E-3 3.34E-3 8.82E-1 9.05E-3 7.88E-3 1.14E + 00
3.88E-4 1.91E-4 3.07E-2 9.63E-4 8.87E-4 8.09E-2 8.66E-4 4.83E-4 7.77E-2 1.57E-3 2.14E-3 6.75E-2

2_4_10
7.71E-3 9.17E-4 4.50E-1 3.38E-2 5.39E-3 8.93E-1 2.75E-2 3.31E-3 9.12E-1 4.15E-2 7.50E-3 9.21E-1
5.79E-3 4.21E-4 5.34E-2 2.28E-2 2.90E-3 9.24E-2 1.53E-2 6.50E-4 9.76E-2 3.02E-2 5.06E-3 8.74E-2

2_6_10
1.60E-1 3.14E-2 5.50E-1 2.21E-1 6.49E-2 8.99E-1 2.05E-1 5.64E-2 8.87E-1 2.37E-1 7.13E-2 9.23E-1
1.30E-1 5.50E-3 1.04E-1 1.05E-1 9.55E-3 1.09E-1 1.18E-1 8.56E-3 9.91E-2 1.04E-1 9.18E-3 1.13E-1

2_8_10
1.04E-3 3.60E-3 6.16E-1 1.03E-3 1.04E-3 5.81E-2 1.37E-4 3.20E-4 5.46E-2 7.52E-4 2.21E-3 4.89E-2
2.20E-4 1.69E-3 5.64E-2 4.49E-3 4.53E-3 2.53E-1 5.96E-4 1.40E-3 2.38E-1 3.28E-3 9.64E-3 2.13E-1

2_2_20
1.26E-3 7.85E-4 3.51E-1 2.74E-2 1.50E-2 1.11E + 00 9.37E-3 3.80E-3 9.47E-1 3.72E-2 2.48E-2 1.28E + 00
4.72E-4 1.52E-4 2.68E-2 2.04E-2 7.67E-3 1.18E-1 4.89E-3 5.08E-4 9.58E-2 2.59E-2 8.00E-3 2.26E-1

2_4_20
6.34E-3 2.90E-3 4.98E-1 2.15E-2 9.74E-3 1.05E + 00 1.55E-2 6.88E-3 1.03E + 00 2.68E-2 9.90E-3 9.77E-1
4.19E-3 1.71E-3 5.70E-2 1.48E-2 6.84E-3 1.52E-1 7.67E-3 2.89E-3 1.40E-1 1.37E-2 6.18E-3 2.52E-1

2_6_20
1.67E-2 8.88E-3 5.86E-1 2.19E-2 1.60E-2 9.59E-1 1.86E-2 1.45E-2 9.07E-1 2.81E-2 1.85E-2 9.74E-1
6.75E-3 3.72E-3 4.58E-2 7.23E-3 5.75E-3 5.46E-2 5.82E-3 5.77E-3 6.54E-2 9.63E-3 6.00E-3 7.60E-2

2_8_20
1.89E-2 1.88E-2 6.05E-1 2.26E-2 3.12E-2 9.34E-1 2.16E-2 2.95E-2 9.08E-1 2.56E-2 3.28E-2 9.84E-1
9.36E-3 9.15E-3 6.20E-2 9.38E-3 1.41E-2 8.92E-2 8.77E-3 1.38E-2 9.37E-2 1.17E-2 1.43E-2 1.13E-1

2_2_30
1.07E-3 9.50E-4 4.10E-1 8.16E-3 9.67E-3 1.12E + 00 5.01E-3 5.72E-3 9.80E-1 1.22E-2 1.46E-2 1.24E + 00
5.40E-4 4.77E-4 4.66E-2 4.11E-3 8.56E-3 2.01E-1 3.22E-3 5.86E-3 1.80E-1 4.87E-3 8.92E-3 1.63E-1

2_4_30
1.75E-2 1.65E-2 4.80E-1 2.22E-2 2.91E-2 8.30E-1 2.08E-2 2.78E-2 8.44E-1 2.35E-2 3.04E-2 8.43E-1
1.63E-2 9.82E-3 6.57E-2 1.55E-2 2.00E-2 2.98E-1 1.47E-2 1.97E-2 3.17E-1 1.63E-2 2.03E-2 3.02E-1

2_6_30
9.06E-3 5.89E-3 6.22E-1 1.24E-2 9.63E-3 9.98E-1 1.10E-2 9.27E-3 9.70E-1 1.39E-2 9.81E-3 1.01E + 00
6.63E-3 3.02E-3 7.22E-2 7.18E-3 4.56E-3 8.25E-2 7.36E-3 4.69E-3 8.23E-2 7.24E-3 4.29E-3 8.61E-2

2_8_30
1.40E-2 2.55E-2 6.39E-1 1.54E-2 4.10E-2 1.00E + 00 1.55E-2 4.00E-2 1.03E + 00 1.62E-2 4.18E-2 1.02E + 00
5.97E-3 9.17E-3 4.74E-2 5.50E-3 1.45E-2 7.58E-2 5.57E-3 1.45E-2 7.57E-2 5.85E-3 1.47E-2 6.46E-2

Symmetry 2021, 13, 1521 19 of 24

Table 6. Cont.

Problems
MOGWO/D NSGA-II MOGWO MOPSO

GD IGD ∆ GD IGD ∆ GD IGD ∆ GD IGD ∆

3_2_10
3.81E-3 2.44E-3 2.93E-1 7.36E-3 7.38E-3 6.54E-1 6.53E-3 6.16E-3 6.26E-1 8.96E-3 8.81E-3 6.70E-1
5.73E-4 1.96E-4 3.01E-2 6.19E-4 7.85E-4 6.62E-2 6.45E-4 4.02E-4 4.89E-2 9.92E-4 1.10E-3 4.24E-2

3_4_10
1.75E-3 4.21E-3 6.30E-1 1.80E-2 3.63E-2 1.03E + 00 1.48E-2 2.00E-2 1.13E + 00 1.68E-2 4.94E-2 1.01E + 00
1.65E-3 9.72E-4 5.37E-2 1.96E-2 1.55E-2 1.44E-1 1.58E-2 1.23E-2 1.05E-1 1.66E-2 4.51E-3 6.04E-2

3_6_10
3.05E-3 2.02E-3 5.03E-1 3.45E-2 1.69E-2 9.37E-1 1.35E-2 8.79E-3 1.01E + 00 4.13E-2 1.33E-2 6.96E-1
2.82E-3 1.20E-3 7.36E-2 2.52E-2 1.63E-2 3.19E-1 8.74E-3 5.07E-3 2.55E-1 4.68E-2 1.35E-2 4.67E-1

3_8_10
8.48E-4 8.06E-4 4.09E-1 2.30E-2 1.55E-2 1.09E + 00 4.49E-3 3.82E-3 1.01E + 00 3.23E-2 1.80E-2 8.86E-1
4.96E-4 4.08E-4 3.25E-2 1.70E-2 1.20E-2 2.93E-1 2.69E-3 2.88E-3 1.40E-1 3.31E-2 1.52E-2 5.31E-1

3_2_20
3.22E-3 9.19E-4 3.59E-1 2.72E-2 1.32E-2 1.14E + 00 1.40E-2 4.41E-3 9.26E-1 3.86E-2 2.67E-2 1.29E + 00
1.27E-3 1.41E-4 3.27E-2 8.04E-3 4.61E-3 9.75E-2 4.02E-3 1.22E-3 9.68E-2 1.02E-2 4.68E-3 1.31E-1

3_4_20
4.37E-3 9.39E-4 3.66E-1 1.32E-2 3.46E-3 8.24E-1 9.38E-3 2.58E-3 8.42E-1 1.89E-2 4.74E-3 8.89E-1
2.73E-3 1.84E-4 7.22E-2 6.55E-3 6.67E-4 1.14E-1 5.05E-3 4.39E-4 1.11E-1 9.37E-3 8.16E-4 1.16E-1

3_6_20
6.68E-3 3.27E-3 5.18E-1 1.88E-2 9.60E-3 1.07E + 00 1.47E-2 8.03E-3 1.05E + 00 2.63E-2 1.29E-2 1.08E + 00
4.66E-3 1.89E-3 4.42E-2 9.13E-3 4.32E-3 1.18E-1 7.62E-3 3.77E-3 7.74E-2 1.91E-2 5.64E-3 1.27E-1

3_8_20
2.79E-3 1.74E-3 4.18E-1 9.66E-3 6.78E-3 9.36E-1 8.24E-3 5.52E-3 9.39E-1 1.63E-2 1.28E-2 1.01E + 00
2.21E-3 1.28E-3 4.86E-2 4.76E-3 4.90E-3 2.91E-1 5.74E-3 6.58E-3 1.19E-1 1.59E-2 1.33E-2 2.97E-1

3_2_30
3.92E-3 3.23E-3 2.34E-1 1.19E-2 1.08E-2 5.27E-1 1.00E-2 8.67E-3 5.25E-1 1.39E-2 1.34E-2 5.42E-1
1.48E-3 3.54E-4 4.10E-2 5.13E-3 7.11E-4 1.04E-1 6.26E-3 6.82E-4 1.67E-1 3.99E-3 8.41E-4 1.09E-1

3_4_30
3.24E-2 1.14E-2 1.30E-1 3.05E-3 2.14E-3 1.31E-1 4.24E-3 4.28E-3 1.79E-1 2.39E-3 3.05E-3 1.49E-1
8.88E-3 2.88E-3 6.68E-2 9.15E-3 6.46E-3 3.94E-1 9.13E-3 9.65E-3 4.35E-1 9.50E-3 9.34E-3 4.47E-1

3_6_30
8.38E-3 1.36E-2 5.02E-1 1.76E-2 1.76E-2 4.33E-1 3.87E-2 3.30E-2 7.28E-1 2.12E-2 2.43E-2 4.22E-1
3.06E-3 5.69E-3 5.45E-2 3.95E-2 3.05E-2 5.44E-1 6.29E-2 3.14E-2 4.95E-1 4.61E-2 3.89E-2 5.25E-1

3_8_30
1.76E-2 1.20E-2 4.68E-1 3.21E-2 2.64E-2 1.02E + 00 2.79E-2 2.50E-2 1.04E + 00 4.39E-2 2.84E-2 1.02E + 00
9.12E-3 4.95E-3 5.92E-2 1.45E-2 1.03E-2 1.18E-1 1.23E-2 9.90E-3 1.10E-1 3.48E-2 1.08E-2 1.38E-1

Statistics 33/30 34/34 35/33 0/1 1/0 0/1 2/3 1/1 1/0 1/2 0/1 0/2

It is clear that the MOGWO/D algorithm has a better optimization performance for
solving NPPLS-JP problems, and meets the needs to solve such problems. This may be
because of the better balance of the MOGWO/D algorithm between exploitation and
exploration, as well as the strategy in which the three best solutions xα, xβ, and xδ can
be obtained from different levels of the grey wolves’ social hierarchy. The experimental
results show that the proposed algorithm is superior to other multi-objective optimization
algorithms in solving the NPPLS-JP problem.

To observe the experimental results more intuitively, Figure 5a–j gives the convergence
curve of each instance in the instance set, for which the order capacity is 20, and each
curve is the best running result according to the comprehensive performance metric IGD
over 30 independent runs for the proposed MOGWO/D algorithm and the three other
comparison algorithms. It can be seen clearly that the convergence curves of the proposed
algorithm are better than those of the comparison algorithms through these curve graphs.
Among them, only on instances “3_2_20” and “3_8_20” is the proposed algorithm similar
to the comparison algorithms, and the other instances all yield much better convergence
curves than those of the comparison algorithms, which proves the effectiveness of the
proposed MOGWO/D algorithm in solving the NPPLS-JP problem.

The NPPLS-JP problem proposed in this paper comes from the actual demand of
an axle housing machining workshop. This scheduling demand exists widely in a multi-
variety mixed production environment, so the proposed model and method are of great
significance for production practice. This research has a substantive impact on improving
the production efficiency of the workshop, and can significantly enhance the production
management level of enterprises, so as to increase the market competitiveness.

Symmetry 2021, 13, 1521 20 of 24
Symmetry 2021, 13, x FOR PEER REVIEW 22 of 26

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 5. The convergence curves for the instance set with z = 20. (a) 1_2_20; (b) 1_4_20; (c) 1_6_20; (d) 1_8_20; (e) 2_2_20;
(f) 2_4_20; (g) 2_6_20; (h) 2_8_20; (i) 3_2_20; (j) 3_4_20; (k) 3_6_20; (l) 3_8_20.

The NPPLS-JP problem proposed in this paper comes from the actual demand of an
axle housing machining workshop. This scheduling demand exists widely in a
multivariety mixed production environment, so the proposed model and method are of
great significance for production practice. This research has a substantive impact on
improving the production efficiency of the workshop, and can significantly enhance the
production management level of enterprises, so as to increase the market competitiveness.

6. Conclusions
In this paper, a multi-objective NPPLS-JP derived from the real-life axle housing

machining workshop of an axle manufacturer is studied. In the established NPPLS-JP

Figure 5. The convergence curves for the instance set with z = 20. (a) 1_2_20; (b) 1_4_20; (c) 1_6_20; (d) 1_8_20; (e) 2_2_20;
(f) 2_4_20; (g) 2_6_20; (h) 2_8_20; (i) 3_2_20; (j) 3_4_20; (k) 3_6_20; (l) 3_8_20.

6. Conclusions

In this paper, a multi-objective NPPLS-JP derived from the real-life axle housing ma-
chining workshop of an axle manufacturer is studied. In the established NPPLS-JP model,
the structures of all parallel lines are symmetrical. However, because of the demands

Symmetry 2021, 13, 1521 21 of 24

of multivariety mixed production, the process capabilities and production capacities of
these parallel production lines are asymmetric, and some types of job operations must
be processed on the specific lines. This situation greatly affects the production efficiency
of the production system and increases the difficulty of scheduling. To make multivari-
ety mixed production more efficient and to maximize the utilization of the production
capacity, a jumping process operation is introduced into the proposed model, which is the
largest difference relative to the other general parallel production line scheduling prob-
lems. In the NPPLS-JP model, the multiline scheduling, multivariety mixed production,
machine eligibility constraints, and MOPs are involved, so it is an NP-hard scheduling
problem. In view of this model, we propose a hybrid multi-objective optimization algo-
rithm that incorporates the single-objective GWO into the MOEA/D. The basic idea is to
compensate for the shortcomings of the original algorithms by the reasonable mixing of
several algorithms to balance their exploration and exploitation of abilities. To verify the
effectiveness of the proposed algorithm, a set of instances is designed, and comparative
experiments are conducted using the MOGWO/D algorithm as well as three other famous
multi-objective optimization algorithms. The experimental results demonstrate that the
proposed algorithm is superior to the compared algorithms for solving the NPPLS-JP
problem. Furthermore, the experiment also proves that algorithm mixing can improve the
performance and expand the application field of the constitutive algorithms.

In future research, we could solve the NPPLS-JP problem under the condition of
considering the sequence-dependent setup times, or we could design new metaheuristics
to solve the NPPLS-JP problem. Another interesting research direction is to explore new
problem-specific rules to improve the performance of the MOGWO/D algorithm in terms
of solving the NPPLS-JP. We can also focus on utilizing the MOGWO/D algorithm to solve
other workshop scheduling problems, such as job shop scheduling problems and regular
flow shop scheduling problems.

Author Contributions: Conceptualization, L.Y.; Formal analysis, G.X. and J.M.; Investigation, G.X.
and J.L.; Methodology, G.X., L.Y. and J.M.; Project administration, Z.G.; Resources, L.Y.; Software, G.X.
and J.L.; Writing—original draft, G.X. and L.Y.; Writing—review & editing, L.Y. and J.M.; funding
acquisition, L.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Youth Program of National Natural Science Founda-
tion of China (Grant No. 51905196) and the National Key R&D Program of China (Grant No.
2018YFB1702700).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no competing interest.

Abbreviations
The mathematical modeling notations are listed as follows.
o the index of orders, o = (1, 2, · · · , O)
O the number of orders
No the number of jobs in order o

NJ the total number of jobs, N′ =
o
∑

o=1
no

J a set of jobs, J =
{

1, 2, · · · , NJ
}

i, i′ the index of jobs, i, i′ ∈ J
NL the total number of production lines
L a set of production lines, L = {1, 2, · · · , NL}
l, l′ the index of production lines, l, l′ ∈ L

Symmetry 2021, 13, 1521 22 of 24

NS the number of operations, which is equals to the number of stages
S a set of operations, S = {1, 2, · · · , NS}
s the index of operations, which is also the index of stages, s ∈ S
sl the jumping process point of production line l, sl = (1, 2, · · · , S− 1)
t the index of job types
Nt the number of job types
k the index of machines
Ml,s the number of machines at stage s of production line l
ptk,t,s the processing time of operation s for a job of type t on machine k
αo the earliness penalty cost coefficient of order o
βo the tardiness penalty cost coefficient of order o
M a sufficiently large positive number
xt,s,l takes a value of 1 if stage s of type t can be processed on production line l

and 0 otherwise
xi,o takes a value of 1 if job i is included in order o and 0 otherwise
xo,t takes a value of 1 if the type of jobs in order o is t and 0 otherwise(
d1

o , d2
o , d3

o , d4
o
)

the trapezoidal fuzzy number for trapezoidal fuzzy due date of order o,
where d1

o ≤≤ d2
o ≤ d3

o ≤ d4
o

Decision variables

Xi,s,l binary variable, taking a value of 1 if operation s of job i is processed on
production line l and 0 otherwise

Xk,s,i,l binary variable, taking a value of 1 if operation s and s′ of job i are both
processed on production line l and 0 otherwise

Yi,s,s′ binary variable, taking a value of 1 if operation s of job i is processed before
job i′ on machine k of production line l and 0 otherwise

Zk,i,i′ ,s,l binary variable, taking a value of 1 if operation s of job i is processed before
job i′on machine k of production line l and 0 otherwise

Ck,s,i,l the completion time of operation s of job i on machine k of production line l
Co the completion time for order o
Po the fuzzy due date earliness/tardiness penalty cost of order o

References
1. Mohammadi, M.; Ghomi, S.; Jafari, N. A genetic algorithm for simultaneous lotsizing and sequencing of the permutation flow

shops with sequence-dependent setups. Int. J. Comput. Integr. Manuf. 2011, 24, 87–93. [CrossRef]
2. Varmazyar, M.; Salmasi, N. Sequence-dependent flow shop scheduling problem minimising the number of tardy jobs. Int. J. Prod.

Res. 2012, 50, 5843–5858. [CrossRef]
3. Yue, L.; Guan, Z.; Zhang, L.; Ullah, S.; Cui, Y. Multi objective lotsizing and scheduling with material constraints in flexible parallel

lines using a Pareto based guided artificial bee colony algorithm. Comput. Ind. Eng. 2019, 128, 659–680. [CrossRef]
4. Jungwattanakit, J.; Reo De Cha, M.; Chaovalitwongse, P.; Werner, F. A comparison of scheduling algorithms for flexible flow shop

problems with unrelated parallel machines, setup times, and dual criteria. Comput. Oper. Res. 2009, 36, 358–378. [CrossRef]
5. Low, C. Simulated annealing heuristic for flow shop scheduling problems with unrelated parallel machines. Comput. Oper. Res.

2005, 32, 2013–2025. [CrossRef]
6. Soltani, S.A.; Karimi, B. Cyclic hybrid flow shop scheduling problem with limited buffers and machine eligibility constraints.

Int. J. Adv. Manuf. Technol. 2014, 76, 1739–1755. [CrossRef]
7. Tadayon, B.; Salmasi, N. A two-criteria objective function flexible flowshop scheduling problem with machine eligibility constraint.

Int. J. Adv. Manuf. Technol. 2013, 64, 1001–1015. [CrossRef]
8. Ruiz, R.; Maroto, C. A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility.

Eur. J. Oper. Res. 2007, 169, 781–800. [CrossRef]
9. Zhang, X.Y.; Chen, L. A re-entrant hybrid flow shop scheduling problem with machine eligibility constraints. Int. J. Prod. Res.

2018, 56, 5293–5305. [CrossRef]
10. Oddi, A.; Rasconi, R.; Cortellessa, G.; Magazzeni, D.; Maratea, M.; Serina, I. Leveraging constraint-based approaches formulti-

objective flexible flow-shop scheduling with energy costs. Intell. Artif. 2016, 10, 147–160.
11. Méndez, C.A.; Henning, G.P.; Cerdá, J. An MILP continuous-time approach to short-term scheduling of resource-constrained

multistage flowshop batch facilities. Comput. Chem. Eng. 2001, 25, 701–711. [CrossRef]
12. Malik, A.I.; Kim, B.S. A multi-constrained supply chain model with optimal production rate in relation to quality of products

under stochastic fuzzy demand. Comput. Ind. Eng. 2020, 149, 106814. [CrossRef]

http://doi.org/10.1080/0951192X.2010.511654
http://doi.org/10.1080/00207543.2011.632385
http://doi.org/10.1016/j.cie.2018.12.065
http://doi.org/10.1016/j.cor.2007.10.004
http://doi.org/10.1016/j.cor.2004.01.003
http://doi.org/10.1007/s00170-014-6343-0
http://doi.org/10.1007/s00170-012-4052-0
http://doi.org/10.1016/j.ejor.2004.06.038
http://doi.org/10.1080/00207543.2017.1408971
http://doi.org/10.1016/S0098-1354(01)00671-8
http://doi.org/10.1016/j.cie.2020.106814

Symmetry 2021, 13, 1521 23 of 24

13. Malik, A.I.; Sarkar, B. Coordinating supply-chain management under stochastic fuzzy environment and lead-time reduction.
Mathematics 2019, 7, 480. [CrossRef]

14. Wu, H.C. Solving the fuzzy earliness and tardiness in scheduling problems by using genetic algorithms. Expert Syst. Appl. 2010,
37, 4860–4866. [CrossRef]

15. Bukchin, J.; Dar-El, E.M.; Rubinovitz, J. Mixed model assembly line design in a make-to-order environment. Comput. Ind. Eng.
2002, 41, 405–421. [CrossRef]

16. Caridi, M.; Sianesi, A. Multi-Agent Systems in production planning and control: An application to the scheduling of mixed-model
assembly lines. Int. J. Prod. Econ. 2000, 68, 29–42. [CrossRef]

17. Askin, R.G.; Zhou, M. A parallel station heuristic for the mixed-model production line balancing problem. Int. J. Prod. Res. 1997,
35, 3095–3106. [CrossRef]

18. Emde, S.; Boysen, N. Optimally locating in-house logistics areas to facilitate JIT-supply of mixed-model assembly lines. Int. J.
Prod. Econ. 2010, 135, 393–402. [CrossRef]

19. Lopes, T.C.; Michels, A.S.; Sikora, C.; Magatão, L. Balancing and cyclical scheduling of asynchronous mixed-model assembly
lines with parallel stations. J. Manuf. Syst. 2019, 50, 193–200. [CrossRef]

20. Zhao, X.; Liu, J.; Ohno, K.; Kotani, S. Modeling and analysis of a mixed-model assembly line with stochastic operation times. Nav.
Res. Logist. 2010, 54, 681–691. [CrossRef]

21. Khalid, Q.S.; Arshad, M.; Maqsood, S.; Kim, S. Hybrid particle swarm algorithm for products’ scheduling problem in cellular
manufacturing system. Symmetry 2019, 11, 729. [CrossRef]

22. Mcmullen, P.R.; Tarasewich, P. A beam search heuristic method for mixed-model scheduling with setups. Int. J. Prod. Econ. 2005,
96, 273–283. [CrossRef]

23. Leu, S.S.; Hwang, S.T. GA-based resource-constrained flow-shop scheduling model for mixed precast production. Autom. Constr.
2002, 11, 439–452. [CrossRef]

24. Wang, B.; Guan, Z.; Ullah, S.; Xu, X.; He, Z. Simultaneous order scheduling and mixed-model sequencing in assemble-to-order
production environment: A multi-objective hybrid artificial bee colony algorithm. J. Intell. Manuf. 2017, 28, 419–436. [CrossRef]

25. Bahman, N.; Ahmed, A.; Katayoun, B. A realistic multi-manned five-sided mixed-model assembly line balancing and scheduling
problem with moving workers and limited workspace. Int. J. Prod. Res. 2019, 57, 643–661.

26. Alghazi, A.; Kurz, M.E. Mixed model line balancing with parallel stations, zoning constraints, and ergonomics. Constraints 2018,
23, 123–153. [CrossRef]

27. Rajeswari, N.; Shahabudeen, P. Bicriteria parallel flow line scheduling using hybrid population-based heuristics. Int. J. Adv.
Manuf. Technol. 2009, 43, 799–804. [CrossRef]

28. Haq, A.N.; Balasubramanian, K.; Sashidharan, B.; Karthick, R.B. Parallel line job shop scheduling using genetic algorithm. Int. J.
Adv. Manuf. Technol. 2008, 35, 1047–1052.

29. Meyr, H.; Mann, M. A decomposition approach for the general lotsizing and scheduling problem for parallel production lines.
Eur. J. Oper. Res. 2013, 229, 718–731. [CrossRef]

30. Mumtaz, J.; Guan, Z.; Yue, L.; Zhang, L.; He, C. Hybrid spider monkey optimisation algorithm for multi-level planning and
scheduling problems of assembly lines. Int. J. Prod. Res. 2020, 58, 6252–6267. [CrossRef]

31. Ebrahimipour, V.; Najjarbashi, A.; Sheikhalishahi, M. Multi-objective modeling for preventive maintenance scheduling in a
multiple production line. J. Intell. Manuf. 2013, 26, 1–12. [CrossRef]

32. Mumtaz, J.; Guan, Z.; Yue, L.; Wang, Z.; Rauf, M. Multi-level planning and scheduling for parallel pcb assembly lines using
hybrid spider monkey optimization approach. IEEE Access 2019, 7, 2169–3536. [CrossRef]

33. Liu, Z.Z.; Wang, Y.; Huang, P.Q. A many-objective evolutionary algorithm with angle-based selection and shift-based density
estimation. Inf. Sci. 2017, 509, 400–419. [CrossRef]

34. Goldberg, D.E.; Korb, B.; Deb, K. Messy genetic algorithms: Motivation, analysis, and first results. Complex Syst. 1989, 3, 493–530.
35. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach.

IEEE Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]
36. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Performance of the Strength Areto Evolutionary Algorithm; Evolutionary

Methods for Design, Optimization and Control with Applications to Industrial Problems (EUROGEN 2001), Athens, Greece,
September; Giannakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T., Eds.; International Center for Numerical
Methods in Engineering (CIMNE): Barcelona, Spain, 2002; pp. 95–100.

37. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

38. Beume, N.; Naujoks, B.; Emmerich, M. Sms-emoa: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res.
2007, 181, 1653–1669. [CrossRef]

39. Bader, J.; Zitzler, E. Hype: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 2011, 19, 45–76.
[CrossRef] [PubMed]

40. Zhang, Q.; Hui, L. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712–731. [CrossRef]

41. Li, H.; Landa-Silva, D. An adaptive evolutionary multi-objective approach based on simulated annealing. Evol. Comput. 2014,
19, 561–595. [CrossRef] [PubMed]

http://doi.org/10.3390/math7050480
http://doi.org/10.1016/j.eswa.2009.12.029
http://doi.org/10.1016/S0360-8352(01)00065-1
http://doi.org/10.1016/S0925-5273(99)00097-3
http://doi.org/10.1080/002075497194309
http://doi.org/10.1016/j.ijpe.2011.07.022
http://doi.org/10.1016/j.jmsy.2019.01.001
http://doi.org/10.1002/nav.20241
http://doi.org/10.3390/sym11060729
http://doi.org/10.1016/j.ijpe.2003.12.010
http://doi.org/10.1016/S0926-5805(01)00083-8
http://doi.org/10.1007/s10845-014-0988-2
http://doi.org/10.1007/s10601-017-9279-9
http://doi.org/10.1007/s00170-008-1754-4
http://doi.org/10.1016/j.ejor.2013.03.036
http://doi.org/10.1080/00207543.2019.1675917
http://doi.org/10.1007/s10845-013-0766-6
http://doi.org/10.1109/ACCESS.2019.2895954
http://doi.org/10.1016/j.ins.2018.06.063
http://doi.org/10.1109/4235.797969
http://doi.org/10.1109/4235.996017
http://doi.org/10.1016/j.ejor.2006.08.008
http://doi.org/10.1162/EVCO_a_00009
http://www.ncbi.nlm.nih.gov/pubmed/20649424
http://doi.org/10.1109/TEVC.2007.892759
http://doi.org/10.1162/EVCO_a_00038
http://www.ncbi.nlm.nih.gov/pubmed/21417745

Symmetry 2021, 13, 1521 24 of 24

42. Tan, Y.Y.; Jiao, Y.C.; Hong, L.; Wang, X.K. MOEA/D-SQA: A multi-objective memetic algorithm based on decomposition.
Eng. Optim. 2012, 44, 1–21. [CrossRef]

43. Cai, D.; Yuping, W.; Miao, Y. A new multi-objective particle swarm optimization algorithm based on decomposition. Inf. Sci.
2015, 325, 541–557.

44. Ke, L.; Zhang, Q.; Battiti, R. MOEA/D-ACO: A Multiobjective Evolutionary Algorithm Using Decomposition and Antcolony.
IEEE Trans. Cybern. 2013, 43, 1845–1859. [CrossRef] [PubMed]

45. Alhindi, A.; Alhindi, A.; Alhejali, A.; Alsheddy, A.; Tairan, N.; Alhakami, H. MOEA/D-GLS: A multiobjective memetic algorithm
using decomposition and guided local search. Soft Comput. 2019, 23, 9605–9615. [CrossRef]

46. Zhang, Q.; Liu, W.; Tsang, E.; Virginas, B. Expensive multiobjective optimization by MOEA/D with gaussian process model.
IEEE Trans. Evol. Comput. 2010, 14, 456–474. [CrossRef]

47. Wang, Z.; Zhang, Q.; Zhou, A.; Gong, M.; Jiao, L. Adaptive replacement strategies for MOEA/D. IEEE Trans. Cybern. 2017,
46, 474–486. [CrossRef]

48. Ho, Y.C.; Pepyne, D.L. Simple explanation of the no-free-lunch theorem and its implications. J. Optim. Theory Appl. 2002,
115, 549–570. [CrossRef]

49. Murata, T.; Gen, M.; Ishibuchi, H. Multi-objective scheduling with fuzzy due-date. Comput. Ind. Eng. 1998, 35, 439–442. [CrossRef]
50. Vela, C.R.; Afsar, S.; Palacios, J.J.; González-Rodríguez, I.; Puente, J. Evolutionary tabu search for flexible due-date satisfaction in

fuzzy job shop scheduling. Comput. Oper. Res. 2020, 119, 104931. [CrossRef]
51. Wen, X.; Li, X.; Gao, L.; Wang, K.; Li, H. Modified honey bees mating optimization algorithm for multi-objective uncertain

integrated process planning and scheduling problem. Int. J. Adv. Robot. Syst. 2020, 17, 172988142092523. [CrossRef]
52. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
53. Scheffé, H. Experiments with Mixtures. J. Roy. Statist. Soc. 1958, 20, 344–360. [CrossRef]
54. Li, B.B.; Wang, L.; Liu, B. An effective PSO-based hybrid algorithm for multiobjective permutation flow shop scheduling. IEEE

Trans. Syst. Man Cybern. Paart A Syst. Hum. 2008, 38, 818–831. [CrossRef]
55. Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion

optimization. Expert Syst. Appl. 2015, 47, 106–119. [CrossRef]
56. Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol.

Comput. 2004, 8, 256–279. [CrossRef]
57. Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; Fonseca, V. Performance assessment of multiobjective optimizers: An analysis

and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [CrossRef]
58. Jiang, S.; Ong, Y.; Zhang, J.; Feng, L. Consistencies and contradictions of performance metrics in multiobjective optimization.

IEEE Trans. Cybern. 2014, 44, 2391–2404. [CrossRef] [PubMed]
59. Oguz, C.; Ercan, M.F. A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks. Complex Syst. 2005,

8, 323–351.

http://doi.org/10.1080/0305215X.2011.632008
http://doi.org/10.1109/TSMCB.2012.2231860
http://www.ncbi.nlm.nih.gov/pubmed/23757576
http://doi.org/10.1007/s00500-018-3524-z
http://doi.org/10.1109/TEVC.2009.2033671
http://doi.org/10.1109/TCYB.2015.2403849
http://doi.org/10.1023/A:1021251113462
http://doi.org/10.1016/S0360-8352(98)00128-4
http://doi.org/10.1016/j.cor.2020.104931
http://doi.org/10.1177/1729881420925236
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1111/j.2517-6161.1958.tb00299.x
http://doi.org/10.1109/TSMCA.2008.923086
http://doi.org/10.1016/j.eswa.2015.10.039
http://doi.org/10.1109/TEVC.2004.826067
http://doi.org/10.1109/TEVC.2003.810758
http://doi.org/10.1109/TCYB.2014.2307319
http://www.ncbi.nlm.nih.gov/pubmed/25415945

	Introduction
	Literature Review
	Problem Description and Mathematical Modeling
	Problem Definition and Assumption
	Mathematical Modeling

	Proposed MOGWO/D Algorithm
	Original GWO
	MOGWO/D Algorithm Framework
	Generate a Set of Uniform Weight Vectors
	Encoding and Decoding
	Updating the Position Vectors
	Updating the External Population (EP)

	Computational Experiments and Results Analysis
	Evaluation Metrics
	Instance Generation
	Parameter Settings
	Experimental Results Analysis

	Conclusions
	References

