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Abstract: The set of scators was introduced by Fernández-Guasti and Zaldívar in the context of
special relativity and the deformed Lorentz metric. In this paper, the scator space of dimension
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Euclidean space of dimension 2n with zero signature. The scator product, nondistributive and rather
counterintuitive in its original formulation, is represented as a natural commutative product in this
extended space. What is more, the set of invertible embedded scators is a commutative group. This
group is isomorphic to the group of all symmetries of the embedded scator space, i.e., isometries (in
the space of dimension 2n) preserving the scator quadrics.
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1. Introduction

The scator algebra was introduced by Fernández-Guasti and Zaldívar in a series of
papers, starting from [1]. The elliptic case can be considered as yet another approach to
hypercomplex numbers [2] with the corresponding theory of holomorphic functions [3,4],
while the hyperbolic case has potential physical applications, usually related to deforma-
tions and generalizations of Lorentz symmetries of the special theory of relativity [5,6]; see
also [7,8]. In this paper, we confine ourselves to the hyperbolic case, closely related to a
specific deformation of the Lorentz symmetry. To be more precise, we consider a real linear

space R1+n with a fixed basis of unit vectors:
o
eee0,

o
eee1, . . . ,

o
eeen (their squares are assumed to be

+1). An element
o
a ∈ R1+n is denoted as:

o
a = (a0; a1, a2, . . . , an) = a0

o
eee0 + a1

o
eee1 + . . . + an

o
eeen = a0 + a1

o
eee1 + . . . + an

o
eeen (1)

where a0, a1, . . . , a2 are real numbers (a0 is a scalar component, and a1, . . . , an are referred to

as director components). The unit scalar
o
eee0 is usually omitted; compare the last equality of

(1). The decomposition into scalar and director components is crucial for many properties
of scators, including their characteristic nondistributive multiplication.

Scators form a large subset of R1+n (denoted by S1+n), which consists of all ele-
ments with a nonvanishing scalar component and lines along director components. In
other words,

S1+n = S1+n
∗ ∪ {o

a ∈ R1+n : ∃k (
o
a = ak

o
ek)} , (2)

where:
S1+n
∗ := {o

a ∈ R1+n : a0 6= 0} . (3)

Note that in our earlier papers, S1+n
∗ was usually denoted by S′; see [9,10].
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Definition 1. The scator product of two scators,
o
a = (a0; a1, . . . , an) ∈ S1+n and

o
b = (b0; b1, . . . , bn)

∈ S1+n, is denoted by
o
a

o
b ≡ (c0; c1, . . . , cn). In the hyperbolic case, it is defined as follows [11,12]:

• For
o
a,

o
b ∈ S1+n

∗ ,

c0 = a0b0

(
1 +

a1b1

a0b0

)(
1 +

a2b2

a0b0

)
. . .
(

1 +
anbn

a0b0

)
≡ a0b0

n

∏
j=1

(
1 +

ajbj

a0b0

)
,

ck = a0b0

(
ak
a0

+
bk
b0

) n

∏
j=1
j 6=k

(
1 +

ajbj

a0b0

)
(k = 1, . . . , n) .

(4)

• Other cases are as follows:

(
ak

o
eeek

)(
b0 +

n

∑
j=1

bj
o
eeej

)
= akbk + b0ak

o
eeek +

n

∑
j=1
j 6=k

( akbkbj

b0

)
o
eeej ,

(
ak

o
eeek

)(
bj

o
eeej

)
= akbjδkj ,

(5)

where δkj is Kronecker’s delta.

The above definition implies the commutativity of the scator product. Another useful
property is the compatibility of the scator product with the dilation, i.e.,

(λ
o
a)(µ

o
b) = (λµ)(

o
a

o
b) (for λ, µ ∈ R) (6)

The scator product is nondistributive (i.e., usually, (
o
x +

o
y)

o
z 6= o

x
o
z +

o
y

o
z) and nonas-

sociative (although the associativity holds if all involved factors and their products have
nonvanishing scalar components). We point out that scator multiplication admits zero
divisors, for instance: the scator products of (a0, a1, a0) and (b0, b1, −b0) are equal to zero.

The hypercomplex conjugation of scators maps
o
eeek into −o

eeek, namely:

o
a∗ := (a0,−a1, . . . ,−an) (7)

Similarly, as in the case of the complex numbers, the scator norm is defined by a scator
product of the scator and its hypercomplex conjugate:

‖o
a‖2 =

o
a

o
a∗ (8)

Then, the application of Definition 1 yields:

‖o
a‖2 = a2

0

n

∏
k=1

(
1−

a2
k

a2
0

)
(if a0 6= 0) ,

‖ak
o
eeek‖2 = −a2

k .

(9)

In particular, for large |a0|, the scator norm becomes close to the standard Minkowski
metric, which is one of main reasons for considering scators as a peculiar extension of
special relativity:

‖o
a‖2 ≈ a2

0 −
n

∑
k=1

a2
k (if a2

0 �
n

∑
k=1

a2
k) . (10)

The definition of the scator product presented above is far from being obvious or
natural. The first issue we would like to address in the next section is a clear and intuitive
motivation for Definition 1.
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In our recent paper, we proposed an extension of the scator product in S1+2 on the
whole space R1+2 [13]. Here, we follow an alternative path. We show that not only the
definition of the scator product, but also its domain (2) is, in a sense, natural.

2. Fundamental Embedding

Our main tool to understand the scator product and scator geometry is the so-called
fundamental embedding, introduced in [9]; see also [10,13]. The fundamental embedding F
maps the scator space S1+n into A1,n, where the space A1,n is the algebra over R generated
(using addition and multiplication, which is assumed to be commutative, associative, and
distributive over addition) by elements eee1, . . . , eeen satisfying (in the hyperbolic case):

eeekeeek = 1 , eeekeeej = eeejeeek (1 6 j < k 6 n) . (11)

The basis elements of A1,n are of the form eeeJ , where J is a multi-index defined by
a subset {i1, . . . , im} of {1, 2, . . . , n}, i.e., eeeJ ≡ eeei1 ...im ≡ eeei1 . . . eeeim . In particular, we have
the unit element eee∅ ≡ eee0 ≡ 1, vectors, bivectors, multivectors, and the element eeemax =
eee1eee2 . . . eeen:

1, eee1, . . . , eeen , eeejk ≡ eeejeeek (j < k) , . . . , eeei1 ...im ≡ eeei1 . . . eeeim (i1 < . . . < im) , . . . , eeemax . (12)

A linear space A1,n is isomorphic to Clifford and Grassmann algebras (although the
multiplicative structures of all these spaces are totally different) [14,15].

In order to the motivate definition of the fundamental embedding, which appears at
the end of this section (see Definition 2), we introduce some useful notions. First, we denote
by π the natural projection of the vector space A1,n on the space spanned by 1,

o
eee1, . . . ,

o
eeen

(compare (1)):

π

(
∑

J
aJeeeJ

)
:= a0 +

n

∑
k=1

ak
o
eeek . (13)

We consider the following subset of A1,n:

S̃1+n := {aaa ∈ A1,n : aaa =
n

∏
k=1

(a0k + a1keeek)} , (14)

where a01, a02, . . . , a0n and a11, a12, . . . , a1n are real parameters. Then, for aaa ∈ S̃1+n, π(aaa) is
of the form (13), where:

a0 :=
n

∏
k=1

a0k , ak := a1k

n

∏
j=1
j 6=k

a0j . (15)

We denote also:
S̃1+n
∗ := {aaa ∈ S̃1+n : a0 6= 0} , (16)

where, obviously, a0 = a01a02 . . . a0n for aaa ∈ S̃1+n.

Theorem 1. There exists a one-to-one correspondence between π(S̃1+n) and S1+n and a one-to-one
correspondence between S̃1+n

∗ and S1+n
∗ .

Proof. Let us take aaa ∈ S̃1+n; see (14). We have two cases. First, a0 6= 0, which implies
a0k 6= 0 for k = 1, . . . , n. In this case:

ak =
a1k
a0k

a0 , (17)

and we can rewrite aaa ∈ S̃1+n
∗ as:
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aaa = a0

n

∏
k=1

(
1 +

a1k
a0k

eeek

)
= a0

n

∏
k=1

(
1 +

ak
a0

eeek

)
. (18)

Therefore, any element aaa ∈ S̃1+n
∗ is uniquely defined by its projection π(aaa); see (15)

and (18). Hence, there is a bijection between S̃1+n
∗ and π(S̃1+n

∗ ). Moreover, obviously, we

can identify π(S̃1+n
∗ ) with S1+n

∗ . In other words, to any scator
o
a = (a0, a1, . . . , an) with a

nonvanishing scalar component, there corresponds exactly one element aaa ∈ S̃1+n
∗ such that

π(aaa) =
o
a. Thus, a one-to-one correspondence between S̃1+n

∗ and S1+n
∗ is shown.

In the second case (a0 = 0), the situation is more complicated. Note that a0 = 0 if and
only if there exists m such that a0m = 0. Then, as a consequence,

n

∏
j=1
j 6=k

a0j = 0 for k 6= m , (19)

and due to (15), π(aaa) reduces to:

π(aaa) = 0 + a1m
o
eeem

n

∏
j=1

j 6=m

a0j = am
o
eeem . (20)

Thus, for a0 6= 0, π(aaa) has to be proportional to
o
eeem. We point out that if a0j = 0 for

any j 6= m, then am vanishes, and as a consequence, π(aaa) = 0. Therefore, the case a0 6= 0
corresponds to the second part of the scator set (2), which ends the proof.

A one-to-one correspondence between S̃1+n
∗ and S1+n

∗ is realized by the projection π.
What is more, the projection π maps the multiplicative structure of S̃1+n

∗ into the scator
multiplication. In a sense, this fact can be treated as a derivation of the scator product.

Theorem 2. The multiplication in the space S̃1+n
∗ (induced from the natural commutative product

in A1,n), mapped by the projection π, yields the scator product in the scator space S1+n
∗ ; see (4). In

other words,
π(aaa)π(bbb) := π(aaabbb) (for any aaa, bbb ∈ S̃1+n

∗ ) , (21)

can be treated as a definition of the scator product for elements from the space S1+n
∗ .

Proof. Elements of S1+n
∗ are given by Formula (18). Straightforward computation yields:

ababab = a0

n

∏
k=1

(
1 +

ak
a0

eeek

)
b0

n

∏
k=1

(
1 +

bk
b0

eeek

)
= a0b0

n

∏
k=1

(
1 +

akbk
a0b0

+

(
ak
a0

+
bk
b0

)
eeek

)
. (22)

Then, the coefficients of π(ababab) by 1, eee1, . . . , eeen yield the Formula (4), which ends the
proof.

The scator product is defined for all scators with a nonvanishing scalar component.
However, as shown below, the result of this multiplication can be outside of this set.

The projection π is not an isomorphism between S̃1+n
∗ and S1+n

∗ , because neither
S̃1+n
∗ nor S1+n

∗ are closed with respect to the multiplication. In the one-dimensional case,
we have:

a0

(
1 +

a1

a0
eee1

)
b0

(
1 +

b1

b0
eee1

)
= a0b0

(
1 +

a1b1

a0b0
+

(
a1

a0
+

b1

b0

)
eee1

)
. (23)

Therefore, in the case a1b1 = −a0b0, the above result is proportional to eee1, and as a
consequence, it does not belong to S1+n

∗ . In the general case (22), the situation is analogous.
If ambm = −a0b0, then ababab is proportional to eeem:
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ababab = (b0am − a0bm)eeem

n

∏
k=1

k 6=m

(
1 +

akbk
a0b0

+

(
ak
a0

+
bk
b0

)
eeek

)
. (24)

Finally, we would like to address the problem of extending Theorem 2 on all elements
of S̃1+n, including elements of the form (24). Note that:

π

(
eeek

n

∏
j=1
j 6=k

(
1 + αjeeej

))
=

o
eeek . (25)

for any values of n− 1 parameters αj (j 6= k), which means that the preimage of eeek under π
is very large.

Fortunately enough, choosing the simplest element in this preimage, namely eeek, we
obtain the required extension of Theorem 2. In other words, we embed the scator space
Sn+1 into Sn+1 ⊂ A1,n in the way leading uniquely to the scator product of Definition 1.

Definition 2. The fundamental embedding F : S1+n → A1,n is defined as:

F(
o
a) = a0

n

∏
k=1

(
1 +

ak
a0

eeek

)
(if a0 6= 0) ,

F(ak
o
eeek) = akeeek (k = 1, . . . , n) .

(26)

Corollary 1. For any a0 and ak, we have:

F(a0 + ak
o
eeek) = a0 + akeeek . (27)

Remark 1. F is a bijection between S1+n
∗ and S̃1+n

∗ . What is more, π restricted to S̃1+n
∗ coincides

with F−1, which means that in this case, F ◦ π = id.

The main advantage of the fundamental embedding is a natural motivation for the
definition of the scator product proposed by Fernández-Guasti. (Definition 1). Indeed, we
can present the following alternative definition of the scator product; see [9].

Theorem 3. The formula:
o
a

o
b = π

(
F(

o
a)F(

o
b)
)

, (28)

is equivalent to Definition 1 of the scator product.

Proof. The first part of Definition 1, given by Equation (4), follows from (28) directly by
Theorem 2. The second part, given by Equation (5), can be directly computed, as follows.

π

(
F
(

ak
o
eeek

)
F
(

b0 +
n

∑
j=1

bj
o
eeej

))
= π

(
akb0eeek

n

∏
j=1

(
1 +

bj

b0
eeej

))
= ak

(
bk + b0

o
eeek +

n

∑
j=1
j 6=k

bkbj
o
eeej

b0

)
, (29)

where we took into account that:

eeek

n

∏
j=1

(
1 +

bj

b0
eeej

)
= eeek +

n

∑
j=1

bjeeejeeek

b0
+

1
2

n

∑
j=1

n

∑
i=1
i 6=j

bibjeeeieeejeeek

b2
0

+ . . . = eeek +
bk
b0

+
n

∑
j=1
j 6=k

bkbjeeej

b2
0

+ . . . (30)

In these computations, we used the relations (11). Note that the terms replaced by
dots are bivectors or multivectors of higher order. Finally,
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π
(

F
(

ak
o
eeek

)
F
(

bj
o
eeej

))
= π(akbjeeekeeej) = akbjδkj , (31)

which ends the proof.

Remark 2. The scator product is, in general, nonassociative. Indeed,

(
o
a

o
b)

o
c = π

(
F(

o
a)F(

o
b)
)o

c = π

(
F
(

π
(

F(
o
a)F(

o
b)
))

F(
o
c)
)
= π

(
F ◦ π

(
F(

o
a)F(

o
b)
)

F(
o
c)
)

,

o
a(

o
b

o
c) =

o
a π
(

F(
o
b)F(

o
c)
)
= π

(
F(

o
a)F
(

π
(

F(
o
b)F(

o
c)
)))

= π

(
F(

o
a) F ◦ π

(
F(

o
b)F(

o
c)
))

.

(32)

Both expressions would be identical, equating π
(

F(
o
a)F(

o
b)F(

o
c)
)

, provided that F ◦ π = id.

The last equality is true only when restricted to S̃1+n
∗ ; compare Remark 1. For instance, we have:

(
o
eee1

o
eee1)

o
eee2 = π(eee1eee1)

o
eee2 =

o
eee2 ,

o
eee1(

o
eee1

o
eee2) =

o
eee1π(eee1eee2) = 0 .

(33)

In this case, we see clearly that π(eee1eee1)π(eee2) = π(eee1eee1eee2) 6= π(eee1)π(eee1eee2).

Nonassociativity is usually related to the quantum aspects of physical systems (see [16–18]).
An attempt to involve quantum effects has been made also in the case of scators [19].

3. Group Structure of the Embedded Scator Space

The set S̃1+n is closed under multiplication. Indeed, for any aaa, bbb ∈ S̃1+n, we have:

aaabbb =
n

∏
k=1

((a0k + a1keeek)(b0k + b1keeek)) =
n

∏
k=1

(a0kb0k + a1kb1k + (a0kb1k + a1kb0k)eeek) . (34)

In order to determine the group structure, we have to consider the invertibility of the
elements of S̃1+n. As usual, conjugate elements (compare (7)) are useful in this context.
Hypercomplex conjugation at the level of the space A1,n is realized by the reflection
eeek → −eeek (k = 1, . . . , n). Thus:

aaaaaa∗ =
n

∏
j=1

(
(a0j + a1jeeej)(a0j − a1jeeej)

)
=

n

∏
j=1

(a2
0j − a2

1j) (35)

Hence, if |a0j| 6= |a1j| for all j = 1, . . . , n, then:

aaa−1 =
aaa∗

n

∏
j=1

(a2
0j − a2

1j)

. (36)

The following elementary equality is very helpful.

ε2 = 1 =⇒ a0kb0k + a1kb1k − ε(a0kb1k + a1kb0k) ≡ (a0k − εka1k)(b0k − εb1k) (37)

Therefore, the product of an element proportional to 1± eeek (i.e., such that a0k− εka1k = 0)
by any element of the set S̃1+n is proportional to 1± eeek, as well.

Corollary 2. An element of S̃1+n is noninvertible if and only if it is proportional to 1± eeek for at
least one value of k (1 6 k 6 n).

The next corollary is another direct consequence of (37).
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Corollary 3. The product of two invertible elements is invertible. Invertible elements of S̃1+n form
a multiplicative group, which is denoted by S̃1+n

inv .

Theorem 4. The set defined by:

S̃1+n
+ := {aaa ∈ A1,n : aaa = a0

n

∏
k=1

(1 + αkeeek) , a0 > 0 , |αk| < 1 for k = 1, . . . , n} , (38)

is a commutative, simply connected, multiplicative group.

Proof. We compute the product of two elements of the form of (38) (parameters corre-
sponding to the second element are marked with a prime).

aaaaaa′ = a0a′0
n

∏
k=1

(1 + αkeeek)(1 + α′keeek) = a0a′0
n

∏
k=1

(
1 + αkα′k + (αk + α′k)eeek

)
. (39)

It is convenient to use a bijection:

R 3 ϑk ←→ αk = tanh ϑk ∈ (−1, 1) . (40)

Then:

aaaaaa′ = a0a′0
n

∏
k=1

(1 + αkα′k)
n

∏
k=1

(
1 +

αk + α′k
1 + αkα′k

eeek

)
, (41)

where:
αk + α′k

1 + αkα′k
=

tanh ϑk + tanh ϑ′k
1 + tanh ϑk tanh ϑ′k

= tanh(ϑk + ϑ′k) . (42)

Taking into account that:

a0a′0
n

∏
k=1

(1 + αkα′k) > 0 and | tanh(ϑk + ϑ′k)| < 1 , (43)

we conclude that aaaaaa′ is of the form of (38).
The inverse element always exists and is computed as a special case of (36):

aaa−1 =

n

∑
k=1

(1− αkeeek)

a0

n

∏
k=1

(
1− α2

k

) . (44)

Simple connectedness follows immediately if we consider the following homotopy:

aaa(t) = (1− t + ta0)
n

∏
k=1

(1 + tαkeeek) , (45)

where t ∈ [0, 1].

Remark 3. One can easily see that:

S̃1+n
+ = F(S1+n

+ ) , (46)

where:
S1+n
+ := {0

a : a0 > 0 , |ak| < |a0| for k = 1, . . . , n} (47)

is closely related to the “restricted space subset” [11] (scalar components of scators from the restricted
subset can be both positive and negative).
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The bijection (40) suggests a convenient parameterization of the group S̃1+n
+ using the

exponential representation. Indeed, taking into account (11), we compute:

exp(ϑkeeek) =
∞

∑
j=0

(ϑk)
2j

(2j)!
+

∞

∑
j=0

(ϑk)
2j+1

(2j + 1)!
eeek = cosh ϑk + eeek sinh ϑk . (48)

In other words,
exp(ϑkeeek) = cosh ϑk(1 + tanh ϑkeeek) , (49)

and finally,

1 + αkeeek ≡
exp(ϑkeeek)

cosh ϑk
(where αk = tanh ϑk). (50)

Therefore,

exp

(
n

∑
k=1

ϑkeeek

)
=

n

∏
k=1

(cosh ϑk + eeek sinh ϑk) =

(
n

∏
k=1

cosh ϑk

)
n

∏
k=1

(1 + eeek tanh ϑk) . (51)

Thus, any scator from S̃1+n
+ can be represented as:

aaa =
a0

n

∏
k=1

cosh ϑk

exp

(
n

∑
k=1

ϑkeeek

)
. (52)

Theorem 5. Any element aaa ∈ S̃1+n
inv can be represented as:

aaa = ±eeeJaaa+ (53)

where aaa+ ∈ S̃1+n
+ and J is a multi-index.

Proof. Given an element aaa of S̃1+n
inv , we use the following identity,

eeej(1 + αjeeej) = αj(1 + α−1
j eeej) (for αj 6= 0), (54)

wherever the coefficient αj > 1. Thus, the element aaa can be expressed, up to the sign, as a
product of some number of basis vectors (i.e., shortly, eeeJ) multiplied by an element of S̃1+n

+ .
Hence, we obtain (53).

4. Embedded Scator Space as an Intersection of Quadrics in a Higher-Dimensional Space

We showed that the set of scators, S1+n, is embedded in the space A1,n of dimension
2n. In this section, we study the geometry of the embedding S̃1+n ⊂ A1,n, assuming tacitly
that the basis (12) is orthonormal (i.e., A1,n ' R2n

). The coordinates in the space R2n
are

denoted by xJ , where J is a multi-index.
The embedded scator space seems to consist of two parts. The first part, defined by

the condition x0 6= 0, contains scators parameterized by x0, x1, . . . , xn in the following way:

xxx = x0

n

∏
k=1

(
1 + eeek

xk
x0

)
= x0 +

n

∑
i=1

xieeei +
n

∑
i=1

n

∑
j=i+1

xixj

x0
eeeieeej +

k

∑
i=1

n

∑
j=i+1

n

∑
k=j+1

xixjxk

x2
0

eeeieeejeeek + . . . . (55)

We denote by xij the coefficient of xxx by eeeij ≡ eeeieeej, and in general, the coefficient of xxx by
eeeJ is denoted by xJ . Thus:

xij =
xixj

x0
, xi1 ...ik =

xi1 . . . xik

xk−1
0

for k = 2, . . . , n , (56)

and we may shortly write down:
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xxx = ∑
J

xJeeeJ . (57)

The norm of xxx is identified with the norm of the corresponding scator (i.e., ‖xxx‖2 :=
‖π(xxx)‖2), but the formula ‖xxx‖2 = xxxxxx∗ holds, as well:

‖xxx‖2 = xxxxxx∗ = x2
0

n

∏
k=1

(
1 + eeek

xk
x0

) n

∏
k=1

(
1− eeek

xk
x0

)
= x2

0

n

∏
k=1

(
1−

x2
k

x2
0

)
. (58)

Therefore,

‖xxx‖2 = x2
0 −

n

∑
k=1

x2
k +

n

∑
i=1

n

∑
j=i+1

x2
i x2

j

x2
0
−

k

∑
i=1

n

∑
j=i+1

n

∑
k=j+1

x2
i x2

j x2
k

x4
0

+ . . . , (59)

and taking into account (56),

‖xxx‖2 = x2
0 −

n

∑
k=1

x2
k +

n

∑
i=1

n

∑
j=i+1

x2
ij −

k

∑
i=1

n

∑
j=i+1

n

∑
k=j+1

x2
ijk + . . . = ∑

J
(−1)|J|x2

J , (60)

where |J| denotes the cardinality (number of elements) of the multi-index J.

Corollary 4. The scator metric in S1+n
∗ coincides with the pseudo-Euclidean metric (60) in the

2n-dimensional space A1,n. The metric (60) has signature zero.

The second part of the embedded scator space, corresponding to x0 = 0, appar-
ently consists of n coordinate axes (lines along eee1, . . . , eeen). However, we suggest another
interpretation (planes instead of lines), motivated by the following low-dimensional cases.

4.1. Scator Transformations for N = 2 as Isometries in a Four-Dimensional Space of Zero Signature

Let us consider the case n = 2. An element xxx of A1,2, given by:

xxx = x0 + x1eee1 + x2eee2 + x12eee1eee2 , (61)

is an embedded scator if and only if one of the following possibilities hold:

x12 =
x1x2

x0
, x0 6= 0 ,

x0 = x1 = x12 = 0 ,

x0 = x2 = x12 = 0 .

(62)

It is tempting to replace conditions (62) by one equation x1x2 = x0x12, defining a
quadric in A1,2:

xxx = x0 + x1eee1 + x2eee2 + x12eee1eee2 , x1x2 = x0x12 . (63)

The equation x1x2 = x0x12 is not equivalent to (62), because the constraint x12 = 0
is not its necessary consequence. However, we conjecture that the quadric (63) can be
more fundamental than (62). Therefore, we find transformations preserving the following
quadratic constraints:

x2
0 − x2

1 − x2
2 + x2

12 = C ,

x1x2 − x0x12 = 0 ,
(64)
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where C is a constant. This system of two equations can be rewritten in the following,
equivalent, form:

(x0 + x12)
2 − (x1 + x2)

2 = C ,

(x0 − x12)
2 − (x1 − x2)

2 = C ,
(65)

which means that this is an intersection of two hyperbolic cylinders. The most general
linear transformation (modulo reflections) preserving these two quadrics is a system of
two hyperbolic “rotations” (boosts):(

x̃0 + x̃12
x̃1 + x̃2

)
=

(
cosh ϕ sinh ϕ
sinh ϕ cosh ϕ

)(
x0 + x12
x1 + x2

)
,

(
x̃0 − x̃12
x̃1 − x̃2

)
=

(
cosh ψ sinh ψ
sinh ψ cosh ψ

)(
x0 − x12
x1 − x2

)
,

(66)

where ϕ and ψ are constant parameters. It corresponds to the following linear transforma-
tion in the space A1,2:

x̃0
x̃12
x̃1
x̃2

 =
1
2


a + c a− c b + d b− d
a− c a + c b− d b + d
b + d b− d a + c a− c
b− d b + d a− c a + c




x0
x12
x1
x2

 . (67)

where:
a = cosh ϕ , b = sinh ϕ , c = cosh ψ, d = sinh ψ . (68)

Equation (67) can be shortly written as x̃ = Ax. Note that A is symmetric (AT = A).
Moreover,

AT


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

A =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , (69)

which means that A ∈ O(2, 2). We can verify in a straightforward way that det A = 1,
which means that A ∈ SO(2, 2).

Theorem 6. The orthogonal transformation (67) can be realized as a multiplication by the unit
scator exp(ϑ1eee1 + ϑ2eee2), where tanh ϑk = βk (k = 1, 2):

x̃xx = exp(ϑ1eee1 + ϑ2eee2) xxx ≡ γ1γ2(1− β1eee1)(1− β2eee2) xxx , (70)

where γk =
1√

1− β2
k

(k = 1, 2).

Proof. Taking into account (61) and performing the multiplication on the right-hand side
of (70), we obtain:

x̃0 = γ1γ2(x0 − β1x1 − β2x2 + β1β2x12) ,

x̃1 = γ1γ2(−β1x0 + x1 + β1β2x2 − β2x12) ,

x̃2 = γ1γ2(−β2x0 + β1β2x1 + x2 − β1x12) ,

x̃12 = γ1γ2(β1β2x0 − β2x1 − β1x2 + x12) ,

(71)
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or in the matrix form:
x̃0
x̃12
x̃1
x̃2

 = γ1γ2


1 β1β2 −β1 −β2

β1β2 1 −β2 −β1
−β1 −β2 1 β1β2
−β2 −β1 β1β2 1




x0
x12
x1
x2

 . (72)

Matrices (67) and (72) are identical if:

a = γ1γ2(1 + β1β2) ,

b = −γ1γ2(β1 + β2) ,

c = γ1γ2(1− β1β2) ,

d = γ1γ2(β2 − β1) .

(73)

Computing β1 and β2 from (73), we obtain the inverse transformation:

β1 = − b + d
a + c

= − sinh ϕ + sinh ψ

cosh ϕ + cosh ψ
, β2 = − b− d

a + c
= − sinh ϕ− sinh ψ

cosh ϕ + cosh ψ
. (74)

One can check by straightforward computation that the other two equations resulting
from (73), namely:

γ1γ2 =
1
2
(a + c) , γ1γ2β1β2 =

1
2
(a− c) , (75)

are then identically satisfied (taking into account a2 − b2 = 1 and c2 − d2 = 1). Therefore,
substituting (74) into (70), we obtain the matrix A given by (67).

4.2. Embedded Scators as the Intersection of Quadrics in the Case N = 3

If x0 6= 0, then the general element of A1,3, given by:

xxx = x0 + x1eee1 + x2eee2 + x3eee3 + x12eee1eee2 + x13eee1eee3 + x23eee2eee3 + x123eee1eee2eee3 , (76)

is an embedded scator if the last four coordinates are parameterized by the four first
coordinates as follows:

x12 =
x1x2

x0
, x23 =

x2x3

x0
, x13 =

x1x3

x0
, x123 =

x1x2x3

x2
0

. (77)

Equation (77) implies that the scator norm is a pseudo-Euclidean norm in eight-
dimensional space A1,3:

‖xxx‖2 = x2
0

(
1−

x2
1

x2
0

)(
1−

x2
2

x2
0

)(
1−

x2
3

x2
0

)
= x2

0 − x2
1 − x2

2 − x2
3 + x2

12 + x2
13 + x2

23 − x2
123 . (78)

The system (77) can be rewritten as the intersection of nine quadrics:

x1x2 = x0x12 , x12x3 = x0x123 , x13x23 = x3x123 ,

x1x3 = x0x13 , x13x2 = x0x123 , x12x23 = x2x123 ,

x2x3 = x0x23 , x23x1 = x0x123 , x12x13 = x1x123 .

(79)

These equations are not independent, of course. Now, we can ask about the conse-
quences of (79) in the case of x0 = 0. First, it follows from the three equations on the left
that at least two of the three coordinates x1, x2, x3 vanish. Suppose that x1 = x2 = 0. Then:

x3x12 = 0 , x12x13 = 0 , x12x23 = 0 , x13x23 = x3x123 . (80)



Symmetry 2021, 13, 1504 12 of 14

Hence, either x12 = 0 and x13x23 = x3x123 or x3 = x13 = x23 = 0. Analogous results
follows if we take x1 = x3 = 0 or x2 = x3 = 0. Thus, we arrive at the following set of
general solutions to the system (79):

xxx = eee3(x3 + x13eee1 + x23eee2 + x123eee1eee2), x13x23 = x3x123 ,

xxx = eee2(x2 + x12eee1 + x23eee3 + x123eee1eee3), x12x23 = x2x123 ,

xxx = eee1(x1 + x12eee2 + x13eee3 + x123eee2eee3), x12x13 = x1x123 .

(81)

Note that the solution x3 = x13 = x23 = 0 (when x1 = x2 = 0) is included as a special
case of the second equation of (81). Therefore, the subset x0 = 0 reduces to the union of
three two-dimensional quadrics; compare (63). We conjecture that a similar property holds
in higher dimensions, as well.

5. Lorentz Transformation vs. Scator Transformation

Lorentz transformations form the well-known group of symmetries of the 1 + 3-
dimensional Minkowski space. In this section, we compare the Lorentz group with the
group of symmetries of the embedded scator space introduced in Section 3.

5.1. Lorentz Transformation in the Matrix Form

The Lorentz transformation can be represented in the following matrix form [20]:

x̃ = Lx , (82)

where x = (x0, x1, x2, x3)
T and:

L =



γ −γβ1 −γβ2 −γβ3

−γβ1 1 + γ2

γ+1 β2
1

γ2

γ+1 β1β2
γ2

γ+1 β1β3

−γβ2
γ2

γ+1 β2β1 1 + γ2

γ+1 β2
2

γ2

γ+1 β2β3

−γβ3
γ2

γ+1 β3β1
γ2

γ+1 β3β2 1 + γ2

γ+1 β2
3


(83)

where:
γ =

1√
1− β2

= 1 +
1
2

β2 +
3
8

β4 + . . . (84)

and β2 = β2
1 + β2

2 + β2
3. The Lorentz factor γ is defined for |β| < 1. We can decompose L

as follows:

L = γ


1 −β1 −β2 −β3

−β1 1 0 0
−β2 0 1 0
−β3 0 0 1

+
γ− 1

β2


0 0 0 0
0 −β2

2 − β2
3 β1β2 β1β3

0 β2β1 −β2
1 − β2

3 β2β3

0 β3β1 β3β2 −β2
1 − β2

2

, (85)

where we applied the identity:

γ− 1
β2 ≡ γ2

γ + 1
=

1
2
+

3
8

β2 + . . . (86)

Thus, taking into account (84) and (86), we can easily expand L in the Taylor series
with respect to β1, β2 and β3. The series is convergent in the open ball |β| < 1.
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5.2. Scator Transformation

As a natural analogue of Lorentz transformations in the scator space, one takes multi-
plications by unit scators [5,6], because, preserving the scator norm, they are isometries of
the scator space S1+3:

(x̃0 + x̃1
o
eee1 + x̃2

o
eee2 + x̃3

o
eee3) = π

(
γ1γ2γ3(1− β1eee1)(1− β2eee2)(1− β3eee3)F(

o
x)
)

(87)

where we use the fundamental embedding F and the projection π: A1,3 → S1+3.
The scator transformation (87) preserves the scator norm (78) and, considered as a

transformation in the space R1,3, is nonlinear:

x̃0 = x0γ1γ2γ3

(
1− β1

x1

x0

)(
1− β2

x2

x0

)(
1− β3

x3

x0

)
,

x̃k = x̃0

( xk
x0
− βk

1− βk
xk
x0

)
(k = 1, 2, 3) .

(88)

It becomes linear when considered in the larger space R2n
, as described in Section 4.

We propose here also another approach, which consists of linearizing the nonlinear
transformation (87) with respect to variables x0, x1, . . . , xn. Then:

(x̃0 + x̃1eee1 + x̃2eee2 + x̃3eee3) = π(γ1γ2γ3(1− β1eee1)(1− β2eee2)(1− β3eee3)(x0 + x1eee1 + x2eee2 + x3eee3)). (89)

Rewriting it in the matrix form, we obtain:

x̃0

x̃1

x̃2

x̃3


= γ1γ2γ3



1 −β1 −β2 −β3

−β1 1 β1β2 β1β3

−β2 β2β1 1 β2β3

−β3 β3β1 β3β2 1





x0

x1

x2

x3


(90)

This linearized approach can be also be viewed at as identifying the Minkowski space
with scators in the “additive representation” R1+n, while the elements of the transformation
group are identified with scators in the “multiplicative representation” [11]. It is worth
noting that the scator transformation (90) is defined on a larger domain (the open cube
|βk| < 1 for k = 1, 2, 3) than the Lorentz transformation.

The components of Formula (88) are reminiscent of the Lorentz rule for the relativistic
sum of velocities (in the one-dimensional case), which has motivated some physical appli-
cations [5,6]. Certainly, the commutative properties of the scator product look promising
in comparison to Einstein’s addition of vector velocities, which is neither associative nor
commutative, and an extra rotation is necessary to satisfy gyro-group properties [21,22].
However, comparing the matrices (83) and (90), we see that the scator approach yields
results that, in general, are quite different from the classical special relativity. In order to
obtain physically plausible conclusions, one should apply scators in a very special range of
variables and parameters.

6. Conclusions

In the generic case, the scator product, proposed by Fernández-Guasti and Zaldívar [1],
is induced by another product (in another space, namely A1,n), which is commutative, asso-
ciative, and distributive over addition. The space A1,n, spanned by vectors eeek (k = 1, . . . , n))
and their products, may be understood as a commutative analogue of the geometric alge-
bra or the Clifford algebra [14,15]. In this context, we can interpret eeejk as bivectors and eeeJ

(where J is a multi-index) as multivectors. The set F(S1+n
∗ ) (the fundamental embedding of

scators with nonvanishing scalar component) has a natural group structure reminiscent of



Symmetry 2021, 13, 1504 14 of 14

a commutative analogue of the Clifford (or Lipschitz) group [23]. Theorems 1 and 2 show
that this group is, indeed, a natural model of the scator space. Another interesting feature
of the space A1,n is the metric structure induced by the scator metric. It turns out that this
is a pseudo-Cartesian metric (the squared norm of basis multivectors eeeJ is one for even
multiple indices and −1 for odd multiple indices). Section 4 presents a new interpretation
of the scator product as an isometry (orthogonal transformation) in this space.

Author Contributions: Conceptualization, J.L.C. and A.K.; methodology, J.L.C. and A.K.; formal anal-
ysis, J.L.C.; investigation, J.L.C. and A.K.; writing—original draft preparation, J.L.C.; writing—review
and editing, J.L.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fernández-Guasti, M.; Zaldívar, F. A Hyperbolic Non-Distributive Algebra in 1 + 2 dimensions. Adv. Appl. Clifford Algebr. 2013,

23, 639–656. [CrossRef]
2. Fernández-Guasti, M. A Non-distributive Extension of Complex Numbers to Higher Dimensions. Adv. Appl. Clifford Algebr. 2015,

25, 829–849. [CrossRef]
3. Fernández-Guasti, M. Components exponential scator holomorphic function. Math. Meth. Appl. Sci. 2020, 43, 1017–1034.

[CrossRef]
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9. Kobus, A.; Cieśliński, J.L. On the Geometry of the Hyperbolic Scator Space in 1 + 2 Dimensions. Adv. Appl. Clifford Algebr. 2017,

27, 1369–1386. [CrossRef]
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