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Abstract: Deep learning applications on computer vision involve the use of large-volume and repre-
sentative data to obtain state-of-the-art results due to the massive number of parameters to optimise
in deep models. However, data are limited with asymmetric distributions in industrial applications
due to rare cases, legal restrictions, and high image-acquisition costs. Data augmentation based on
deep learning generative adversarial networks, such as StyleGAN, has arisen as a way to create train-
ing data with symmetric distributions that may improve the generalisation capability of built models.
StyleGAN generates highly realistic images in a variety of domains as a data augmentation strategy
but requires a large amount of data to build image generators. Thus, transfer learning in conjunction
with generative models are used to build models with small datasets. However, there are no reports
on the impact of pre-trained generative models, using transfer learning. In this paper, we evaluate
a StyleGAN generative model with transfer learning on different application domains—training
with paintings, portraits, Pokémon, bedrooms, and cats—to generate target images with different
levels of content variability: bean seeds (low variability), faces of subjects between 5 and 19 years
old (medium variability), and charcoal (high variability). We used the first version of StyleGAN due
to the large number of publicly available pre-trained models. The Fréchet Inception Distance was
used for evaluating the quality of synthetic images. We found that StyleGAN with transfer learning
produced good quality images, being an alternative for generating realistic synthetic images in the
evaluated domains.

Keywords: data augmentation; fine-tuning; generative models; StyleGAN; transfer learning

1. Introduction

Deep learning methods, a subset of machine learning techniques, have achieved out-
standing results on challenging computer vision problems, such as image classification,
object detection, face recognition, and motion recognition, among others [1]. However,
the use of deep learning requires a large volume of representative annotated data to learn
general models that achieve accurate results [2]; data are still scarce with asymmetric
distributions, i.e., disproportionate number of examples between classes, in most applica-
tions related to healthcare, security and industry, due to legal/ethical restrictions, unusual
patterns/cases, and image annotation costs [3–5].

As an alternative, image data augmentation has emerged to create training data with
symmetric distributions by increasing data and reducing overfitting in deep learning
models [6]. Data augmentation has been used through simple transformations, such as
rotations, mirroring, and noise addition [4]. However, simple transformations produce
a reduced number of valid data which usually are highly correlated and produce overfit
models with poor generalisation capacity.
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Generative Adversarial Networks (GANs) [7] have emerged as an alternative to cre-
ate synthetic images by learning the probability distribution from data and generating
images with high diversity and low correlation that can be used to build deep learning
models [4,5,8–13]. GANs are used in medical applications, such as CT image segmen-
tation [4,14] and disease/injure detection [12,13,15–17]. Nevertheless, since GANs are
deep-learning-based models, they also require a significant amount of data and computa-
tional time to be trained from scratch. This drawback limits the use of GANs in generating
images in applications where data are scarce, such as security and industry. A way to cope
with this disadvantage is the use of transfer-learning techniques, which allow building new
models from pre-trained ones in other applications or source domains with an abundance
of training data by transferring the main features and reducing the training time [2].

Transfer learning has been widely used to address image classification [18–20] and
segmentation [21,22] problems. However, the effect of StyleGAN-transfer learning on
generating image quality is poorly reported. Wang et al. [23] evaluated the transferability
of features, using different source and target domains to build generative models applying
transfer learning, with some limitations, such as the generation of low-resolution images
and the lack of evaluation of the impact of content variability in target domains.

In this paper, we evaluate a data augmentation strategy based on transfer learning and
StyleGAN [24]. We use the first version of StyleGAN due to the large number of publicly
available pre-trained models. In particular, we evaluate the capability of StyleGAN and
transfer learning to generate synthetic images (data augmentation) considering variability
levels on content. Thus, we assess quantitatively and visually the quality of the generated
images, using three target domains with fine-tuned StyleGANs from five pre-trained
models—source domains. The evaluated target domains correspond to three image sets
derived from industrial processes with different levels of content variability, shown in
Figure 1: bean seeds (low variability), faces of people aged between 5 and 19 years (medium
variability), and chars obtained during coal combustion (high variability). The assessed
source domains, to transfer features and build generative models, correspond to five pre-
trained StyleGANs with images of paintings, portraits, Pokémon, bedrooms, and cats.
Distinct from the commonly used transfer learning strategy, which consists of using related
source and target domains, the evaluation is focused on source and target domains that
are completely different. Obtaining the results shown, StyleGAN with transfer learning
is suitable for the generation of high-resolution images in industrial applications due to
having a good generalisation capability regarding content variability of the target image.

Bean seeds

Young faces

Chars

Figure 1. Illustration of target domains for image generation.

The rest of the paper is structured as follows: Section 2 presents the theoretical
background on StyleGAN, GANs assessment, and transfer learning. Section 3 summarises
the relevant related works. Section 4 details the data augmentation strategy used as an
evaluation pipeline. Section 5 describes the performed experiments and results. Section 6
presents the discussion on the obtained results, focusing on the effect of pre-trained models
for synthetic image generation; Section 7 depicts the conclusions and future research lines.
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2. Theoretical Background
2.1. StyleGAN

StyleGAN [24] combines the architecture of Progressive Growing GAN [25] with
the style transfer principles [26] in Figure 2. StyleGAN’s architecture addresses some
limitations of the GAN models, such as stability during training and lack of control over
the images generated.

Figure 2. The StyleGAN architecture [27] is composed of three neural networks. (a) Mapping
network, which converts a random into a style signal. (b,c) Progressive generator network, which
receives the style signal (A) and random noise (B), and produces images progressively. (d) The
progressive discriminator network, which compares real and generated images to update all the
weights for the three networks, improving their performance.

In a traditional GAN model, a generative network receives as input a random vector Z,
or latent vector, to generate a new image. In contrast, in the StyleGAN architecture, a latent
vector Z (512-dimensional) feeds an 8-layer neural network, called a mapping network,
that transforms the latent vector into an intermediate space W (512-dimensional), which
defines the style of the image to be generated; see Figure 2a.

An image style defined in the intermediate space W is transferred to the progressive
generative network (Figure 2b), where the technique AdaIN (Adaptive Instance Normal-
ization) [26] transforms the latent vector W into two scalars (scale and bias) that control the
style of the image generated at each resolution level. In addition to the style guide provided
by AdaIN, the progressive generator network has as an input a constant argument. This
constant corresponds to an array of 4× 4× 512 dimensions, i.e., an image of 4× 4 pixels
with 512 channels, which is learned during network training and contains a kind of sketch
with the general characteristics of the training set images. Furthermore, StyleGAN has
noise sources injected at each resolution level to introduce slight variations in the gener-
ated images (Figure 2c). The improvements in the StyleGAN generative network allow
optimising the quality of the generated synthetic images. Finally, the back propagation
algorithm is applied to adjust the weights of the three networks, improving the quality of
the images generated during the following iterations (Figure 2d).

2.2. GANs Model Evaluation

Evaluating GAN architectures is particularly hard because there is not a consensus
on a unique metric that assesses the quality and diversity of generated images [4,23].
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However, a widely used metric in the literature is the Fréchet Inception Distance (FID) [28],
defined as follows:

FID =
∥∥µr − µg

∥∥2
+ Tr

(
Σr + Σg − 2

(
ΣrΣg

)( 1
2 )
)

, (1)

where µr, µg are mean vectors and Σr, Σg are variance–covariance matrices. Equation (1)
is a distance measurement between real and generated images. Xr ∼ N(µr, Σr) and
Xg ∼ N(µg, Σg) are multidimensional normal distributions of 2048 dimensions of real and
generated images, respectively, which are extracted from the third layer of polling of the
Inception-v3 network [29].

The closer the distributions, the lower the metric value. FID values close to zero
correspond to a larger similarity between real and generated images, resulting in the
differences between the distributions.

2.3. Transfer Learning

Transfer learning models involve applying the knowledge learned in a source domain—
where a large amount of training data are available—to a target domain that has a reduced
amount of data, as illustrated in Figure 3. The objective is to transfer most characteristics
obtained from a source domain into a target domain in order to reduce training time and
use deep learning models with limited data [30].

Figure 3. Transfer learning scheme [2]. The learning task to be accomplished in the source domain
is provided by a vast number of training data. The target domain usually has a limited number of
training data.

The transfer learning is defined as follows: given a source domain DS, a source learn-
ing task TS, a target domain DT , and a target learning task TT , the transfer learning aims
to improve the learning of the target predictive function fT(.) in DT using the knowledge
learned in DS and TS, where DS 6= DT or TS 6= TT . A domain D is defined by two com-
ponents: a feature space X and a marginal probability distribution P(X), D = {X, P(X)}.
Similarly, a learning task T consists of two components: a labels space Y and a target
predictive function f (.), T = {Y, f (.)}.

In unsupervised models, such as GANs, the Y labels space does not exist, and the
learning task objective is to estimate the generative distribution of data. For this purpose,
a particular transfer learning technique, known as fine tuning, is used. Fine tuning is a
transfer learning technique in which a model that has been trained for a specific task is
used to perform a new task, with similar characteristics to the first task, by adjusting model
parameters. This process means that a model is not built from scratch, but rather takes
advantage of the characteristics learned from the original task.
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3. Related Works

GANs are capable of image generation in two categories: low-resolution [4,8,12,13,15,16,23]
and high-resolution [14,17,31–41]. A summary of these approaches is presented in Table 1.
The first group comprises mostly studies between 2017 and 2018. A predominance of
medical image augmentation focus on cancer detection [4,15], cerebral diseases [16] and
COVID-19 [12,13] is observed. The image generation is motivated by the high cost of
medical images acquisition that translates into a limited number of samples to train deep
learning models. Publications include studies that evaluated the effectiveness of GANs
data augmentation, using computer vision benchmarks datasets [8,23]. Particularly, the
work of Wang et al. [23] corresponds to the only attempt to use transfer learning with
generative models. This study concluded that it is possible to apply transfer learning in a
Wasserstein GAN model [42], using source and target domains with low-resolution images.

The second group includes studies from 2019 to date, driven by new GAN architec-
tures, such as StyleGAN [24], generating images with high-resolution. There are three
application areas: agriculture [31,32], medical [14,17,36,37], and electrical domains [35].
Particularly, Fetty et al. [17] presented a complete analysis of StyleGAN models trained
from scratch for data augmentation of pelvic malignancies images.

Transfer learning on generative models for limited data has been the subject of study
for the last three years [33,34,38–41], focusing on evaluating the impact of freezing the
lower generator layers [33,34], the lower discriminator layers [39], and both the generator
and discriminator lower layers [40], using mainly general purposes datasets of indoors (e.g.,
LSUN, Bedroons) and faces (e.g., CelebHQ, FFHQ, CelebA). The results show a reduction
in the overfitting derived from the knowledge transfer and training time. However, transfer
learning in conjunction with generative models has not been evaluated with a focus on the
capability to generate synthetic images with high-resolution, considering the variability
levels of content.

We aim to fill this literature gap using the proposed pipeline to evaluate the transfer
capability of the knowledge obtained from certain source domains to target domains with
different levels of content variability, such as bean seed images (with simple shape, texture,
and colour), young faces and chars images (with more complex visual features). These
target domains correspond to real industrial applications.
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Table 1. Summary of GANs approaches for image generation.

Application Description Model Description

Year Context Images Number Images Quality Generative Model Transfer Learning Training Time Evaluation Metric

2017 [8]
Data augmentation in

alphabets, handwritten
characters, and faces

Alphabets: 1200,
Characters: 3400, Faces:

1802
Low-resolution Conditional GAN Yes Not available Not available

2018 [4]
Data augmentation

using computed
tomography images

Different variations Low-resolution Progressive Growing
GAN No ∼36 GPU hours Not available

2018 [15]
Data augmentation

using GANs for liver
injuries classification

Computed tomography
images: 182 Low-resolution Deep Convolutional

GAN (DCGAN) No Not available Not available

2018 [16]
Medical image data
augmentation using

GANs

Alzheimer’s Disease
Neuroimaging
Initiative: 3416

Low-resolution Pix2Pix GAN No Not available Not available

2018 [23]
Transfer learning in

GANs for data
augmentation

Varies from 1000 to
100,000 Low-resolution

Wasserstein GAN with
Gradient Penality

(WGAN-GP)
Yes Not available FID minimum: 7.16,

FID maximum: 122.46

2020 [12]

Transfer learning in
GANs for COVID-19

detection on chest X-ray
images

Normal cases: 79,
COVID-19: 69,

Pneumonia bacterial: 79,
Pneumonia virus: 79

Low-resolution Shallow GAN Yes Not available Not available

2020 [13] COVID-19 Screening on
chest X-ray images

Normal cases: 1341,
Pneumonia: 1345 Low-resolution Deep Convolutional

GAN (DCGAN) No GPU Titan RTX; 100
epochs Not available

2019 [31] Plant diseases detection Plant leafs: 79,265 High-resolution StyleGAN No Not available Not available

2019 [32] Data augmentation on
plant leaf diseases

Plant leaf disease:
54,305 High-resolution DCGAN & WGAN No 1000 epochs Not available

2019 [14]
Data augmentation

using GANs to improve
CT segmentation

Pancreas CT: 10,681 High-resolution CycleGAN No 3 M iterations Qualitative evaluation

2019 [33]
Image generation from
small datasets via batch

statistics adaptation

Face, Anime, and
Flowers: 251–10,000 High-resolution SNGAN, BigGAN Yes 3000, 6000–10,000

iterations FID: 84–130
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Table 1. Cont.

Application Description Model Description

Year Context Images Number Images Quality Generative Model Transfer Learning Training Time Evaluation Metric

2019 [34] Mind2Mind: transfer
learning for GANs

MNIST, KMNIST, and
CelebHQ: 30,000–60,000 High-resolution MindGAN Yes Not available FID: 19.21

2020 [35]

Data augmentation
using GANs for

electrical insulator
anomaly detection

Individual insulators:
3861 High-resolution

BGAN, AC-GAN,
PGAN, StyleGAN,

BPGAN
No Not available Not available

2020 [17]

Data augmentation
using StyleGAN for
pelvic malignancies

images

17,542 High-resolution StyleGAN No One GPU month FID: 12.3

2020 [36]
Data augmentation for
Magnetic Resonance

Brain Images
50,000 High-resolution

StyleGAN and
Variational

autoencoders
No Not available Not available

2020 [38]

MineGAN: effective
knowledge transfer

from GANs to target
domains with few

images

MNIST, CelebA, and
LSUN: 1000 High-resolution Progressive GAN,

SNGAN, and BigGAN Yes 200 iterations FID: 40–160

2020 [39]

Freeze the
discriminator: a simple
baseline for fine-tuning

GANs

Animal face, Flowers:
1000 High-resolution StyleGAN, SNGAN Yes 50,000 iterations FID: 24–80

2020 [40]

On leveraging
pretrained GANs for

generation with limited
data

CelebA, Flowers, Cars,
and Cathedral: 1000 High-resolution GP-GAN Yes 60,000 iterations FID: 10–80

2021 [37]
Data augmentation for

Cardiac Magnetic
Resonance

6000 High-resolution Conditional
GAN-based method Yes Not available Not available

2021 [41]

MineGAN++: mining
generative models for
efficient knowledge

transfer to limited data
domains

MNIST, FFHQ, Anime,
Bedroom, and Tower:

1000
High-resolution BigGAN, Progressive

GAN, and StyleGAN Yes 200 iterations FID: 40–100
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4. Evaluation Synthetic Images Generation Pipeline

We proposed a five-step pipeline based on the fine tuning of StyleGAN pre-trained
models from five source domains, as is shown in Figure 4—paintings, portraits, Pokémon,
bedrooms, and cats—in order to generate synthetic images in three target domains: bean
seeds, young faces, and chars. Although, there is a new version of StyleGAN, called
StyleGAN2 [43], we selected the first version of StyleGAN, due to the large number
of publicly available pre-trained StyleGAN models. Moreover, in practice, training a
StyleGAN model from scratch requires a huge number of images, computational resources
(preferably with multiple GPUs) and processing time.

In the proposed image generation pipeline, first, we select the images target domain
of bean seeds, young faces, or chars, as input. Second, images from the target domain
are pre-processed to improve the transferability of features by adjusting image resolution.
Third, pre-trained StyleGAN models are fine tuned with pre-processed images. Fourth,
the FID evaluation metric is used for selecting the best source domain. Fifth, the synthetic
images for the input target domain are generated with the best source domain.

Figure 4. Evaluation pipeline: (a) Input images from a target domain. (b) Pre-processing of target
domain images to improve the transferability of the features. (c) Transfer learning using StyleGAN
pre-trained models from source domains. (d) Selection of the best source domain using the FID
metric. (e) Generation of synthetic images for the target domain.

4.1. Input Target Domain Images

We used images from three application domains—bean seeds, young faces and chars—
with different variability levels of content and potential industrial applications; see Figure 1.

Bean seeds: The dataset [44] has 1500 seed images from 16 bean varieties. Bean
seed images are classified as low content variability since shape, colour, and texture
characteristics are homogeneous for the analysed seed varieties, corresponding to oval
shapes with limited range of red, cream, black, and white colours. In addition, the acquired
images share the same background colour. Synthetic images of bean seeds are valuable in
developing evaluation tools of genetic breeding trials. These tools are used to preserve the
genetic pedigree of seeds over time, accomplish market quality requirements, and increase
production levels [45].

Young faces: The images set consists of 3000 images randomly selected from pub-
licly available datasets with reference to age estimation problems: IMDB-WIKI [46],
APPA-Real [47], AgeDB [48]. Images correspond to individuals aged between 5 and 19
years. This range of ages was selected because it presents the lowest frequencies in the
considered facial datasets. In addition, young faces are crucial in cybersecurity applica-
tions, such as access control, the detection of Child Sexual Exploitation Material or the
identification of victims of child abuse [49–51]. Young facial images are considered to be of
medium variability content since faces have a similar shape structure; the StyleGAN model
was originally designed for faces generation.

Chars: The dataset contains 2928 segmented char particle images from coals of high,
medium, and low reactivity. Char images are considered to be of high variability content
due to the complex particle shapes and lack of colours. Synthetic images of char particles
are useful to train models to estimate the combustion parameters in power generation
plants [52].

Table 2 contains a summary of the target domains, including the source, number of
images, number of classes, and content variability type.
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Table 2. Description of target domain datasets.

Target Domain # of Images # of Classes Content Variability

Bean seeds [44] 1500 16 Low
Young faces [46–48] 3000 14 Medium

Chars [52] 2928 3 High

4.2. Pre-Processing Target Domain Images

Input images are pre-processed to improve the transfer of features from the source
domain images into the target domain. The pre-processing consists of equally adjusting the
images resolution to the resolution of the source domain. In short, operations of resizing,
up-scaling, or down-scaling are applied, depending on the difference between the target
and source images’ dimensions.

4.3. Transfer Learning from Source Domains

We used five pre-trained StyleGAN models—paintings, portraits, Pokémon, bedrooms,
and cats—shown in Figure 5. The selection of pre-trained models was based on the (i)
public availability of models, and (ii) diversity of images used to build models. Table 3
presents relevant information about pre-trained models: the images source, required
images resolution, and the number of iterations used for training.

Paintings

Portraits

Pokémon

Bedrooms

Cats

Figure 5. Illustration of generated images using the training source domain models.

Table 3. Description of pre-trained StyleGAN models (source domains).

Source Domain Image Resolution Number of Iterations

Paintings [53] 512× 512 8040
Portraits [54] 512× 512 11,125
Pokemon [55] 512× 512 7961
Bedrooms [56] 256× 256 7000

Cats [56] 256× 256 7000

Transfer learning is performed by fine tuning the pre-trained StyleGAN models (source
domains) with images of the target domain to build new image generators. During the fine
tuning of StyleGAN models, the learning rate is set to 0.001 and the number of minibatch
repetitions is set to 1 based on those reported in [57]. The selected values for the learning
rate and minibatch repetition increase the stability and speed during training.
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4.4. Selection of the Best Source Domain

Once the StyleGAN models are fine tuned, the best source domain is selected based
on the best FID metric value to generate images of a target domain. In particular, the
StyleGAN model with the lowest FID value has a better performance since the model
generates images with a distribution similar to the target domain.

4.5. Synthetic Images Generation (Output)

The StyleGAN with the best performance is used to generate as many images as
needed for the target domain (data augmentation).

5. Experimental Evaluation

We assess the transfer learning capability of pre-trained models from five source
domains—paintings, portraits, Pokémon, bedrooms, and cats—to build StyleGAN models
for generating images of unrelated target domains with different levels of content variabil-
ity: bean seeds, young faces, and chars. Pre-processed images from target domains are used
to fine tune pre-trained StyleGAN models (source domains) over 1000 iterations, using
the hyperparameters described in Section 4.3. We run the experiments on a GNU/Linux
machine with a GPU Nvidia TITAN Xp 11GB, Cuda 10.1, and CuNDD 7. The source code
is available at https://github.com/haachicanoy/stylegan_augmentation_tl (accessed on
28 July 2021).

Table 4 presents the FID values obtained for the fine-tuned StyleGAN models, and
Table 5 illustrates the generated images by the target domain.

Table 4. FID values for StyleGAN models built for target domains by fine tuning pre-trained models
from different source domains. The best source domain to generate images of a target domain by
transfer learning is highlighted in bold. Lower FID values indicate better performance.

Source Target Bean Seeds Young Faces Chars

Paintings 23.26 27.77 38.13
Portraits 35.04 30.11 —
Pokémon 27.06 27.56 —
Bedrooms 39.31 16.98 34.81

Cats 57.92 20.48 61.52

Table 5. Generated images for target domain using fine tuned StyleGAN models.

Source Target Bean Seeds Young Faces Chars

Original image

Paintings

Portraits —

Pokémon —

Bedrooms

Cats

The results show that StyleGAN models are able to generate bean seed images (low
content variability) through transfer learning with excellent performance. FID values
range between 23.26 and 57.92, corresponding to the source domains of paintings and cats,

https://github.com/haachicanoy/stylegan_augmentation_tl
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respectively. Hence, the best source domain to generate bean seed images is paintings. It
indicates that the colour pattern in these images is more similar to beans in comparison to
the other source domains.

Regarding the generation of young face images (medium content variability), the
bedrooms source domain achieves the best results (FID of 16.98). Bedrooms are one of
the most complete source domains, standing out for colour and shape features that are
efficiently transferred to generate facial images. It is essential to highlight that the five
source domains yield FID values lower than 30.11. This performance may be related to the
fact that the StyleGAN architecture was specifically developed for generating synthetic
face images.

During the fine tuning of models to generate char images, we observed that the source
domains of Pokémon and portraits do not converge, leading the training to fail. This is
presumably because of the high content variability of chars with complex shapes, varying
sizes, and changes in colour intensities that make it difficult to adapt the features from
these two source domains. The remaining source domains (paintings, bedrooms, and cats)
have features that can be successfully transferred to the generation of char images. In
particular, bedrooms achieve the best performance (FID of 34.81).

In most of the cases, fine tuned models generate images of bean seeds, young faces
and chars with visual characteristics that are similar to the original ones (see Table 5).
However, in some cases, the generated images have visual defects; see Figure 6. Defects
on bean seed images comprise bean shape deformation, stains, and changes in colour
intensities. Defects on young facial images correspond to colour spots and alterations in
the hair, skin, and smile. Defects on chars images include blurring and undefined shapes.
Therefore, the generated images have to be filtered to remove images with defects before
using them in any application, e.g., the training of an image classifier. A sample of 1000
synthetic images of target domains generated from the best source domains is available at
https://doi.org/10.7910/DVN/HHSJY8 (accessed on 23 July 2021).

Bean seeds

Young faces

Chars

Figure 6. Defects in generated images by target domain.

6. Effect of Pre-Trained Models on Synthetic Images Generation

Figure 7 shows the evolution of the FID metric across the iterations of fine tune
StyleGAN models for evaluating target domains (bean seeds, chars and young faces). The

https://doi.org/10.7910/DVN/HHSJY8
https://doi.org/10.7910/DVN/HHSJY8
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results show that, in most cases, the trained models for a target domain—regardless of
the source domain—tend to stabilise and converge to a constant FID value, after a certain
number of iterations. This occurs for all cases, except for target domains with high content
variability (chars) where some source domains do not converge—portraits and Pokémon.
Hence, we conclude that transfer learning and generative models, such as StyleGAN, can
be successfully used to build generators of images with low and medium content variability,
such as seeds and faces. However, the generation of synthetic images with high content
variability is limited by the characteristics of source domains. In particular, the best FID
values are obtained for the source domains of paintings (bean seeds) and bedrooms (chars
and young faces).

Figure 7. FID metric vs. StyleGAN training iterations for the evaluated source domains grouped by
target domain.

We also analysed the loss score values of the generator and discriminator networks
during training, shown in Figure 8. Similar to the observed for the FID values, the loss
scores of the source domains exhibit a steady behaviour, except for the cats’ domain,
indicating an instability around 500 iterations.

Furthermore, the use of transfer learning reduces significantly the number of images
(up to 1500 for beans) and iterations (up to 1000 or 2 days) required to build StyleGAN
models, in comparison to models trained from scratch (70,000 images and 14 days) [24].

Regarding the quality of the synthetic images, Figure 9 presents a bar graph of the FID
values by source domains—paintings, portraits, Pokémon, bedrooms, and cats—grouped
by the target domain: bean seeds, chars, and young faces. The bar highs correspond to
median values of the FID obtained during the fine tuning of StyleGAN models by a source
domain, while the black line on the bars represents dispersion of the median FID values.
The length of the line denotes the range of the dispersion. Larger lines indicate that the
images generated from a source domain differ significantly from the target domain.

The source domains with the best performance—lower median FID value and
dispersion—are bedrooms, for the young faces and chars, and paintings, for the bean
seeds. Despite bedrooms yielding the lowest FID value in the target domain of chars, this
source domain is the one with the largest dispersion, indicating a possible generation of
char images with defects.
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Figure 8. Loss scores vs. StyleGAN training iterations for the evaluated source domains grouped
by target domain. Solid and dotted lines correspond to discriminator and generator network scores,
respectively; following the source domains colours.

Figure 9. FID (median) for target domains and their source domains.

7. Conclusions

StyleGAN with transfer learning is a strategy for generating synthetic images with a
limit number of images from the target domain. We evaluated the application of StyleGAN
with transfer learning on generating high-resolution images by a pipeline based on the fine
tuning of StyleGAN models. The evaluation was conducted using three target domains
from industrial applications with different content variability (bean seeds, chars, and young
faces) and five source domains from general applications (paintings, portraits, Pokémon,
bedrooms, and cats) to perform transfer learning.

The experimental evaluation confirmed the potential of StyleGAN with transfer learn-
ing for generating synthetic images for industrial applications. The proposed pipeline
performed better with target domains with low and medium content variability in terms of
colour and shape, such as bean seeds and young faces. Moreover, the time and number of
images required to build the models were reduced in all cases, which validates the use of
StyleGAN with transfer learning for generating synthetic images.
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As future work, strategies to optimise the fine tuning hyper-parameters will be evalu-
ated to improve the performance of image generators with high content variability and
reduce the defects in synthetic images. General purpose datasets will be assessed, such as
FFHQ and LSUN.
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