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Abstract: The aerodynamic coefficients transiting test is a new method for measuring the structural
aerodynamic coefficients using the wind generated by a moving vehicle. However, the effect and
correction of natural wind on the transiting test has not been studied. Hence, in this study, the
investigation of the aerodynamic force and pressure measurements on a special triangular prism
model is simulated through the transiting test under different natural wind conditions for 30◦ and
90◦ angles of wind incidence. Force and pressure measurement results in the transiting test are used
to describe and explain the effect of natural wind in the range of 0–3.0 m/s on the aerodynamic
coefficients of the symmetric triangular prism qualitatively and quantitatively. The results show
that the driving wind field of the vehicle, aerodynamic force coefficient, and aerodynamic pressure
coefficient are significantly influenced by strong natural wind greater than 1.71 m/s, which must
be considered and so it is recommended that the structure aerodynamic coefficients transiting test
should be conducted under the condition that the natural wind is less than 1.71 m/s. In addition, the
method of two-direction round-trip measurement is proposed to modify the effect of natural wind
on transiting tests.

Keywords: effect of natural wind; transiting test method; aerodynamic coefficients; ultrasonic
anemometer; triangular prism model

1. Introduction

The aerodynamic coefficients of structures are an important parameter in the study
of structural wind engineering [1]. The aerostatic stability of bridges [2], aerodynamic
instability of transmission cable conductors [3], wind resistance research of high-rise build-
ings [4], airfoil design of wind turbines [5,6], galloping stability of structures [7,8], safety
of high-speed train operations [9,10], and vehicle aerodynamic shape design [11] are all
closely related to the aerodynamic coefficients. At present, the full-scale field measurement
research [12,13], computational fluid dynamics that are based on fluid calculation soft-
ware [14], and the wind tunnel test [15,16] are commonly used methods for investigating
the structural aerodynamic coefficients. However, the above three methods have their own
shortcomings. For the numerical simulation method, the setting of some parameters is
different from the actual situation, and the simulation conditions are more ideal. Simulation
results are usually restricted by conditions such as grid and incoming flow [17]. Therefore,
the problem of aerodynamics cannot be completely solved by numerical simulation [18,19].
Field measurements are the most realistic research method, but they will also be restricted
by conditions such as weather, terrain, installation conditions, and measurement period.
It is difficult to conduct field measurements on some large structures [20,21]. The wind
tunnel test is the most common experimental method, but the establishment of exact
two-dimensional flow conditions in wind tunnels is a very difficult problem [22,23]. It
is usually affected by the blocking effect [24], the Reynolds number effect [25], the wall
interference [26], support system interference [27], the boundary layer effect [28], and other
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factors. Rašuo used the NACA 0012 airfoil to analyze the influence of the Reynolds number,
Mach number, wall interference, and sidewall boundary-layer control [22,25]. In addition,
in order to improve the accuracy of the wind tunnel test, many scholars have conducted
in-depth studies on the boundary layer effect of the wind tunnel test [29].

Li et al. proposed a new test method for structural wind resistance research using
wind generated by a vehicle moving at a constant speed on the basis of the principle of
relative kinematics, which is also called the transiting test for short [30,31]. As a new
structural wind resistance research method, the transiting test has practical applications in
building the wind pressure coefficient [30], the structural aerodynamic coefficient [31,32],
the galloping of iced conductors [33], passive simulation of the wind profile [34], and
aerodynamic performance of the wind turbine airfoil. These applications can be expanded
to other aspects of structural wind resistance research. Moreover, the transiting test can be
extended to other aspects of structural wind resistance research. However, the transiting
test can be affected by factors such as the Reynolds number, end plate, natural wind, road
type, and vehicle interference. In order to improve the accuracy of the test, it is necessary
to conduct research and analysis on the various influencing factors and then provide
guidance for the transiting test. The Reynolds number effect and the effect of end plates
had been analyzed in the previous studies related to the transiting test. It is found that the
transiting test method, for measuring the aerodynamic coefficients of the triangular prism
on the straight highway, is not sensitive to the Reynolds number effect [31] and requires
end plates which meet certain size requirements [32]. Considering that natural wind is
ubiquitous in the external environment, it is necessary to study the effect of natural wind
on the transiting test. The purpose is to provide guidance on natural wind conditions for
subsequent transiting tests.

Natural wind is ubiquitous in the outdoor environment. Outdoor tests are inevitably
interfered with by natural winds [35,36]. Common outdoor tests must take into account the
impact of natural wind on several aspects, such as the impact of natural wind on the safety
of high-speed rail [37], the vehicle coast-down test [38–40], aircraft landing safety, building
ventilation [41], and vehicle driving safety [42], and so on. The transiting test method of
the structural aerodynamic coefficients is also an outdoor road test exposed to the wind
environment. Hence, investigating the influencing factors of natural wind is necessary.

At present, the methods commonly used in natural wind impact research mainly
include the simulation of natural wind curves using numerical simulation software [43],
the simulation of natural wind characteristics in wind tunnels [42], and measurement of
the natural wind environment during the field measurement test [44]. Using actual natural
wind characteristics, Yu et al. [37] numerically simulated natural wind and applied it to the
high-speed dynamic simulation model, which has been modeled using the vehicle dynamic
simulation package “Simpack” to study the random wind stability of the high-speed
train. The results demonstrated that the operational safety of the high-speed train will be
overestimated if the lateral wind velocity is not considered. Kozmar et al. [42] evaluated the
effect of the cutting angle of natural wind on the vehicle aerodynamic load, and the effects
of bora-like wind gusts were simulated by exposing the wind tunnel model to an airflow
with intermittent switching between weak wind (smaller velocity) and wind gusts (larger
velocity) every 3 s. Ji et al. [41] proposed a creative method for generating a fluctuating
boundary condition and avoiding the limitation of wind tunnel experiments to assess the
influence of fluctuating wind direction on cross natural ventilation. McAuliffe et al. [45]
placed a 3D ultrasonic anemometer at a height of 2 m on both sides of a vehicle’s taxi
track to measure the natural wind speed when testing the aerodynamic performance
of a heavy-duty passenger car and concluded that the natural wind effect should be
considered when analyzing the data of pulsating wind speed. Páscoa [39] determined that
the windless condition test was accurate when performing the coast-down test of vehicle
aerodynamic performance; the results showed that after repeated tests, 4% of the test error
was mainly caused by natural wind. Zhang et al. [46] designed a virtual test system for the
resistance of vehicle road sliding, which realized the compensation for natural wind, and
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reduced the natural wind impact while improving the test accuracy. The analysis test of the
effect of natural wind on the aerodynamic coefficients is modeled after the test of natural
wind on the vehicle coast-down test by using the method of measuring the natural wind
environment. The influence analysis of natural wind is crucial to the general applicability
and test accuracy of the transiting test.

This paper is a subsequent study about the method of the transiting test, mainly
focusing on the impact analysis of natural wind on the aerodynamic coefficients of a
triangular prism structure. The triangular prism model is the research object for the
transiting test of aerodynamic coefficients, which simultaneously uses the two methods
of the force and pressure measurement study for investigating the aerodynamic force
coefficients and aerodynamic pressure coefficients under different natural wind conditions.
These test results can verify the general applicability of the transiting test under natural
wind conditions and qualitatively and quantitatively analyze the influence of natural wind
in the range of 0–3.0 m/s on the lift and drag force coefficients and the mean pressure
coefficient. In addition, proposing a correction method for a two-direction round-trip
measurement to obtain the average value and summarizing the corresponding laws about
natural wind conditions can provide advice and guidance for subsequent transiting tests.

2. Experimental Methodology
2.1. Introduction of the Test and Model

This research was based on the verification of the aerodynamic transiting test of
a triangular prism structure, which uses the test device shown in Figure 1 [31,32]. The
Zhengzhou Ring Expressway (G3001) in China was selected as the test route. The transiting
test device was mainly composed of a roof test platform and in-vehicle collection systems.
The test roof platform was mainly used to fix the test model and pitot tube. The in-vehicle
acquisition system mainly included a synchronous measurement system for multipoint
high-frequency dynamic wind pressure, a balance force measurement system, and a driving
wind measurement system using the pitot tube. The combination of the force measurement
system and the pressure measurement system were used for the aerodynamic coefficients.
The speed of the vehicle was cruise controlled in the range of 60–120 km/h.
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As shown in Figure 2a, the triangular prism model [8] was made of organic glass to
ensure that the model has sufficient strength and rigidity and did not deform without the
clear vibration phenomena in the force and pressure measurement tests. The thickness of
the model and end plate were 3 and 5 mm, respectively. The diameter pressure-measuring
hole (1.5 mm) was arranged at the mid-span section. The pressure measurement pipeline
system consisted of a short brass tube and a PVC hose, which was directly connected to
the pressure sensor to ensure the firm connection of the nozzle. The isosceles triangular
prism model had a width of 0.145 m, a height of 0.100 m, and an apex angle of 30◦. The
pressure measuring points are arranged on the center of symmetry. The pressure tap and
the model surface numbers are shown in Figure 2b.
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Figure 2. Triangular prism model.

2.2. Equipment and Data Acquisition System

The test measured both the dynamic balance force and the pressure distribution along
the circumferential direction [47] to determine the coefficients of the triangular prism
model [7]. Pressure taps and aerodynamic force conventions agreement are shown in
Figure 3.
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The system of measuring the aerodynamic force was composed of the three-component
force and intelligent display acquisition equipment. As shown in Figure 1, a balance (NOS-
C901) was used to collect the axial force in the X- and Y-axis directions in real time, and
the acquisition equipment (MCK-F) was used to collect and record data. The MCK-F
acquisition instrument was connected to the computer via USB. The precision of the system
was approximately ±0.03%. In this test, the maximum sampling frequency was 30 Hz,
and the range was ±150 N. The single-channel accuracy was 0.5%, and the comprehensive
force measurement accuracy was better than 2.5%.

The system of measuring the aerodynamic pressure distribution was also composed
of pressure sensors and data acquisition equipment. Twenty differential high-frequency
dynamic pressure sensors (YMC41) were selected under strict conditions, and a 32-channel
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data acquisition (USB2805C) card was used to collect data synchronously, as shown in
Figure 1. In addition, the ranges of the high frequency dynamic pressure sensors of YMC41
differential were ±2 Kpa, and its accuracy grade was 0.25%, with a frequency up to 4 KHz.
The maximum sampling frequency of the USB2805C data acquisition card was up to
250 KHz, and its system accuracy was 0.01%, which was suitable for the storage and
management of the wind pressure data.

The system of measuring wind field speed consisted of two high-frequency dynamic
pressure sensors of YMC41 differentials combined with an L-shaped pitot tube. The two
pressure sensors were connected to the total pressure and static pressure holes of the pitot
tube to obtain the total pressure and static pressure of the wind field generated by the
moving vehicle. The dynamic pressure was converted to the reference wind speed by using
the Bernoulli formula [31], and the static pressure could also be used as the reference static
pressure for the dimensionless wind pressure coefficient. The sampling frequency of the
acquisition system of high frequency dynamic wind pressure was 909 Hz.

2.3. Test Methods and Strategies

To investigate the influence of natural wind on the test results of the aerodynamic
coefficients, the transiting test must control all the experimental conditions, except natural
wind, which is to remain unchanged. Hence, the test was conducted under different
natural winds but in the same test route, model, and test vehicle environment under the
same test road conditions. In addition, the transiting test system with the natural wind
collection system should be synchronous. Natural wind was observed while the structural
test was carried out. The test results of the transiting test obtained under the natural wind
conditions were recorded and compared. The test procedure is illustrated in Figure 4.
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Figure 4. Procedure of the transiting test.

The test route was fixedly selected from point Z of Zhongyuan West Road Station
to point K of Kexue Avenue Station on the Zhengzhou G3001 Ring Expressway in China.
The test route shown in Figure 5a is 6 km long. The road section is straight and flat, and
the test was performed when vehicle traffic was light (see Figure 5b). The natural wind
measurement position was fixed at a height of 10 m on the sidewalk at the intersection
of the G3001 Ring Expressway and Zhengshang Road, as shown in Figure 5c,d. In the
wind tunnel test [8], the wind speed was 20 m/s to ensure that the fixed cruise speed of
the vehicle was set to 72 km/h (20 m/s). The speed of all the transiting tests were set
to 72 km/h (20 m/s). The placement of the model was horizontal, and the wind angle
conditions of 0◦ and 90◦ [48] were selected to verify the accuracy of the test results [47].
The data acquisition time was 100 s, and the test conditions are presented in Table 1.
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Table 1. Test conditions.

Driving Speed Model
Placement

Wind Attack
Angle α

Test Route Range of Natural
Wind Speed

72 km/h
(20 m/s) Horizontal

30◦
K–Z

0–3.0 m/s
Z–K

90◦
K–Z

Z–K

2.4. Measurement of Natural Wind

Natural wind is a space vector [35] that can be measured using a 3D ultrasonic
anemometer [49]. As shown in Figure 6, the system test of natural wind collection was
composed of a 3D ultrasonic anemometer (Wind Master; Gill Scientific, Inc.; Logan, UK), a
data acquisition instrument (CR1000; Campbell Scientific, Inc.; Logan, UK), and a notebook
computer. The natural wind-collecting device was assembled and installed at a height
of 10 m at the fixed measuring location of the test (see Figures 5d and 6). The 0◦ line of
the anemometer pointed to the north, which was determined using the north arrow. The
sampling frequency was set to 10 Hz, and the wind speed resolution and wind speed range
were 0.01 and 0–50 m/s, respectively. The accuracy was <1.5% RMS.
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Natural wind is the result of the combined effect of air movement and terrain rough-
ness in time and space [50]. For the description of the natural wind environment in an
area with consistent terrain, the wind speed at a height of 10 m in the area is generally
counted, and the average value within 10 min of each sampling is taken [35,51,52]. In this
paper, the fixed natural wind measurement point was arranged at a height of 10 m above
the surface of the test road in an open position in the middle of the test road. In each test,
the average wind speed of 10 min was used as the standard to describe the natural wind
conditions. The terrain of the area where the test road was located was consistent and
belonged to the type-C-terrain profile [53]. Moreover, the collection time of natural wind
data was synchronized with the collection time of the transiting test data. Therefore, the
natural wind data measured at the fixed measuring point represented the natural wind
environment of the area where the test road was located.

3. Analysis of Data
3.1. Data of Force

All the acquired data were reduced and analyzed using the following expressions.
The aerodynamic force (drag and lift) coefficients of the test model are expressed

as follows:
Cd =

2D
ρV2bl

, (1)

Cl =
2L

ρV2bl
, (2)

where D is the drag, L is the lift, ρ is the air density (ρ = 1.225 kg/m3), and b and l are the
chord and span dimensions of the test model, respectively.
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The pitot tube was used to measure the dynamic pressure of the wind field through
the Bernoulli formula. In the transiting test, the driving wind speed of the vehicle is
represented by the following equation:

V =

√
2(p0 − p∞)

ρ
, (3)

where V is the driving wind of the moving vehicle, p0 is the total pressure, p∞ is the static
pressure, and ρ is the air density. By substituting Formula (3) into Formula (1) and (2), the
expression of the drag and lift coefficients is obtained as follows:

Cd =
D

(p0 − p∞)bl
, (4)

Cl =
L

(p0 − p∞)bl
, (5)

In addition, C′d and C′ l are the standard deviations of Cd and Cl and represent the
fluctuating drag and lift coefficient, respectively.

3.2. Data of Pressure

The wind pressure on the surface of the model is usually expressed by the aerodynamic
pressure coefficient. The data of pressure time history, measured by the transiting test,
are statistically analyzed to obtain the mean wind pressure coefficient, which is expressed
as follows:

Cpi =
pi − p∞

P0 − P∞
, (6)

The fluctuating aerodynamic pressure coefficient is expressed as follows:

C′pi =

√√√√ 1
N − 1

N

∑
k=1

(Cpik − Cpi,mean)
2, (7)

The mean aerodynamic pressure coefficient absolute deviation is expressed as fol-
lows [17]:

β =
∑20

1
∣∣(Cpi,mean − Cp,mean)/Cp,mean

∣∣
20

× 100%, (8)

where Cpi is the mean wind pressure coefficient, C′pi is the fluctuating wind pressure
coefficient, p0 and p∞ are the total pressure and static pressure at the reference height, pi(t)
is the wind pressure of measuring point, T is the sampling time, and N is the number
of samples.

3.3. Data of Natural Wind

The 3D ultrasonic anemometer was fixed at the wind measurement point to record
the surrounding natural wind speed. Natural wind can be regarded as a 3D vector, in
which the three components can be expressed in the north–south UX(t), east–west UY(t),
and vertical UZ(t) directions. The wind angle of natural wind in the vertical direction is
extremely small, and the wind direction is consistent with the horizontal direction. Thus,
UZ(t) is negligible. The natural wind velocity V(NW) of the horizontal wind direction ϕ is
expressed as follows [35]:

V(NW) = U =
√

U2
X + U2

Y, (9)

ϕ = −arccos
(

UX

U

)
∗sgn(UY) + 180◦. (10)
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As shown in Figure 7, to describe the natural wind direction, we superimpose the
coordinate system of the anemometer onto the the geographic coordinate system, that is,
the 0 scale of the anemometer points to the north, and natural wind is analyzed with the
basic wind speed of 10 min [35].
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Figure 7. Coordinate system of wind speed.

To explore the influence of natural wind on the transiting test, a comparative analysis
of the test results of the same transiting tests under different natural wind conditions
were carried out. Figure 8a–i show the wind speed distribution and wind rose diagram
of the surrounding natural winds during the transiting tests, which were carried out at
nine different natural wind conditions of different dates. These nine natural wind speed
time–history curves, shown in Figure 9, are sufficient in representing the natural wind
environment that can be encountered in the daily transiting tests. These nine kinds of
natural winds are used to compare the effects of natural wind on the transiting test. When
natural wind is large, the main wind direction is southerly (the K–Z route is headwind, and
the Z–K is downwind); when the average value of natural wind speed is small, the main
wind direction is not displayed. Hence, the wind speed distribution is scattered, and the
wind direction is ignored at this moment. As shown in Table 2, the nine types of working
conditions all take the mean wind speed of the natural wind as the main wind speed, and
the main wind speed is between 0–3.0 m/s.
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Figure 8. Mean value and wind roses of different natural wind conditions.
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Table 2. Natural wind conditions.

Case Test Date Natural Wind Speed in 10 m,
V(NW)

Natural Wind Speed in 2 m,
V
′
(NW)

1 20 May 2019 0.47 m/s 0.33 m/s
2 26 Sep. 2019 0.89 m/s 0.62 m/s
3 21 May 2019 1.04 m/s 0.73 m/s
4 28 Aug. 2019 1.35 m/s 0.95 m/s
5 29 Aug. 2019 1.71 m/s 1.20 m/s
6 29 Aug. 2019 1.91 m/s 1.34 m/s
7 16 Apr. 2019 2.28 m/s 1.60 m/s
8 14 May 2019 2.83 m/s 1.98 m/s
9 14 May 2019 2.98 m/s 2.08 m/s

Note: V′(NW) = V(NW) ∗
(
H′/H

)α, α = 0.3 [54], H′ = 2 m, H = 10 m.

4. Results
4.1. Effect of Natural Wind on the Driving Wind of a Moving Vehicle

The wind field of the transiting test of aerodynamic coefficients is generated by the
moving vehicle with a constant speed in the cruise control system, and the stability of
the driving wind field is particularly important [32]. Natural wind will have an impact
on the stability and uniformity of the wind field [40]. Duncan et al. [55] investigated the
effects of road turbulence on the vehicle aerodynamic performance by using the simulation
method, and the change of road turbulence was mainly caused by natural wind. McAuliffe
et al. [45] installed a number of cobra probes in front of the vehicle body to examine
the wind turbulence of the cruise-controlled driving vehicle and compared the impact
of different driving environments on the vehicle’s wind field. Therefore, comparing the
vehicle driving wind and wind field variation coefficients, measured at 72 km/h cruise
speed under different natural wind conditions, is necessary. In this study, the driving
wind of the vehicle was converted using the Bernoulli formula with the measured dynamic
pressure of the pitot tube [56]. The coefficient of wind field variation was represented by
IV = σv/Vmean.

As shown in Figure 10, the impact of natural wind on the driving wind of the vehicle
was qualitatively analyzed by comparing the history curves of wind speed time under three
representative natural wind conditions. When natural wind was 0.47 m/s, the coefficient
of variation of the measured wind field was small at approximately 5%, which is similar to
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the results of other scholars [57]. As shown in Figures 11 and 12, the influence of natural
wind on the vehicle’s driving wind field was quantitatively compared by the tendency of
the vehicle’s driving wind field to change with natural wind. With the change in natural
wind, the average wind speed of the wind field generated by 72 km/h (20 m/s) cruise
control was around 20 m/s, and the deviation was within 5%. However, the influence of
natural wind on the coefficient of variation of wind field showed a significant increase. The
influence of strong natural wind on the uniformity of the wind field of the vehicle must
be considered because it worsens the uniformity of the wind field of the vehicle and may
affect the aerodynamic coefficient results. Moreover, when natural wind was greater than
2.28 m/s, the coefficient of variation was as high as 11%.
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Figure 12. Coefficient of wind speed variation under different natural winds.

4.2. Effect of Natural Wind on the Mean Aerodynamic Force Coefficients

The results of the transiting test of aerodynamic coefficients of the triangular prism
structure under the limited conditions of different wind angles were compared with those
of the wind tunnel test to verify the test accuracy [32]. The analysis in Section 4.1 pointed
out that strong natural winds would affect the driving wind of the vehicle. The structural
aerodynamic force is the result of the wind field acting on the model. The change in wind
field caused by natural wind also influences the result of the measured aerodynamic force
coefficients. This section combines the driving direction of the vehicle with the wind
incidence angles of 30◦ and 90◦ to analyze the change in the lift and drag coefficients of the
transiting test with the natural wind.

The variation in the mean lift and drag coefficients of the downwind and headwind
transiting tests along the natural wind is shown in Figures 13 and 14 for angles of wind
incidence for 30◦ and 90◦. These results are also compared with those of the reference test
of the wind tunnel. For the wind incidence angle of 30◦ (see Figure 13), the presence of
natural wind affects the result of the lift and drag coefficients, and this influence will show
that the result of the lift and drag coefficients of the transiting test will deviate from the
wind tunnel test standard as natural wind increases. This trend may be due to the effect of
the natural wind field being superimposed on the driving wind of the vehicle and results
from the increase in the wind field variation coefficient Iv. Under the working condition of
V(NW) > 1.91 m/s, the test results of the downwind (Z–K) transiting test showed a tendency
of having a large deviation, whereas the test results of the headwind (K–Z) transiting
test showed a small trend. However, under the working condition of V(NW) < 1.91 m/s,
although the existence of natural wind will cause fluctuations in the test results, the test
results of the transiting test were still consistent with those of the wind tunnel test, and the
deviation in the test results was within 10%. Therefore, under low natural wind conditions,
the impact of natural wind on the test results of the transiting test was negligible. For a
wind incidence angle of 90◦ (Figure 14), the effect of natural wind on the results of the lift
and drag coefficients of the transiting test showed the same pattern as above. Under the
working condition of V(NW) > 1.71 m/s, the deviation in the test results was too large, and
the influence of natural wind on the test must be considered. Under the condition of weak
natural wind, the deviation in the lift and drag coefficients is within the range of 0.1, which
can be neglected.
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Figure 13. Variation in the mean aerodynamic force coefficients with natural wind for 30◦ angle of
wind incidence.
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Figure 14. Variation in the mean aerodynamic force coefficients with natural wind for 90◦ angle of
wind incidence.

4.3. Effect of Natural Wind on the Mean Aerodynamic Pressure Coefficient

The analysis of the previous summary indicated that changes in the wind field caused
by natural winds also had an effect on the measured aerodynamic coefficient results. The
combination of force measurement and the pressure measurement system is a common
method used in structural wind resistance research. Ricciardelli et al. [58] combined
the analysis of structural aerodynamic coefficients and structural aerodynamic pressure
coefficients to investigate the effects of topographical characteristics and height on the aero-
dynamic performance of tall buildings. Yan et al. [47] also used the two methods of force
and pressure measurements to examine the influence of turbulence on the aerodynamic
performance of high-speed trains. In this section, the 30◦ and 90◦ wind angles are used to
analyze the surface pressure coefficient of the triangular prism model of the transiting test
with natural wind.

The curves of the pressure coefficient of the model surface measured by the downwind
and headwind transiting tests under nine kinds of natural wind at 30◦ and 90◦ wind angles
are illustrated in Figure 15. By comparison, regardless of the change in natural wind or the
difference between downwind and headwind, the trend of the pressure coefficient curve
of the model remains the same. As shown in Figure 15a,b, the trend of the wind pressure
coefficient curve of the measuring point is highly consistent, and the area of each surface
is clear. The windward and leeward sides are the positive and negative pressure areas,
respectively, and the curve trend is smooth.
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Figure 15. Comparison of the distribution curves of the mean pressure coefficient under different
natural winds for 30◦ (a) and 90◦ (b) angles of wind incidence.

However, by comparing the curves of the measuring points, although the pressure
coefficient curves trend is highly consistent, the surface pressure coefficient values under
different natural wind conditions still show certain differences, and the data are sometimes
inconsistent. Therefore, the presence of natural winds affected the surface pressure coeffi-
cient results, and the mean absolute deviation β is defined as the indicator for evaluating
the effect of natural wind on the pressure coefficient [17]. The variation in the absolute
deviation with natural wind is shown in Figure 16. Regardless of the wind attack angle
of 30◦ or 90◦, the mean value of the absolute deviation β increased with the increase in
natural wind. Hence, although natural wind did not affect the trend of the pressure coeffi-
cient curve of the measuring point, it had a certain influence on the value of the pressure
coefficient, and the large natural wind increased the deviation. This behavior is consistent
with the analysis of the aerodynamic force coefficients in Section 4.2. In addition, when
V(NW) < 1.71 m/s, the mean absolute deviation βwas less than 1%, and this natural wind
condition can ensure the accuracy of the test.
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Figure 16. Variation in the absolute deviation of the mean pressure coefficient with natural wind for
30◦ (left) and 90◦ (right) angles of wind incidence.
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5. Discussion

According to the above analysis, the results of the transiting test under natural wind
conditions lower than 1.71 m/s (critical wind speed) are the most ideal. When the natural
wind speed is greater than the critical wind speed, the test results have larger errors. So,
is it possible to find a method to correct the transiting test results under natural wind
conditions greater than the critical wind speed to reduce the errors?

The different driving directions will cause the transiting test to appear in a headwind
and downwind kind of situation under the influence of strong natural wind. As shown
in Figure 17, the total wind field above the vehicle where the test model is located is
actually the superposition of the wind field generated by the vehicle and the natural wind
field. Therefore, we propose a correction method of averaging the two-direction round-trip
measurement (Figure 18) to correct the results of the transiting test under the condition of
natural wind speed greater than the critical wind speed.
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5.1. Correction of Natural Wind on the Mean Aerodynamic Force Coefficients

Figure 19 shows the aerodynamic force coefficients under different natural wind
conditions at a 30◦ wind attack angle. It can be seen that the two results obtained by
the two-direction measurement differ greatly after the natural wind speed is greater than
1.91 m/s and they gradually deviate from the wind tunnel test results. For a 90◦ wind
attack angle, the same phenomenon appears when the natural wind speed is greater than
1.71 m/s (as shown in Figure 20). However, the results that were corrected by the method
of averaging the two-direction round-trip measurement were closer to the wind tunnel
test results.
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Figure 19. Comparison of aerodynamic force coefficients of the structure before and after correction 

under different natural wind conditions at a 30° attack angle. 

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4
Transiting test of Z-K

Transiting test of K-Z 

 Wind tunnel test 

 After correction

M
ea

n
 l

if
t 

co
ef

fi
ci

en
t 

C
l

Natural wind (m/s)  

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4  Transiting test of  Z-K

 Transiting test of  K-Z

 Wind tunnel test 

 After correction

M
ea

n
 d

ra
g
 c

o
ef

fi
ci

en
t 

C
d

Natural wind (m/s)  
(a) Mean lift coefficient. (b) Mean drag coefficient. 

Figure 20. Comparison of aerodynamic force coefficients of the structure before and after correction 

under different natural wind conditions at a 90° attack angle. 

Therefore, the correction method of averaging the two-direction round-trip measure-

ment can effectively correct the influence of natural wind on the aerodynamic force coef-

ficients of the triangular prism structure and effectively improve the accuracy of the trans-

iting test under natural wind conditions greater than 1.71 m/s. 

5.2. Correction of Natural Wind on the Mean Aerodynamic Pressure Coefficient 
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Figure 19. Comparison of aerodynamic force coefficients of the structure before and after correction
under different natural wind conditions at a 30◦ attack angle.

Symmetry 2021, 13, x FOR PEER REVIEW 18 of 24 

 

 

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
ea

n
 l

if
t 

co
ef

fi
ci

en
t 

C
l

Natural wind (m/s)

 Transiting test of Z-K

 Transiting test of K-Z

 Wind tunnel test 

 After correction

 

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 Transiting test of Z-K

 Transiting test of K-Z

 Wind tunnel test 

 After correction

M
ea

n
 d

ra
g
 c

o
ef

fi
ci

en
t 

C
d

Natural wind (m/s)
 

(a) Mean lift coefficient. (b) Mean drag coefficient. 

Figure 19. Comparison of aerodynamic force coefficients of the structure before and after correction 

under different natural wind conditions at a 30° attack angle. 

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4
Transiting test of Z-K

Transiting test of K-Z 

 Wind tunnel test 

 After correction

M
ea

n
 l

if
t 

co
ef

fi
ci

en
t 

C
l

Natural wind (m/s)  

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4  Transiting test of  Z-K

 Transiting test of  K-Z

 Wind tunnel test 

 After correction

M
ea

n
 d

ra
g

 c
o

ef
fi

ci
en

t 
C

d

Natural wind (m/s)  
(a) Mean lift coefficient. (b) Mean drag coefficient. 

Figure 20. Comparison of aerodynamic force coefficients of the structure before and after correction 

under different natural wind conditions at a 90° attack angle. 

Therefore, the correction method of averaging the two-direction round-trip measure-

ment can effectively correct the influence of natural wind on the aerodynamic force coef-

ficients of the triangular prism structure and effectively improve the accuracy of the trans-

iting test under natural wind conditions greater than 1.71 m/s. 

5.2. Correction of Natural Wind on the Mean Aerodynamic Pressure Coefficient 

From the analysis of the influence of natural wind on the mean wind pressure coef-

ficient of the triangular prism in Section 4.3, it is shown that natural wind conditions 

higher than 1.71 m/s seriously affect the accuracy of the wind pressure coefficient. In this 

natural wind environment, the results of transiting test should be corrected. In order to 

study the correction effect of the two-direction round-trip measurement method on the 

mean wind pressure coefficient, natural wind conditions of 1.91 m/s, 2.28 m/s, 2.83 m/s, 

and 2.98 m/s were selected.  

Taking a wind attack angle of 30° as an example, the wind pressure coefficient curves 

of the triangular prism model, measured under the two-direction round-trip conditions, 

are shown in Figure 21. The results under the four wind speeds were significantly differ-

ent and seriously deviated from the target curve measured under the weak natural wind 

condition. However, the corrected curves were more consistent with the target curve. In 

addition, as shown in Figure 22, the results obtained at a 90° wind attack angle also show 

Figure 20. Comparison of aerodynamic force coefficients of the structure before and after correction
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Therefore, the correction method of averaging the two-direction round-trip mea-
surement can effectively correct the influence of natural wind on the aerodynamic force
coefficients of the triangular prism structure and effectively improve the accuracy of the
transiting test under natural wind conditions greater than 1.71 m/s.

5.2. Correction of Natural Wind on the Mean Aerodynamic Pressure Coefficient

From the analysis of the influence of natural wind on the mean wind pressure coeffi-
cient of the triangular prism in Section 4.3, it is shown that natural wind conditions higher
than 1.71 m/s seriously affect the accuracy of the wind pressure coefficient. In this natural
wind environment, the results of transiting test should be corrected. In order to study the
correction effect of the two-direction round-trip measurement method on the mean wind
pressure coefficient, natural wind conditions of 1.91 m/s, 2.28 m/s, 2.83 m/s, and 2.98 m/s
were selected.

Taking a wind attack angle of 30◦ as an example, the wind pressure coefficient curves
of the triangular prism model, measured under the two-direction round-trip conditions, are
shown in Figure 21. The results under the four wind speeds were significantly different and
seriously deviated from the target curve measured under the weak natural wind condition.
However, the corrected curves were more consistent with the target curve. In addition,
as shown in Figure 22, the results obtained at a 90◦ wind attack angle also show that the
wind pressure coefficient curves measured under the two-direction round-trip conditions
seriously deviated from the target curve, but the corrected curve was more consistent with
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the target curve. The average absolute deviation β was used as an index to evaluate the
correction effect. The smaller the β value, the more accurate the test result. The closer
the wind pressure coefficient result is to the target curve, the better the correction effect.
As shown in Figures 23 and 24, the correction effect was particularly significant and the
corrected wind pressure coefficients were more accurate. In addition, the corrected β value
dropped to less than 10% at a 90◦ wind attack angle (Figure 24).
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Therefore, the correction method of averaging the two-direction round-trip measure-
ment can effectively correct the influence of natural wind on the wind pressure coefficient
of the triangular prism structure and effectively improve the accuracy of the transiting test
under natural wind conditions greater than 1.71 m/s.

6. Conclusions

In this study, the qualitative and quantitative analysis of the effect of natural wind on
the transiting test was carried out. The following conclusions can be drawn from this study.

(1) The wind field of the driving vehicle will be significantly affected only when the mean
natural wind speed is greater than 1.71 m/s. The influence of natural wind in the
range of 0–3.0 m/s on the mean velocity error of the driving wind is less than 10%.

(2) The effect of natural wind on the aerodynamic force coefficients is limited and negli-
gible when the mean natural wind speed is smaller than 1.91 m/s.
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(3) When mean natural wind speed is smaller than 1.71 m/s, the weak natural wind has a
limited impact on the mean aerodynamic pressure coefficients and the impact can be
ignored. Moreover, natural wind has no effect on the curve trend of the aerodynamic
pressure coefficients. Natural wind has less influence on the positive wind pressure
on the windward side that is lower than the negative pressure on the leeward side.

(4) In summary, to improve the accuracy of the test results, it is recommended that the
transiting test of aerodynamic coefficient is carried out under natural wind conditions
of less than 1.71 m/s. If the transiting test is carried out under the condition that
the average natural wind speed is greater than 1.71 m/s, it is recommended to use
the correction method of taking the average value from the two-direction round-trip
measurement.

(5) The influence and correction of this research that are based on the segment model, and
the natural wind influence analysis and correction that are based on the aeroelastic
model transiting test, need further research.
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