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Abstract: Symmetry plays an essential role in determining the correct methods for the oscillatory
properties of solutions to differential equations. This paper examines some new oscillation criteria for un-
bounded solutions of third-order neutral differential equations of the form

(
r2(ς)

((
r1(ς)

(
z′(ς)

)β1
)′)β2

)′
+

n
∑

i=1
qi(ς)xβ3 (φi(ς)) = 0. New oscillation results are established by using generalized Riccati substi-

tution, an integral average technique in the case of unbounded neutral coefficients. Examples are
given to prove the significance of new theorems.

Keywords: neutral differential equation; oscillation; Riccati substitution; deviating arguments

1. Introduction

We consider the third-order neutral differential equations with several delays:

(
r2(ς)

((
r1(ς)

(
z′(ς)

)β1
)′)β2

)′
+

n

∑
i=1

qi(ς)xβ3(φi(ς)) = 0, ς ≥ ς0 > 0, (1)

where z(ς) = x(ς) + p(ς)x($(ς)), βi > 0 (i = 1, 2, 3) is a ratio of odd integers. Considering
the following conditions for (1) are satisfied:

ri ∈ C([ς0, ∞), (0, ∞)) and
∫ ∞

ς0
r−1/βi

i (s)ds = ∞, i = 1, 2;
qi ∈ C([ς0, ∞), [0, ∞)), φi ∈ C([ς0, ∞),R) and lim

ς→∞
φi(ς) = ∞, where i = 1, 2, · · · n;

$ ∈ C([ς0, ∞),R) is strictly increasing, $(ς) < ς, and lim
ς→∞

$(ς) = ∞;

p ∈ C([ς0, ∞),R) with p(ς) ≥ 1, and p(ς) 6≡ 1, eventually.

To formulate a solution for (1), we need a function x : [ςx, ∞) → R such that z ∈
C2([ςx, ∞),R), r1

(
z′
)β1 ∈ C1([ςx, ∞),R), r2

((
r1
(
z′
)β1
)′)β2 ∈ C1([ςx, ∞),R) and which

satisfies Equation (1) on [ςx, ∞). We only consider those solutions x(ς)) of (1) as defined
on some ray [ςx, ∞); for some ςx ≥ ς0, which satisfies sup{|x(ς)| : ς ≥ T} > 0 for every
T ≥ ςx. We start with the assumption that Equation (1) does possess a proper solution. A
proper solution x(ς) of Equation (1) is said to be oscillatory if it has arbitrarily large zeros;
it is called nonoscillatory otherwise. Equation (1) is termed oscillatory if all its solutions
are oscillatory.
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The study of the oscillation of various classes of differential equations has recently
received a lot of interest. Many authors have conducted various investigations. Some
writers have focused their research on the oscillation of differential equations. Symmetry
plays an important and fundamental role in the study of the oscillations of solutions to
equations. There has been a growing interest in obtaining sufficient (as well as necessary)
conditions for the oscillatory and asymptotic behaviour of solutions of the third order. We
refer the reader to [1–10] for such results.

The oscillatory and asymptotic behavior of the solutions to (1) and various classes of
equation forms such as[

a(ς)[x(ς)± p(ς)x(δ(ς))′′]γ
]′
+ q(ς)xγ(τ(ς)) = 0,[

a(ς)
[
b(ς)z′(ς)

]′]′
+ q(ς)x(τ(ς)) = 0, (2)(

r(ς)
(
(x(ς) + p(ς)x(τ(ς)))′′

)α
)′

+
∫ b

a
q(ς, ξ)xα(φ(ς, ξ))dξ = 0,

[
a(ς)

[
b(ς)z′(ς)

]′]′
+
∫ b

a
q(ς, ξ)xα(φ(ς, ξ))dξ = 0,

(
a2(ς)

[(
a1(ς)z′(ς)

)′]λ)′
+
∫ d

c
q̃1(ς, ξ)yλ(ς− ξ) dξ +

∫ d

c
q̃2(ς, ξ)yλ(ς + ξ) dξ = 0,

(
a(ς)

(
(x(ς)±

n

∑
i=1

pi(ς)x(σi(ς)))
′′)α
)′

+
m

∑
j=1

f j(ς, x(τj(ς))) = 0,

have been studied by many authors concerned with the case where p is bounded, that is,
the cases

−1 < p0 ≤ p(ς) ≤ 0, 0 ≤ p(ς) ≤ p0 ≤ 1, 0 ≤ p(ς) ≤ p0 ≤ ∞,

were considered (see [2,11–21] and the references therein).
For r1 = β1 = 1, n = 1, B. Baculíková, J. Dzurina [2], J. Dzurina et al. [3], T. Li and

Y. V. Rogovchenko [13] studied asymptotic behavior of solutions to Equation (1) assuming
that 0 ≤ p(ς) ≤ p0 ≤ 1. If r1 = β1 = 1, the problem of the oscillation of Equation (1)
in the case where 0 ≤ pi ≤ 1 and −µ ≤ ∑n

i=1 pi(ς) ≤ 0 has also been discussed by
A. A. Soliman et al. [20]. Recently, for β1 = n = 1 and 0 ≤ p(ς) ≤ p0 ≤ ∞, Equation (1), its
particular cases and modifications have been studied by Y. Jiang et al. [11], T. Li et al. [4],
R. Elayaraja et al. [12].

We noticed that, in the research mentioned above, the oscillatory and asymptotic
behaviour of third-order neutral differential equations with several delays received relatively
less attention, despite the reality that the deviating arguments cause a new challenge in
establishing oscillatory and asymptotic criteria for them. In view of the above observations,
in this paper, our aim is to obtain explicit sufficient conditions for the oscillation of all
solutions of (1) via the generalized Riccati substitution in the case of p(ς) ≥ 1.

2. Main Results

We start with the following lemmas, which are required for our theorem proofs. Through-
out this paper, we will be using the following notation:
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ζ ′+(ς) := max{0, ζ ′(ς)},

B1(ς, ς1) :=
∫ ς

ς1

ds

r1/β2
2 (s)

for ς ≥ ς1,

B2(ς, ς1) :=
(B1(ς, ς1)

r1(ς)

)1/β1
for ς ≥ ς1,

B3(ς, ς2) :=
∫ ς

ς2

B2(s, ς1)ds for ς ≥ ς2 > ς1.

Throughout this paper, we assume that

ψ1(ς) :=
1

p($−1(ς))

[
1− 1

p($−1($−1(ς)))

]
(3)

and

ψ2(ς) :=
1

p($−1(ς))

[
1− 1

p($−1($−1(ς)))

B3($
−1($−1(ς)), ς2)

B3($−1(ς), ς2)

]
, (4)

for all sufficiently large ς, where $−1 is the inverse function of $, and we let

Ω1(ς) :=
n

∑
i=1

qi(ς)(ψ1(φi(ς)))
β2 , Ω2(ς) :=

n

∑
i=1

qi(ς)(ψ2(φi(ς)))
β2 .

Lemma 1. If we let x(ς) be an eventually positive solution of (1), then z(ς) satisfies either

(Ci) z(ς) > 0, z′(ς) > 0, r1(ς)
(
z′(ς)

)β1 > 0, and r2(ς)
((

r1(ς)
(
z′(ς)

)β1
)′)β2 ≤ 0, or

(Cii) z(ς) > 0, z′(ς) < 0, r1(ς)
(
z′(ς)

)β1 > 0, and r2(ς)
((

r1(ς)
(
z′(ς)

)β1
)′)β2 ≤ 0.

The proof of the above lemma is standard and so it is omitted.

Lemma 2. If (3) hold, and let x(ς) be an eventually positive solution of (1) with z(ς) satisfying
(Cii) of Lemma 1. If∫ ∞

ς0

1

r1/β1
1 (v)

(∫ ∞

v

1

r1/β2
2 (u)

( ∫ ∞

u
Ω1(s)ds

)1/β2
du
)1/β1

dv = ∞, (5)

then limς→∞ x(ς) = 0.

Proof. Let x(ς) be an eventually positive solution of (1). Then, there exists ς1 ∈ [ς0,∞)
such that, for ς ≥ ς1, x(ς) > 0, x($(ς)) > 0, x(φi(ς)) > 0 for i = 1, 2, · · ·, n. From the
definition of z, we obtain

x(ς) =
1

p($−1(ς))
(z($−1(ς))− x($−1(ς)))

=
z($−1(ς))

p($−1(ς))
− z($−1($−1(ς)))− x($−1($−1(ς)))

p($−1(ς))p($−1($−1(ς)))
(6)

≥ z($−1(ς))

p($−1(ς))
− z($−1($−1(ς)))

p($−1(ς))p($−1($−1(ς)))
.

From $(ς) < ς, (iv) and the fact that z(ς) is decreasing, we have

z($−1(ς)) ≥ z($−1($−1(ς))).

Using this in (6), we obtain

x(ς) ≥ ψ1(ς)z($−1(ς)),
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so
x(φi(ς)) ≥ ψ1(φi(ς))z($−1(φi(ς))), i = 1, 2, · · ·, n. (7)

for ς ≥ ς2. Using (7) in (1) gives

(
r2(ς)

((
r1(ς)

(
z′(ς)

)β1
)′)β2

)′
+

n

∑
i=1

qi(ς)(ψ1(φi(ς)))
β3 zβ3($−1(φi(ς))) ≤ 0, (8)

for ς ≥ ς2. From (iv)–(v) and the fact that z(ς) is decreasing, (8) yields

(
r2(ς)

((
r1(ς)

(
z′(ς)

)β1
)′)β2

)′
+ zβ3($−1(ς)))

n

∑
i=1

qi(ς)(ψ1(φi(ς)))
β3 ≤ 0 for ς ≥ ς2. (9)

Since z(ς) > 0 and z′(ς) < 0, there exists a constant κ, such that

lim
ς→∞

z(ς) = κ < ∞,

where κ ≥ 0. If κ > 0, then there exists ς3 ≥ ς2, such that $−1(θ1(ς)) > ς2 and

z(ς) ≥ κ for ς ≥ ς3. (10)

Integrating (9) from ς to ∞ two times gives

−z′(ς) ≥ κ
β3
β2

1

r1/β1
1 (ς)

( ∫ ∞

ς

1

r1/β2
2 (u)

( ∫ ∞

u
Ω1(s)ds

)1/β2)1/β2
du

)1/β1

.

Integrating the resulting inequality from ς3 to ς yields

z(ς3) ≥ κ
β3

β1β2

∫ ∞

ς0

1

r1/β1
1 (v)

(∫ ∞

v

1

r1/β2
2 (u)

( ∫ ∞

u
Ω1(s)ds

)1/β2
du

)1/β1

dv

which contradicts (5), and so we have κ = 0. Therefore, limς→∞ z(ς) = 0. Since 0 < x(ς) ≤
z(ς) on [ς1, ∞), we obtain limς→∞ x(ς) = 0.

Now, we are ready to present our main results. We now establish the oscillation
criteria for (1) in the case $(ς) ≥ φi(ς).

Theorem 1. If $(ς) ≥ φi(ς) for i = 1, 2, · · ·, n and ψ1(ς) > 0, ψ2(ς) > 0, (5) hold. If there
exists a function ζ ∈ C1([ς0, ∞),R) and η ∈ C1([ς0, ∞),R) such that r2η ∈ C1([ς0, ∞),R) and

lim sup
ς→∞

∫ ς

T

{
Φ(s)−

δ
(

ζ ′+(s) + β3

(
1 + 1

β1β2

)
ζ(s)ϕ(s)B2(s, ς1)

(
r2(s)η(s)

) 1
β1β2

)β1β2+1

(ζ(s)ϕ(s)B2(s, ς1))β1β2

}
ds = ∞, (11)

where

Φ(ς) = ζ(ς)
n

∑
i=1

qi(ς)(ψ2(φi(ς)))
β3
(B3($

−1(φi(ς)), ς2)

B3(ς, ς2)

)β3

+
β3

β1β2
ζ(ς)ϕ(ς)B2(ς, ς1)

(
r2(ς)η(ς)

)(1+ 1
β1β2

)
− ζ(ς)

(
r2(ς)η(ς)

)′
,

ϕ(ς) =

{
m1, m1 is any positive constant; if β1β2 ≤ β3,

m2(B3(ς, ς1))
β3

β1β2
−1, m2 is any positive constant; if β1β2 > β3,

δ =
( β1β2

β3

)β1β2( 1
β1β2 + 1

)β1β2+1
,
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for all ς1, ς2, T ∈ [ς0, ∞), where T > ς2 > ς1, then any solution of (1) is either oscillatory or
satisfies limς→∞ x(ς) = 0.

Proof. Let (1) have a nonoscillatory solution x(ς) on [ς0, ∞)—say there exists ς1 ∈ [ς0, ∞)
such that, for ς ≥ ς1, x(ς) > 0, x($(ς)) > 0, and x(φi(ς)) > 0, (3) and (4) hold, and z(ς)
satisfies either (Ci) or (Cii) and i = 1, 2, · · ·, n. Assume that (Ci) holds, proceeding as in the
proof of Lemma 2, we obtain (6). Since r2(ς)

((
r1(ς)

(
z′(ς)

)β1
)′)β2 is decreasing, we see that

r1(ς)
(
z′(ς)

)β1 = r1(ς1)
(
z′(ς1)

)β1 +
∫ ς

ς1

r1/β2
2 (s)

(
r1(s)

(
z′(s)

)β1
)′

r−1/β2
2 (s)

ds

≥ r1/β2
2 (ς)

(
r1(ς)

(
z′(ς)

)β1
)′ B1(ς, ς1) for ς ≥ ς1.

(12)

From (12), we have for all ς ≥ ς2 := ς1 + 1 that

(
r1(ς)

(
z′(ς)

)β1
)′

=
r−1/β2

2 (ς)[r1/β2
2 (ς)

(
r1(ς)

(
z′(ς)

)β1
)′ B1(ς, ς1)− r1(ς)

(
z′(ς)

)β1 ]

(B1(ς, ς1))2 ≤ 0,

so z′(ς)/B1(ς, ς1) is decreasing for ς ≥ ς2. Next, using that z′(ς)/B1(ς, ς1) is decreasing
for ς ≥ ς2, we obtain

z(ς) = z(ς2) +
∫ ς

ς2

z′(s)
B2(s, ς1)

B2(s, ς1)ds

≥ B3(ς, ς2)

B2(ς, ς1)
z′(ς) for ς ≥ ς2.

(13)

From (13), for all ς ≥ ς3 := ς2 + 1, we have that( z(ς)
B3(ς, ς2)

)′
=

z′(ς)B3(ς, ς2)− z(ς)B2(ς, ς1)

(B3(ς, ς2))2 ≤ 0, (14)

so z(ς)/B3(ς, ς2) is decreasing for ς ≥ ς3. Next, in view of the fact that z(ς)/B3(ς, ς2) is
decreasing for ς ≥ ς3 and $(ς) < ς or $−1(ς) ≤ $−1($−1(ς)), we obtain

B3($
−1($−1(ς)), ς2)z($−1(ς))

B3($−1(ς), ς2)
≥ z($−1($−1(ς))). (15)

Using (15) in (6) yields

x(ς) ≥ 1
p($−1(ς))

[
1− 1

p($−1($−1(ς)))

B3($
−1($−1(ς)), ς2)

B3($−1(ς), ς2)

]
z($−1(ς)) = ψ2(ς)z($−1(ς)),

so
x(φi(ς)) ≥ ψ2(φi(ς))z($−1(φi(ς))), i = 1, 2, · · ·, n (16)

for ς ≥ ς3. Using (16) in (1) gives

(
r2(ς)

((
r1(ς)

(
z′(ς)

)β1
)′)β2

)′
+

n

∑
i=1

qi(ς)(ψ2(φi(ς)))
β3 zβ3($−1(φi(ς))) ≤ 0. (17)

Define

w(ς) = ζ(ς)

[
r2(ς)

((
r1(ς)

(
z′(ς)

)β1
)′)β2

(z′(ς))β3
+ r2(ς)η(ς)

]
for ς ≥ ς1. (18)
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Then w(ς) > 0, and from (17), we see that

w′(ς) = ζ ′(ς)

[
r2(ς)

((
r1(ς)

(
z′(ς)

)β1
)′)β2

(z′(ς))β3
+ r2(ς)η(ς)

]

+ζ(ς)

[
r2(ς)

((
r1(ς)

(
z′(ς)

)β1
)′)β2

(z′(ς))β3
+ r2(ς)η(ς)

]′
(19)

≤ ζ ′(ς)

ζ(ς)
w(ς) + ζ(ς)(r2(ς)η(ς))

′ − ζ(ς)

[ n

∑
i=1

qi(s)(ψ2(φi(s)))β3
zβ2($−1(φi(ς)))

(z′(ς))β2

]

−β3ζ(ς)r2(ς)
r2(ς)

((
r1(ς)

(
z′(ς)

)β1
)′)β2 z′(ς)

(z′(ς))β3+1 .

Using the fact z(ς)/B3(ς, ς2) is nonincreasing for ς ≥ ς3, and noting that $(ς) ≥ φi(ς)
implies $−1(φi(ς)) ≤ ς, we obtain

z($−1(φi(ς)))

z(ς)
≥ B3($

−1(φi(ς)), ς2)

B3(ς, ς2)
, i = 1, 2, · · ·, n (20)

for ς ≥ ς3. Substituting (13), (18) and (20) into (19), we obtain

w′(ς) ≤ ζ ′(ς)

ζ(ς)
w(ς) + ζ(ς)(r2(ς)η(ς))

′ − ζ(ς)

[ n

∑
i=1

qi(ς)(ψ2(φi(ς)))
β3
(B3($

−1(φi(ς)), ς2)

B3(ς, ς1)

)β3
]

−β3ζ(ς)B2(ς, ς1)(z(ς))
β3

β1β2
−1
(w(ς)

ζ(ς)
− r2(ς)η(ς)

)1+ 1
β1β2 . for ς ≥ ς3. (21)

Next, we will compute z
β3

β1β2
−1

(ς) and consider the following two cases:

(1) β1β2 ≤ β3. From z′(ς) > 0, there exists a constant h1 > 0, such that

z(ς) ≥ z(ς1) = h1 for ς ≥ ς2,

which implies that

z
β3

β1β2
−1

(ς) ≥ h
β3

β1β2
−1

1 := m1, for ς ≥ ς2. (22)

(2) β1β2 > β3. From (14), there exists a constant h2 > 0 and ς3 ≥ ς2, such that

z(ς)
B3(ς, ς1)

≤ z(ς)
B3(ς2, ς1)

= h2 for ς ≥ ς3.

Hence,

z
β3

β1β2
−1

(ς) ≥ h
β3

β1β2
−1

2 (B3(ς, ς1))
β3

β1β2
−1

= m2(B3(ς, ς1))
β3

β1β2
−1 for ς ≥ ς2, (23)

where m2 = h
β3

β1β2
−1

2 .

Combining (21) with (22) and (23), we obtain

w′(ς) ≤ ζ ′(ς)

ζ(ς)
w(ς) + ζ(ς)(r2(ς)η(ς))

′ − ζ(ς)

[ n

∑
i=1

qi(ς)(ψ2(φi(ς)))
β3
(B3($

−1(φi(ς)), ς2)

B3(ς, ς1)

)β3
]

−β3ζ(ς)ϕ(ς) B2(ς, ς1)
(w(ς)

ζ(ς)
− r2(ς)η(ς)

)1+ 1
β1β2 . for ς ≥ ς3. (24)
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By applying the inequality

X1+ 1
α − (X−Y)1+ 1

α ≤ Y
1
α

[(
1 +

1
α

)
X− 1

α
Y
]

for α = odd/odd ≥ 1,

we obtain(w(ς)

ζ(ς)
− r2(ς)η(ς)

)1+ 1
β1β2 ≥

(w(ς)

ζ(ς)

)1+ 1
β1β2 +

1
β1β2

(
r2(ς)η(ς)

)1+ 1
β1β2

−
(

1 +
1

β1β2

)(r2(ς)η(ς)
) 1

β1β2

ζ(ς)
ω(ς). (25)

Substituting (24) into (25), we see that

w′(ς) ≤ ζ ′(ς)

ζ(ς)
w(ς) + ζ(ς)(r2(ς)η(ς))

′ − ζ(ς)

[ n

∑
i=1

qi(ς)(ψ2(φi(ς)))
β3
(B3($

−1(φi(ς)), ς2)

B3(ς, ς1)

)β3
]

− β3

β1β2
ζ(ς)ϕ(ς) B2(ς, ς1)

(
r2(ς)η(ς)

)1+ 1
β1β2 − β3

ϕ(ς)B2(ς, ς1)

(ζ(ς))
1

β1β2

(w(ς))
1+ 1

β1β2

+
(

1 +
1

β1β2

)
β3 ϕ(ς) B2(ς, ς1)

(
r2(ς)η(ς)

) 1
β1β2 ω(ς)

= ζ(ς)(r2(ς)η(ς))
′ − ζ(ς)

[ n

∑
i=1

qi(ς)(ψ2(φi(ς)))
β3
(B3($

−1(φi(ς)), ς2)

B3(ς, ς1)

)β3
]

(26)

− β3

β1β2
ζ(ς)ϕ(ς) B2(ς, ς1)

(
r2(ς)η(ς)

)1+ 1
β1β2

+

{
ζ ′+(ς)

ζ(ς)
+
(

1 +
1

β1β2

)
β3 ϕ(ς) B2(ς, ς1)

(
r2(ς)η(ς)

) 1
β1β2

}
ω(ς)

−β3
ϕ(ς)B2(ς, ς1)

(ζ(ς))
1

β1β2

(w(ς))
1+ 1

β1β2

= −Φ(ς) + C(ς)ω(ς)− D(ς)(w(ς))
1+ 1

β1β2 ,

where

C(ς) :=
ζ ′+(ς)

ζ(ς)
+
(

1 +
1

β1β2

)
β3 ϕ(ς) B2(ς, ς1)

(
r2(ς)η(ς)

) 1
β1β2 ,

D(ς) := β3
ϕ(ς)B2(ς, ς1)

(ζ(ς))
1

β1β2

,

for ς ≥ ς3. Using the inequality

Cω− Dω1+1/α ≤ αα

(α + 1)α+1
Cα+1

Dα
, (27)

D > 0, we obtain

w′(ς) ≤ −Φ(ς) +

δ

(
ζ ′+(ς) + β3

(
1 + 1

β1β2

)
ζ(ς)ϕ(ς)B2(ς, ς0)

(
r2(ς)η(ς)

) 1
β1β2

)β1β2+1

(ζ(ς)ϕ(ς)B2(ς, ς0))β1β2
. (28)

An integration of (28) from ς3 to ς yields
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∫ ς

T

{
Φ(s)−

δ

(
ζ ′+(s) + β3

(
1 + 1

β1β2

)
ζ(s)ϕ(s)B2(s, ς0)

(
r2(s)η(s)

) 1
β1β2

)β1β2+1

(ζ(s)ϕ(s)B2(s, ς0))β1β2

}
ds < w(ς2),

which contradicts (11).
Assume that (Cii) holds, by Lemma 2, we have limς→∞ x(ς) = 0. The proof is complete.

Next, we examine the oscillation results of the solutions of (1) by Philos-type [9]. Let
S0 = {(ς, s) : a ≤ s < ς < +∞} , S = {(ς, s) : a ≤ s ≤ ς < +∞} the continuous function
E(ς, s), E : S→ R belongs to the class function <
(Ci) E(ς, ς) = 0 for ς ≥ ς0 and E(ς, s) > 0 for (ς, s) ∈ S0,

(Cii)
∂E(ς,s)

∂s ≤ 0, (ς, s) ∈ S0 and some locally integrable function e(ς, s), such that

∂E(ς, s)
∂s

+ E(ς, s)
[ ζ ′+(ς)

ζ(ς)
+ β3

(
1 +

1
β1β2

)
ϕ(ς)B2(ς, ς0)

(
r2(ς)η(ς)

) 1
β1β2

]
= −e(ς, s)

for all (ς, s) ∈ S0.

Theorem 2. If $(ς) ≥ φi(ς) for i = 1, 2, · · ·, n and ψ1(ς) > 0, ψ2(ς) > 0, (5) holds. If there
exists a function ζ ∈ C1([ς0, ∞),R) and η ∈ C1([ς0, ∞),R) such that r2η ∈ C1([ς0, ∞),R) and

lim sup
ς→∞

1
E(ς, ς∗)

∫ ς

T

{
E(ς, s)Φ(s)− δζ(s)|e(ς, s)|β1β2+1

(E(ς, s)ϕ(s)B2(s, ς1))β1β2

}
ds = ∞, (29)

for all ς1, ς2, ς∗ ∈ [ς0, ∞), where δ, Φ(ς), ϕ(ς) are defined as in Theorem 1 and ς∗ > ς2 > ς1,
then any solution of (1) is either oscillatory or satisfies limς→∞ x(ς) = 0.

Proof. Let (1) have a nonoscillatory solution x(ς) on [ς0, ∞)—say there exists ς1 ∈ [ς0,∞)
such that, for ς ≥ ς1, x(ς) > 0, x($(ς)) > 0, and x(φi(ς)) > 0, (3) and (4) hold, and z(ς)
satisfies either (Ci) or (Cii) and i = 1, 2, · · ·, n. Assume that (Ci) holds. Following the same
arguments as in the proof of Theorem 1, we obtain (26). In view of (18), inequality (26)
takes the form

Φ(ς) ≤ −w′(ς) + C(ς)ω(ς)− D(ς)(w(ς))
1+ 1

β1β2 . (30)

Multiplying E(ς, s) integrating (30) from ς3 to ς, one can obtain∫ ς

ς3

E(ς, s)Φ(s)ds ≤ −
∫ ς

ς3

E(ς, s)w′(s)ds +
∫ ς

ς3

E(ς, s)C(s)ω(s)ds−
∫ ς

ς3

E(ς, s)D(s)(w(s))1+ 1
β1β2 ds

= E(ς, ς3)ω(ς3 +
∫ ς

ς3

[∂E(ς, s)
∂s

+ E(ς, s)C(s)
]
ω(s) ds−

∫ ς

ς3

E(ς, s)D(s)(w(s))1+ 1
β1β2 ds

= E(ς, ς3)ω(ς3 +
∫ ς

ς3

e(ς, s)ω(s) ds−
∫ ς

ς3

E(ς, s)D(s)(w(s))1+ 1
β1β2 ds

≤ E(ς, ς3)ω(ς3 +
∫ ς

ς3

{
|e(ς, s)|ω(s)− E(ς, s)D(s)(w(s))1+ 1

β1β2

}
ds

Now, using the inequality (27), we obtain

∫ ς

ς3

E(ς, s)Φ(s)ds ≤ E(ς, ς3)ω(ς3) +
∫ ς

ς3

δζ(s)|e(ς, s)|β1β2+1

(E(ς, s)ϕ(s)B2(s, ς1))β1β2
ds,
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and this implies that

1
E(ς, ς∗)

∫ ς

T

{
E(ς, s)Φ(s)− δζ(s)|e(ς, s)|β1β2+1

(E(ς, s)ϕ(s)B2(s, ς1))β1β2

}
ds ≤ w(T),

which contradicts (29).
Suppose that (Cii) holds, and so limς→∞ x(ς) = 0 by Lemma 2. The proof is complete.

Corollary 1. Suppose that all conditions of Theorem 2 are satisfied with (29) replaced by

lim sup
ς→∞

1
E(ς, ς∗)

∫ ς

ς∗
E(ς, s)Φ(s)ds = ∞

and

lim sup
ς→∞

1
E(ς, ς∗)

∫ ς

ς∗

δζ(ς)|e(ς, s)|β1β2+1

(E(ς, s)ϕ(s)B2(s, ς1))β1β2
ds < ∞,

then any solution of (1) is either oscillatory or satisfies limς→∞ x(ς) = 0.

Next, we establish the oscillation criteria for (1) in the case $(ς) ≤ φi(ς).

Theorem 3. If $(ς) ≤ φi(ς) for i = 1, 2, · · ·, n and ψ1(ς) > 0, ψ2(ς) > 0, (5) holds. If there
exists a function ζ ∈ C1([ς0, ∞),R) and η ∈ C1([ς0, ∞),R) such that r2η ∈ C1([ς0, ∞),R) and

lim sup
ς→∞

∫ ς

T

{
Φ∗(s)−

δ
(

ζ ′+(s) + β3

(
1 + 1

β1β2

)
ζ(s)ϕ(s)B2(s, ς0)

(
r2(s)η(s)

) 1
β1β2

)β1β2+1

(ζ(s)ϕ(s)B2(s, ς0))β1β2

}
ds = ∞, (31)

where

Φ∗(ς) = ζ(s)
n

∑
i=1

qi(s)(ψ2(φi(s)))β3 − ζ(s)
(

r2(s)η(s)
)′

+
β3

β1β2
ζ(s)ϕ(s)B2(s, s0)

(
r2(s)η(s)

)(1+ 1
β1β2

)
for all ς1, ς2, T ∈ [ς0, ∞), where δ, ϕ(ς) are defined as in Theorem 1 and T > ς2 > ς1, then any
solution of (1) is either oscillatory or satisfies limς→∞ x(ς) = 0.

Proof. Let (1) have a nonoscillatory solution x(ς) on [ς0, ∞)—say there exists ς1 ∈ [ς0,∞)
such that, for ς ≥ ς1, x(ς) > 0, x($(ς)) > 0, and x(φi(ς)) > 0, (3) and (4) hold, and z(ς)
satisfies either (Ci) or (Cii) and i = 1, 2, · · ·, n. Assume that (Ci) holds. Following the same
arguments as in the proof of Theorem 1, we obtain (26). Using the fact that $(ς) is strictly
increasing and $(ς) ≤ φi(ς), we have

ς ≤ $−1(φi(ς)), i = 1, 2, · · ·, n,

thus, in view of the fact that z(ς) is increasing, we obtain

z($−1(φi(ς)))

z(ς)
≥ 1, i = 1, 2, · · ·, n. (32)
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Using (32) in (24), we obtain that

w′(ς) ≤
ζ ′+(ς)

ζ(ς)
w(ς) + ζ(ς)(r2(ς)η(ς))

′ − ζ(ς)
n

∑
i=1

qi(ς)(ψ2(φi(ς)))
β3

− β3ζ(ς)B2(ς, ς1)(z(ς))
β3

β1β2
−1
(w(ς)

ζ(ς)
− r2(ς)η(ς)

)1+ 1
β1β2 , (33)

=−Φ∗(ς) + C(ς)ω(ς)− D(ς)(w(ς))
1+ 1

β1β2 . for ς ≥ ς3.

where C(ς) and D(ς) are defined as in Theorem 1. The remainder of the proof is similar to
that of Theorem 1, and so we omit it.

Theorem 4. If $(ς) ≤ φi(ς) for i = 1, 2, · · ·, n and ψ1(ς) > 0, ψ2(ς) > 0, (5) holds. If there
exists a function ζ ∈ C1([ς0, ∞),R) and η ∈ C1([ς0, ∞),R) such that r2η ∈ C1([ς0, ∞),R) and

lim sup
ς→∞

1
E(ς, ς∗)

∫ ς

T

{
E(ς, s)Φ∗(s)−

δζ(s)|e(ς, s)|β1β2+1

(E(ς, s)ϕ(s)B2(s, ς1))β1β2

}
ds = ∞, (34)

for all ς1, ς2, ς∗ ∈ [ς0, ∞), where δ, ϕ(ς) are defined as in Theorem 1, Φ∗(ς) are defined as in Theo-
rem 2 and ς∗ > ς2 > ς1, then any solution of (1) is either oscillatory or satisfies limς→∞ x(ς) = 0.

The following examples and comments are provided at the end of this article to
illustrate the results discussed above.

Example 1. Consider the differential equation((((
(ς− 1)

[
x(ς) + 4x(

ς

2
)]′
)5)′) 1

3
)′
+ 162(ς− 1)4x3(

ς

2
) + 82(ς2 − 3ς + 2)2x3(

ς

4
) = 0, ς ≥ 1 (35)

where β1 = 5, β2 = 1/3, β3 = 3, r1(ς) = ς − 1, r2(ς) = 1, p(ς) = 4, $(ς) = ς/2,
q1(ς) = 162(ς− 1)4, q2(ς) = 82(ς2− 3ς + 2)2, φ1(ς) = ς/2 and φ2(ς) = ς/4. Then, we obtain

B1(ς, ς1) = B1(ς, 1) = ς− 1; B2(ς, ς2) = B2(ς, 1) = 1; B3(ς, ς2) = B3(ς, 1) = ς− 1;

B3($
−1(ς), ς2) = B3(2ς, 1) = 2ς− 1; B3($

−1($−1(ς)), ς2) = B3(4ς, 1) = 4ς− 1;

B3($
−1(φ1(ς)), ς2) = B3(2ς, 1) = 2ς− 1; B3($

−1(φ2(ς)), ς2) = B3(4ς, 1) = 4ς− 1;

and

ψ1(ς) =
1
4

(
1− 1

4

)
= 3/16 > 0,

ψ2(ς) =
1
4

(
1− 1

4
4ς− 1
2ς− 1

)
=

1
16

(4ς− 3
2ς− 1

)
≥ 1

16
> 0,

Ω1(ς) =
2

∑
i=1

qi(ς)(ψ1(φi(ς)))
β = 162(ς− 1)4

( 7
64

)3
+ 82(ς2 − 3ς + 2)2

( 7
64

)3
,

and δ = 10.1207, ϕ(ς) = m1. If we choose ζ(ς) = ς, η = 1/ς, it is easy to verify that all the
conditions of Theorem 1 are satisfied. Hence, any solution of (35) is either oscillatory or satisfies
limς→∞ x(ς) = 0.

Example 2. Consider the differential equation((((
(ς− 1)

[
x(ς) + 4x(

ς

2
)]′
)7)′) 1

5
)′
+ 252(ς− 1)10x5(

ς

2
) + 252(2ς− 1)2x5(ς) = 0, ς ≥ 1 (36)



Symmetry 2021, 13, 1485 11 of 12

where β1 = 7, β2 = 1/5, β3 = 5, r1(ς) = ς − 1, r2(ς) = 1, p(ς) = 4, $(ς) = ς/2,
q1(ς) = 252(ς− 1)10, q2(ς) = 252(2ς− 1)2, φ1(ς) = ς/2 and φ2(ς) = ς. Then, we obtain

B1(ς, ς1) = B1(ς, 1) = ς− 1; B2(ς, ς2) = B2(ς, 1) = 1; B3(ς, ς2) = B3(ς, 1) = ς− 1;

B3($
−1(ς), ς2) = B3(2ς, 1) = 2ς− 1; B3($

−1($−1(ς)), ς2) = B3(4ς, 1) = 4ς− 1;

and

ψ1(ς) =
1
5

(
1− 1

5

)
= 4/25 > 0,

ψ2(ς) =
1
5

(
1− 1

5
4ς− 1
2ς− 1

)
=

1
25

(6ς− 4
2ς− 1

)
≥ 1

25
> 0,

Ω1(ς) =
2

∑
i=1

qi(ς)(ψ1(φi(ς)))
β = 252(ς− 1)10

( 4
25

)3
+ 252(2ς− 1)2

( 4
25

)3
,

and δ =
( 7

25
)7/5( 5

12
)12/5, ϕ(ς) = m1. If we choose ζ(ς) = 1, η = 1/ς, it is easy to verify that all

the conditions of Theorem 3 are satisfied. Hence, any solution of (36) is either oscillatory or satisfies
limς→∞ x(ς) = 0.

3. Conclusions

We established new oscillation theorems for (1) under the assumptions of $(ς) ≥ φi(ς)
and $(ς) ≤ φi(ς) for i = 1, 2, · · ·, n when p(ς) ≥ 1. The symmetry plays an important
and fundamental role in the study of the oscillation of the solutions of equations. The main
outcomes are proved via the means of generalized riccati substitution, an integral averaging
condition under the assumptions of

∫ ∞
ς0

r−1/βi
i (s)ds = ∞ for i = 1, 2. Two examples are

given to prove the significance of the new theorems. Furthermore, we can try to obtain new
oscillation results of (1) if z(ς) := x(ς) + ∑2

i=1 pi(ς)x($i(ς)) in future work.
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