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1. Introduction

In [1], we recently constructed generating-type functions for some new families of
special polynomials and numbers via the umbral calculus convention method. We showed
that these new families of special polynomials and numbers are associated with finite
calculus, combinatorial numbers and polynomials, polynomial of the chordal graph, and
special functions and their applications (cf. [1]).

The motivation of this paper is to give various combinatorial sums involving special
numbers and polynomials via application of the p-adic integrals to functional equations of
generating-type functions.

We [1] defined the following generating-type functions:

h
(
w;−→xv ,−→yv

)
=

v−1

∏
j=0

(
f (w)− xj

)yj , (1)

F1
(
w;−→xv ,−→yv

)
=

wv

h
(
w;−→xv ,−→yv

) , (2)

and
F2
(
w, z;−→xv ,−→yv

)
= (1 + w)zF1

(
w;−→xv ,−→yv

)
, (3)

where f (w) is an analytic function, F1
(
w;−→xv ,−→yv

)
is a meromorphic function, v ∈ N, v-

tuples −→xv = (x0, x1, . . . , xv−1),
−→yv = (y0, y1, . . . , yv−1), xj, yj ∈ R with j = 0, 1, . . . , v− 1,

and z, w ∈ R (or C).
The polynomials θn

(
z;−→xv ,−→yv

)
of degree n and order yj (j = 0, 1, . . . , v− 1) are defined

by means of the following generating function (cf. [1]):

F2
(
w, z;−→xv ,−→yv

)
=

∞

∑
n=0

θn
(
z;−→xv ,−→yv

)
wn. (4)
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Substituting z = 0 into (4), we [1] defined another new class of special numbers
θn
(−→xv ,−→yv

)
:= θn

(
0;−→xv ,−→yv

)
, which are defined by means of the following generating

function:

F1
(
w;−→xv ,−→yv

)
=

∞

∑
n=0

θn
(−→xv ,−→yv

)
wn. (5)

Combining (4) and (5) yields another relation between the polynomials θn
(
z;−→xv ,−→yv

)
and the numbers θn

(−→xv ,−→yv
)
, given as follows:

θn
(
z;−→xv ,−→yv

)
=

n

∑
j=0

(
z
j

)
θn−j

(−→xv ,−→yv
)

(6)

where n ∈ N0 (cf. [1]).
We [1] defined the numbers `n(v) := `n((0, 1, 2, . . . , v− 1)) by means of the following

generating function:

G1(w; (0, 1, 2, . . . , v− 1)) =
wv

v−1
∏
j=0

(ew − j)
(7)

=
∞

∑
n=0

`n(v)
wn

n!
,

where

`n(v) := `n((0, 1, 2, . . . , v− 1)) = n!θn((0, 1, 2, . . . , v− 1), (1, 1, . . . , 1)),

for m ∈ N,
`0(v) = 0, `0(m + 1) = `1(m + 1) = · · · = `m−1(m + 1) = 0

and
`m(m + 1) 6= 0

(cf. [1]).
We [1] also defined the polynomials `n(x; v) by means of the following generating

function:
wv

v−1
∏
j=0

(ew − j)
ezw =

∞

∑
n=0

`n(z; v)
wn

n!
. (8)

By using (8), we have

`n(z; v) =
n

∑
j=0

(
n
j

)
zj`n−j(v), (9)

where
`n−j(v) := `n−j(0, v)

(cf. [1]).
We also use the following standard notations throughout this paper:
Let N, Z, Q, R, and C denote the set of positive integers, the set of integers, the set of

rational numbers, the set of real numbers, and the set of complex numbers, respectively.
Let N0 = N∪ {0}.

Let x ∈ R. The rising factorial polynomials x(n) and the falling factorial polynomials
x(n) are given respectively by

x(n) = x(x + 1)(x + 2) . . . (x + n− 1),

x(n) = x(x− 1)(x− 2) . . . (x− n + 1),
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where x(0) = 1, x(0) = 1 and n ∈ N, and also

(−1)n(−x)(n) = (x + n− 1)(n) = x(n) (10)

n ∈ N0 (cf. [1–22]).
The Bernoulli polynomials of order n and degree k are defined by means of the

following generating function:

(
w

ew − 1

)n
ewy =

∞

∑
k=0

B(n)
k (y)

k!
wk, (11)

where n ∈ Z. Setting n = 0, we have B(0)
k (y) = yn. Putting y = 0, we have the Bernoulli

numbers of order n: B(n)
k = B(n)

k (0). When n = 1, we have the Bernoulli numbers:

Bk = B(1)
k (cf. [1,3,5,6,11,15,16,18–24]).

A relation between the numbers θn
(−→xv ,−→yv

)
and the numbers B(n)

k is given as follows:

θn−y0−y1−...−yv−1((1, 1, 1, . . . , 1), (y0, y1, . . . , yv−1)) =
n(v)

n!
B(y0+y1+...+yv−1)

n−v

where n, y0, y1, . . . , yv−1 ∈ N0 with n ≥ y0 + y1 + · · ·+ yv−1 (cf. [1]).
The Euler polynomials of order n and degree k are defined by means of the following

generating function: (
2

ew + 1

)n
ewy =

∞

∑
k=0

E(n)
k (y)

k!
wk, (12)

where n ∈ Z. Setting n = 0, we have E(0)
k (y) = yn. Putting y = 0, we have the Euler

numbers of order n: E(n)
k = E(n)

k (0). When n = 1, we have the Euler numbers: Ek = E(1)
k

(cf. [1,3,5,6,15,16,18–22,24,25]).
A relation between the numbers θn

(−→xv ,−→yv
)

and the numbers E(n)
k is given as follows:

θn((−1,−1, . . . ,−1), (y0, y1, . . . , yv−1)) =
n(v)

n!2y0+y1+...+yv−1
E(y0+y1+...+yv−1)

n−v

where n, y0, y1, . . . , yv−1 ∈ N0 with n ≥ y0 + y1 + · · ·+ yv−1 (cf. [1]).
The Apostol–Bernoulli numbers, Bn(λ), are defined by

fb(w; λ) =
w

λew − 1
=

∞

∑
n=0

Bn(λ)

n!
wn, (13)

(cf. [2]; for detail, see also [1,8,16,18–22]).
A relation between the numbers `n(v) and the Apostol–Bernoulli numbers Bn(λ) is

given by the following theorem:

Theorem 1 (cf. [1]). Let n ∈ N0 and v ∈ N with v > 1. Then, we have

`n(v) =
1

v− 1

n

∑
j=0

(
n
j

)
`n−j(v− 1)Bj

(
1

v− 1

)
. (14)

The Apostol–Euler polynomials, En(λ), are defined by

fe(w; λ) =
2

λew + 1
=

∞

∑
n=0

En(λ)

n!
wn, (15)

(cf. [1,8,15,16,18–22]).
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Using generating functions fb(w; λ) and fe(w; λ) yields the following well-known
important relation:

(n + 1)En(λ) = −2Bn+1(−λ) (16)

(cf. [22]).
A relation between the numbers `n(v) and the Apostol–Euler numbers En(λ) is given

by the following theorem:

Theorem 2 (cf. [1]). Let n ∈ N0 and v ∈ N with v > 1. Then, we have

`n(v) =
n

∑
j=0

(
n
j

)
(n− j)`j(v− 1)

2(1− v)
En−j−1

(
1

1− v

)
. (17)

The Stirling numbers of the first kind, S1(v, d), are defined by means of the following
generating function:

(log(1 + w))d =
∞

∑
v=0

d!S1(v, d)
v!

wv. (18)

Using (18), we have
S1(v, d) = 0

if d > v (cf. [3,14,22]; see also the references cited in each of these earlier works).
The Stirling numbers of the first kind are also given by

y(v) =
v

∑
d=0

S1(v, d)yd, (19)

(cf. [3,14,22,25]).
A relation between the polynomials θn

(
z;−→xv ,−→yv

)
and the numbers S1(j, m) is given as

follows:

θn
(
z;−→xv ,−→yv

)
=

n

∑
j=0

θn−j
(−→xv ,−→yv

) j

∑
m=0

zmS1(j, m)

j!
(20)

where n ∈ N0 (cf. [1]).
The Bernoulli polynomials of the second kind, bm(y), are defined by

w(1 + w)y

log(1 + w)
=

∞

∑
m=0

bm(y)
m!

wm (21)

such that for y = 0, we have the Bernoulli numbers of the second kind (Cauchy numbers
of the first kind), which is denoted by bm(0) (cf. [3,25]).

The Stirling numbers of the second kind, S2(v, d), are defined by

(ew − 1)d =
∞

∑
v=0

d!S2(v, d)
v!

wv, (22)

where d ∈ N0 (cf. [1–22,25]).
The Stirling numbers of the second kind are also given by

yv =
v

∑
d=0

S2(v, d)y(d), (23)

(cf. [1–26]; see also the references cited in each of these earlier works).
The Daehee numbers, Dn, are defined by means of the following generating function:

1
w

log(1 + w) =
∞

∑
n=0

Dn

n!
wn (24)
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(cf. [16] (p. 45), [11,18,20]). Using (24), we have

Dn =
(−1)nn!

n + 1
(25)

(cf. [11]; see also [14,18,20]).
The Changhee numbers of the first kind, Chn, are defined by

2
w + 2

=
∞

∑
n=0

Chn

n!
wn (26)

(cf. [12,18,20]). Using (26), we have

Chn =
(−1)nn!

2n =
n

∑
k=0

S1(n, k)Ek (27)

(cf. [12]; see also [14,18,20]).
Kucukoglu and Simsek [14] defined a new sequence of special numbers βn(k) by

means of the following generating function:(
1− z

2

)k
=

∞

∑
n=0

βn(k)
zn

n!
, (28)

where k ∈ N0, z ∈ C with |z| < 2.
By using (28), we have

βn(k) =
(−1)nn!

2n

(
k
n

)
, (29)

where n, k ∈ N0 (cf. [14] (Equation (4.9))).
Therefore, we summarize the content of the paper as follows:
In Section 2, we give identities and combinatorial sums including the polynomials

θn
(
z;−→xv ,−→yv

)
, the numbers `n(v), the Stirling numbers, the Daehee numbers, and the

Bernoulli numbers of the second kind.
In Section 3, by using p-adic integrals on the set of p-adic integers, we give p-adic

integral formulas for the polynomials θn
(
z;−→xv ,−→yv

)
.

In Section 4, making use of these p-adic integral formulas for the polynomials θn
(
z;−→xv ,−→yv

)
,

we give some combinatorial sums including the Bernoulli numbers and polynomials, the
Euler numbers and polynomials, the Stirling numbers, the Daehee numbers, and the
Changhee numbers.

In Section 5, we give the conclusion section of this paper.

2. Identities, Relations, and Combinatorial Sums Derived from Generating Functions

In this section, we give some identities, relations, and combinatorial sums involving
the new families of polynomials θn

(
z;−→xv ,−→yv

)
, the numbers `n(v), the Stirling numbers, the

Daehee numbers, and the Bernoulli numbers of the second kind.
Using (4), (5), (21), and (24), we obtain

∞

∑
n=0

θn
(
z;−→xv ,−→yv

)
wn =

∞

∑
n=0

bn(z)
n!

wn
∞

∑
n=0

Dn

n!
wn

∞

∑
n=0

θn
(−→xv ,−→yv

)
wn.

Therefore,

∞

∑
n=0

θn
(
z;−→xv ,−→yv

)
wn =

∞

∑
n=0

n

∑
k=0

k

∑
j=0

(
k
j

)Dk−j

k!
θn−k

(−→xv ,−→yv
)
bj(z)wn.
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Equating coefficients wn on both sides of the above equation, we arrive at the following
theorem:

Theorem 3. Let n ∈ N0. Then, we have

θn
(
z;−→xv ,−→yv

)
=

n

∑
k=0

k

∑
j=0

(
k
j

)Dk−j

k!
θn−k

(−→xv ,−→yv
)
bj(z). (30)

Combining (25) with (30), we arrive at the following corollary:

Corollary 1. Let n ∈ N0. Then, we have

θn
(
z;−→xv ,−→yv

)
=

n

∑
k=0

k

∑
j=0

(−1)k−j
(

k
j

)
(k− j)!θn−k

(−→xv ,−→yv
)

(k− j + 1)k!
bj(z).

Combining (14) with the following well-known formula

Bn(α) =
nα

(α− 1)n

n−1

∑
d=1

(−1)dd!αd−1(α− 1)n−d−1S2(n− 1, d) (31)

(cf. [2]), we arrive at the following theorem:

Theorem 4. Let n ∈ N with n > 1. Then, we have

`n(v) +
n

v− 2
`n−1(v− 1) = −

n

∑
j=2

j−1

∑
d=1

(
n
j

)
jd!

(v− 2)d+1 S2(j− 1, d)`n−j(v− 1).

By using (8), we obtain

wvexw =
v−1

∏
j=0

(ew − j)
∞

∑
n=0

`n(x; v)
wn

n!
.

By combining the above equation with (19), we obtain

wv
∞

∑
n=0

xnwn

n!
=

v

∑
d=0

S1(v, d)
∞

∑
n=0

dnwn

n!

∞

∑
n=0

`n(x; v)
wn

n!
.

Therefore,

∞

∑
n=0

n(v)
xn−vwn

n!
=

v

∑
d=0

S1(v, d)
∞

∑
n=0

n

∑
j=0

(
n
j

)
dn−j`j(x; v)

wn

n!
.

Equating coefficients wn

n! on both sides of the above equation yields the following
theorem:

Theorem 5. Let n, v ∈ N. Then, we have

v

∑
d=0

n

∑
j=0

(
n
j

)
dn−jS1(v, d)`j(x; v) = n(v)x

n−v. (32)
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Theorem 6. Let m, v ∈ N. Then, we have

`m(x + iy; v) =
[m

2 ]

∑
j=0

(−1)jy2j
(

m
2j

)
`m−2j(x; v) (33)

+i
[m−1

2 ]

∑
j=0

(−1)j
(

m
2j + 1

)
y2j+1`m−2j−1(x; v).

Proof. Substituting z = x + iy (i2 = −1) into (8) and using (7), with the aid of the well-
known Euler identity eywi = cos(yw) + i sin(yw), we obtain

wvexw

v−1
∏
j=0

(ew − j)
(cos(yw) + i sin(yw)) =

∞

∑
n=0

`n(z; v)
wn

n!
.

Combining the above equation with the MacLaurin Series for the trigonometric func-
tions cos(yw) and sin(yw) yields

∞

∑
m=0

`m(x + iy; v)
wm

m!
=

∞

∑
m=0

(−1)m (yw)2m

(2m)!

∞

∑
m=0

`m(x; v)
wm

m!

+i
∞

∑
m=0

(−1)m (yw)2m+1

(2m + 1)!

∞

∑
m=0

`m(x; v)
wm

m!
.

Therefore,

∞

∑
m=0

`m(x + iy; v)
wm

m!
=

∞

∑
m=0

[m
2 ]

∑
j=0

(−1)jy2j
(

m
2j

)
`m−2j(x; v)

+i
∞

∑
m=0

[m−1
2 ]

∑
j=0

(−1)j
(

m
2j + 1

)
y2j+1`m−2j−1(x; v).

Comparing the coefficients of wm

m! on both sides of the above equation, we obtain the
desired result.

Putting x = y in (33), we obtain the following corollary:

Corollary 2. Let m, v ∈ N. Then, we have

m

∑
j=0

(
m
j

)
xj(1 + i)j`m−j(v) =

[m
2 ]

∑
j=0

(−1)jx2j
(

m
2j

)
`m−2j(x; v) (34)

+i
[m−1

2 ]

∑
j=0

(−1)j
(

m
2j + 1

)
x2j+1`m−2j−1(x; v).

After the necessary algebraic calculations in Equation (34), the following combinatorial
finite sum is obtained:

(1 + i)m =
[m

2 ]

∑
j=0

(−1)j
(

m
2j

)
+ i

[m−1
2 ]

∑
j=0

(−1)j
(

m
2j + 1

)
. (35)

By using (35), we arrive at the following well-known formulas:
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Re(1 + i)m =
[m

2 ]

∑
j=0

(−1)j
(

m
2j

)

and

Im(1 + i)m =
[m−1

2 ]

∑
j=0

(−1)j
(

m
2j + 1

)
,

where Re(x + iy) = x and Im(x + iy) = y.
Therefore, we obtain the following well-known formulas:

[m
2 ]

∑
j=0

(−1)j
(

m
2j

)
=

(1 + i)m + (1− i)m

2

and
[m−1

2 ]

∑
j=0

(−1)j
(

m
2j + 1

)
=

(1 + i)m + (1− i)m

2i

(cf. [4] (Equations (2.26) and (2.30)); see also [6]).

Remark 1. Notice that the results introduced in this paper would generalize and improve many
works on the subject. For example, in the paper [23] (Theorem 4, Equation (7), p. 5), Iordanescu
et al. gave a generalized Euler formula. In future studies, with the help of the aforementioned
generalized Euler formula, Formulas (33)–(35) of the current paper can be further generalized,
and researchers who work on the generalization and unification of the Euler formula may obtain
interesting results reducible to Formulas (33)–(35) of the present paper.

3. p-Adic Integrals of the Polynomials θn
(
z;−→xv ,−→yv

)
on the Set of p-Adic Integers

In this section, we give p-adic integrals of the polynomials θn
(
z;−→xv ,−→yv

)
on Zp, which

denotes the set of p-adic integers. These formulas include the Bernoulli numbers and poly-
nomials, the Euler numbers and polynomials, the Stirling numbers, the Daehee numbers,
and the Changhee numbers.

In order to give p-adic integrals of the polynomials θn
(
z;−→xv ,−→yv

)
on Zp, we need some

fundamental properties of the p-adic distributions and p-adic integrals. Assuming that p is
an odd prime number, the |.|p map on Q is defined by

|x|p =

{
p−ordp(x) if x 6= 0

0 if x = 0,

where for m ∈ N, ordp(m) denotes the greatest integer k (k ∈ N0) such that pk divides
m in Z. If m = 0, then ordp(m) = ∞. Let Qp denote the set of p-adic rational numbers
(cf. [17,20]).

The Haar distribution is defined by

µ1

(
x + pNZp

)
= µ1(x) =

1
pN (36)

on Zp (cf. [7,17,20]), and the distribution µ−1
(
x + pNZp

)
on Zp is defined by

µ−1

(
x + pNZp

)
= µ−1(x) = (−1)x (37)

(cf. [8,10,20]).
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The Volkenborn integral (or the p-adic bosonic integral) of a uniformly differential
function f on Zp is given by

∫
Zp

f (x)dµ1(x) = lim
N→∞

p−N
pN−1

∑
d=0

f (d), (38)

(cf. [7,17,20]).
The p-adic fermionic integral of a uniformly differential function f on Zp is given by

∫
Zp

f (x)dµ−1(x) = lim
N→∞

pN−1

∑
x=0

(−1)x f (x), (39)

(cf. [8]; see also [10,20]).
Note that the Volkenborn integral (or the bosonic integral) and the p-adic fermionic

integral have various different applications in mathematics, in mathematical physics, and
in other areas. Using the Volkenborn integral, generating functions for Bernoulli-type
numbers and polynomials and combinatorial numbers and polynomials are constructed
and investigated (cf. [7,11,13,18–21,26]). On the other hand, using the p-adic fermionic
integral, generating functions for Euler-type numbers and polynomials and Genocchi-type
numbers and polynomials are constructed and investigated (cf. [8,10,12,13,18–21,26]). By
using p-adic integrals, the theory of the generating functions, ultrametric calculus, the
quantum groups, cohomology groups, q-deformed oscillator, and p-adic models have been
studied (cf. [17,20]).

Some well-known formulas for the Volkenborn integral are given as follows:∫
Zp

(
y
n

)
dµ1(y) =

(−1)n

n + 1
, (40)

where n ∈ N0 (cf. [17]).
The p-adic integral representation of the Bernoulli numbers Bn is given by

Bn =
∫
Zp

yndµ1(y), (41)

where n ∈ N0 (cf. [17]; see also [7,20] and the references cited in each of these earlier
works).

The p-adic integral representations of the Daehee numbers Dn are given by

Dn =
∫
Zp

y(n)dµ1(y), (42)

(cf. [11]) and ∫
Zp

y(n)dµ1(y) =
n

∑
l=0

S1(n, l)Bl , (43)

where n ∈ N0 (cf. [11]).
Combining (25) with (42), we have the following integral formula:∫

Zp

y(n)dµ1(y) =
(−1)nn!

n + 1
, (44)

where n ∈ N0 (cf. [11,17,20]).
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The p-adic fermionic integral representation of the Euler numbers En is given by

En =
∫
Zp

xndµ−1(x), (45)

where n ∈ N0 (cf. [8,10,13,20]; see also the references cited in each of these earlier works).
We also need the following interesting well-known formulas:∫

Zp

(
y
n

)
dµ−1(y) = (−1)n2−n (46)

(cf. [12] (Theorem 2.3)) and ∫
Zp

y(n)dµ−1(y) = (−1)n2−nn!, (47)

where n ∈ N0 (cf. [12]).
Combining (27) with (47), we have the following p-adic fermionic integral representa-

tion of the Changhee numbers Chn:

Chn =
∫
Zp

y(n)dµ−1(y), (48)

where n ∈ N0 (cf. [12]).

3.1. Volkenborn Integral of the Polynomials θn
(
z;−→xv ,−→yv

)
on Zp

Here, using p-adic integrals of the polynomials θn
(
z;−→xv ,−→yv

)
, we give combinatorial

sums involving the Bernoulli numbers and polynomials, the Euler numbers and polynomi-
als, the Stirling numbers, the Daehee numbers, and the Changhee numbers.

Applying the Volkenborn integral to Equations (6) and (20) on Zp, and using
(41), (43), and (44), after some elementary calculations, we obtain the following Volkenborn
integral of the polynomials of θn

(
z;−→xv ,−→yv

)
:

Theorem 7. Let n ∈ N0. Then, we have

∫
Zp

θn
(
x;−→xv ,−→yv

)
dµ1(x) =

n

∑
j=0

j

∑
m=0

BmS1(j, m)θn−j
(−→xv ,−→yv

)
j!

, (49)

∫
Zp

θn
(

x;−→xv ,−→yv
)
dµ1(x) =

n

∑
j=0

(−1)j 1
j + 1

θn−j
(−→xv ,−→yv

)
, (50)

and ∫
Zp

θn
(
x;−→xv ,−→yv

)
dµ1(x) =

n

∑
j=0

θn−j
(−→xv ,−→yv

)
Dj

j!
. (51)

3.2. p-Adic Fermionic Integrals of the Polynomials θn
(
z;−→xv ,−→yv

)
on Zp

Applying the p-adic fermionic integral to Equation (6) and Equation (20) on Zp, and
using (45), (46), (48), and (29), after some elementary calculations, we obtain the following
p-adic fermionic integral of the polynomials of θn

(
z;−→xv ,−→yv

)
:
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Theorem 8. Let n, k ∈ N0. Then, we have

∫
Zp

θn
(
x;−→xv ,−→yv

)
dµ−1(x) =

n

∑
j=0

j

∑
m=0

EmS1(j, m)θn−j
(−→xv ,−→yv

)
j!

, (52)

∫
Zp

θn
(
x;−→xv ,−→yv

)
dµ−1(x) =

n

∑
j=0

(−1)j θn−j
(−→xv ,−→yv

)
2j , (53)

∫
Zp

θn
(
x;−→xv ,−→yv

)
dµ−1(x) =

n

∑
j=0

θn−j
(−→xv ,−→yv

)
Chj

j!
, (54)

and ∫
Zp

θn
(
x;−→xv ,−→yv

)
dµ−1(x) =

n

∑
j=0

θn−j
(−→xv ,−→yv

)
β j(k)

j!(k
j)

. (55)

4. Combinatorial Sums and Identities Derived from p-Adic Integrals

In this section, by making use of these p-adic integral formulas for the polynomials
θn
(
z;−→xv ,−→yv

)
, we give some combinatorial sums including the Bernoulli numbers and poly-

nomials, the Euler numbers and polynomials, the Stirling numbers, the Daehee numbers,
and the Changhee numbers.

Combining (49) and (50) with (51), we obtain the following combinatorial sums,
respectively:

Theorem 9. Let n ∈ N0. Then, we have

n

∑
j=0

θn−j
(−→xv ,−→yv

)
Dj

j!
=

n

∑
j=0

(−1)j θn−j
(−→xv ,−→yv

)
j + 1

.

Theorem 10. Let n ∈ N0. Then, we have

n

∑
j=0

θn−j
(−→xv ,−→yv

)
Dj

j!
=

n

∑
j=0

j

∑
m=0

BmS1(j, m)θn−j
(−→xv ,−→yv

)
j!

.

Theorem 11. Let n ∈ N0. Then, we have

n

∑
j=0

(−1)j θn−j
(−→xv ,−→yv

)
j + 1

=
n

∑
j=0

j

∑
m=0

BmS1(j, m)θn−j
(−→xv ,−→yv

)
j!

.

Combining (52) and (53) with (54), we also obtain the following combinatorial sums,
respectively:

Theorem 12. Let n ∈ N0. Then, we have

n

∑
j=0

j

∑
m=0

EmS1(j, m)θn−j
(−→xv ,−→yv

)
j!

=
n

∑
j=0

(−1)j θn−j
(−→xv ,−→yv

)
2j .

Theorem 13. Let n ∈ N0. Then, we have

n

∑
j=0

j

∑
m=0

EmS1(j, m)θn−j
(−→xv ,−→yv

)
j!

=
n

∑
j=0

θn−j
(−→xv ,−→yv

)
Chj

j!
.
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Theorem 14. Let n ∈ N0. Then, we have

n

∑
j=0

(−1)j θn−j
(−→xv ,−→yv

)
2j =

n

∑
j=0

θn−j
(−→xv ,−→yv

)
Chj

j!
.

Applying the Volkenborn integral to Equation (32) on Zp, and using Equation (41), after
some elementary calculations, we arrive at the following theorem:

Theorem 15. Let n, v ∈ N with n ≥ v. Then, we have

Bn−v =
1

n(v)

v

∑
d=0

n

∑
j=0

j

∑
m=0

(
n
j

)(
j

m

)
dn−jS1(v, d)`j−m(v)Bm.

Applying the p-adic fermionic integral to Equation (32) on Zp, and using (45), after
some elementary calculations, we arrive at the following theorem:

Theorem 16. Let n, v ∈ N with n ≥ v. Then, we have

En−v =
1

n(v)

v

∑
d=0

n

∑
j=0

j

∑
m=0

(
n
j

)(
j

m

)
dn−jS1(v, d)`j−m(v)Em.

5. Conclusions

In [1], we gave applications of new constructed families of generating-type functions
interpolating new and known classes of polynomials and numbers. In this paper, we
studied these generating functions with their functional equations. By applying p-adic
integrals to these generating functions and their functional equations, we gave p-adic inte-
gral formulas for these new classes of polynomials and numbers. Using these generating
functions with their functional equations, we also derived many novel combinatorial sums
and identities involving these polynomials and numbers and also the Bernoulli numbers,
the Euler numbers, the Stirling numbers, the Daehee numbers, and the Changhee numbers.

In addition, we have given some clarifying explanations and comments on the results
of this article. The results, including the special classes of polynomials and numbers
presented in this article and combinatorial sums derived from them, have the potential to
be used by researchers in similar areas.

The applications of the special numbers and polynomials produced by the generating
functions in this paper are planned to be studied and investigated in the near future.
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