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Abstract: This paper develops a novel dynamic three-phase symmetric distribution network reconfig-
uration (DNR) approach based on hierarchical clustering with timing constraints, which can divide
the time period according to the time-varying symmetric load demand and symmetric distributed
generations (DGs) output condition for a given time interval. The significance of the proposed
technique is that by approximating the cluster center as the load status and DGs output status of the
corresponding period, in this way, the intractable dynamic reconfiguration problem can be recast
as multiple single-stage static three-phase symmetric DNR problems, which can effectively reduce
the complexity of the three-phase symmetric dynamic reconfiguration. Furthermore, an improved
fireworks algorithm considering heuristic rules (H-IFWA) is proposed and investigated to efficiently
manage each single-stage static three-phase symmetric DNR problem. In order to avoid trapping into
a local optimum or to facilitate the computational performance, the power moment method and the
coding method based on heuristic rules are employed to reduce the solution space. The effectiveness
of the proposed H-IFWA is validated on the IEEE 33, 119-bus system and a practical-scale Taiwan
power company (TPC) 84-bus test system with DGs.

Keywords: heuristic rules; hierarchical clustering; improved fireworks algorithm; time-division;
three-phase symmetric dynamic reconfiguration

1. Introduction

Distribution network reconfiguration (DNR) is the process of changing the topology
of a network by switching the status of the tie switch and the section switch for the purpose
of reducing the network loss, balancing load and improving voltage quality, and it is of
great significance to improve the safe and economic operation of distribution networks
(DNs) [1–3]. DNR is usually divided into two types [4]: DNR in the normal operation
status and DNR after an accident [5]. DNR in the normal operation status further consists
of two types: static reconfiguration [6,7] and dynamic reconfiguration [8–10]. The former
optimizes the section switches and tie switches of the distribution network based on the
premise that the load does not change [11]. The latter performs the overall dynamic
optimization of the distribution network during the operation periods [12], which needs to
consider the time-varying load demand and the constraints of the distribution network
operation for a given time interval [13]. Considering the time-varying system condition in
the real distribution system, this paper focuses on dynamic DNR in the normal operation
status. Furthermore, symmetry in DNR means that the power source and load are the three-
phase circuit, and both of them are symmetrical in the reconfigured distribution network.

Renewable energy sources have been actively applied to distribution networks and
microgrids for better energy management, including residential buildings [14], logistics
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facilities [15], and network reconfiguration [16]. Nevertheless, the deepening penetration of
renewable distributed generations (DGs), such as wind and solar resources, has significantly
changed the characteristics of distribution networks. The traditional one-way power
flow three-phase symmetric distribution network analysis method cannot be applied to
the current two-way power flow three-phase asymmetric active distribution network
with multiple distributed renewable sources, which makes the DNR problem face more
complex challenges on the power flow calculation [17], fault recovery [5,18], and optimal
reconfiguration [19–21] of distribution networks. Therefore, dynamic DNR considering
the massive integration of DGs is of great significance to develop the operation level of
the distribution network and the utilization efficiency of DGs. Dynamic DNR takes into
account such factors as power loss, switching times, and comprehensive cost within a
certain period, which can effectively adjust the topology of the distribution network in
real time with the time-varying load demand and DGs output condition. Therefore, the
research on dynamic DNR has become the current research hotspot.

In recent years, many studies have addressed the ever-increasing concern for solving
the dynamic DNR problem. In [22], a mixed-integer nonlinear programming method
was presented to solve the problem of dynamic reconfiguration and optimal allocation of
capacitors, but the time period division method was not involved. As an extension of the
fascinating DNR method, [23] considered the time-varying intermittence of DGs, but the
restrictions of switching operation times were not taken into account. In [24], a gradual
approaching method was developed for dynamic DNR to minimize the energy loss. In [25],
an evolutionary method to determine optimal time intervals was proposed, and the genetic
algorithm was applied to perform optimal dynamic DNR. These methods have considered
both the time-varying load demand and DGs power output condition in a given time
interval. In [26], a real-time dynamic reconfiguration method using load power analysis
and the analytic hierarchy process (AHP) to generate multi-criteria decision-making was
proposed; however, the limitation of switching operation times was not considered. In [27],
the optimal solution in each period, respectively, was determined, and then rules were
formulated to obtain a globally optimal solution, but the solution process was complicated
and it was difficult to guarantee the speed of optimization. In [28], an optimal fuzzy C-
means clustering was employed to divide time periods, but the rationality of the partition
results may be insufficient, which may restrict the accuracy of the solution and produce
large errors.

To handle the aforementioned challenges, in this paper, considering the output condi-
tion of DGs and load status, a time-division method based on an improved hierarchical
clustering with timing constraints (IHCTC) algorithm is firstly proposed. According to
the load status and DGs output of each period, the time is divided by adding the timing
constraints to the Euclidean distance between data points in hierarchical clustering. In this
way, the dynamic DNR problem is recast as a multiple single-stage static DNR problems,
and it satisfies the switching number constraints. Then, an improved fireworks algorithm
considering heuristic rules (H-IFWA) is developed to handle single-stage static DNR for
the clustering center. Finally, case studies are carried out on the modified IEEE 33, IEEE 119
and a practical scale TPC 84-bus test systems to validate the effectiveness of the proposed
method. The main contributions are summarized as follows:

(1) A novel time-division method based on hierarchical clustering with timing constraints,
which can ensure the rationality of the time-division method, is firstly proposed to
solve the statics of the dynamic reconfiguration problem.

(2) An improved fireworks algorithm considering heuristic rules (H-IFWA), for the first
time, is presented, which can both improve the solving speed of DNR and avoid
falling into a local optimum or producing many infeasible solutions.

The remainder of the paper is organized as follows. An improved hierarchical cluster-
ing with timing constraints method is described in Section 2. Then, a three-phase symmetric
dynamic reconfiguration model with the objective of minimizing the total active power
loss is formulated in Section 3. Section 4 introduces the H–IFWA method. Several case
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studies are conducted in Section 5 to demonstrate the superior performance of the proposed
H–IHCTC and IFWA algorithms, and the conclusions are drawn in Section 6.

2. Hierarchical Clustering with Timing Constraints

Hierarchical clustering (HC) creates a hierarchical nested clustering tree in light of the
similarity calculation between different categories of data points. The basic steps are as
follows. The basic steps are described in our previous work [29].

Step 1: Regard each data point as a class, and calculate the minimum distance between
any two classes.

Step 2: Seek the smallest distance between the two classes, and then combine them
into a new class.

Step 3: Repeat Step 1 to obtain the distance between the new class and all remain-
ing classes.

Step 4: Repeat Step 2 and Step 3, terminate the calculation, and output the result when
all the classes are merged into a single class.

Here, we use Euclidean distance to calculate the similarity of data points [29].
The load of the distribution system at different times affects the quality of operation

indexes such as network loss to a great extent, which is also an important basis for DNR
operation. Therefore, we take the load data of each natural period of the day (one hour) as
sample points for hierarchical clustering. The daily load data of the three-phase symmetric
distribution network in a certain area are clustered, and the results are shown in Figure
1a. If the number of clusters is 3, the corresponding three categories are {1–6, 18–24}, {7–8,
17}, and {9–16}, respectively. Obviously, except for the last category, which is continuous
in time, the other two are not continuous, so it is difficult to apply it to the time-division
problem of dynamic reconfiguration.
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Figure 1. Clustering results of (a) HC and (b) HCTC. 
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Figure 1. Clustering results of (a) HC and (b) HCTC.

To keep each category continuous in time, we redefine the Euclidean distance di,j
between data points as:

di,j =


√

n
∑

k=1
(xi,k − xj,k)

2 , |i− j| ≤ 1

+∞ , |i− j| > 1
, xi, xj ⊂ D (1)

where n represents data points’ dimension and D denotes all data points’ set.
The abovementioned definition means that only two adjacent data points can be

grouped into one cluster, so that the time sequence constraints of time-division can be
considered. According to the definition, HCTC is implemented for the same daily load
data, and the result is shown in Figure 1b. If we take the number of clusters as 3, the three
categories obtained are {1–6}, {7–17}, and {18–24}. It can be seen that the HCTC method can
obtain continuous clustering results in time, which meets the actual needs of time-division
in DNR.
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However, when the clustering number takes other values, undesired results may be
obtained through HCTC. For example, when the number of clusters is 5, the clustering
results are {1–6}, {7–8}, {9–16}, {17}, and {18–24}. When DNR is performed according to
the clustering result, there will be two reconfiguration operations between 16 h and 18 h,
which is obviously unreasonable and will lead to frequent switch actions.

To solve the above problems, an IHCTC method is proposed. The basic idea is to view
the clustering process as an optimization problem, and its objective function is:

minF(Td) =
Td

∑
t=1

Ht

∑
h=1

dt
h,avi, Tmin ≤ Td ≤ Tmax, Ht ≥ Hmin (2)

where F depicts the inner-distance of class, Tmax and Tmin are the maximum and minimum
number of periods, Td means divided periods’ number, Ht represents hours’ number in
period t, Hmin describes the shortest duration allowed for each period, and dt

h,avi represents
the proposed Euclidean distance from the h-th hour during period t to the clustering center,
which can be expressed as:

dt
h,avi =

√
n

∑
k=1

(xt
h,k − Xt)

2 (3)

where Xt denotes the clustering center of the t-th period.
Considering that the abovementioned optimization problem is a single variable dis-

crete optimization problem in a finite interval, the enumeration method is adopted to
solve it. As illustrated in Table 1, based on the IHCTC method, the same daily load
data are analyzed.

Table 1. Clustering results based on IHCTC.

Td 2 3 4 5

Time interval 1–6; 7–24 1–6; 7–17; 18–24 7–17; 18–21;
22–24

1–5; 6–8; 9–17;
18–21; 22–24

Inner-distance F 8.19 5.43 4.80 4.45

It can be seen from Table 1 that, as Td increases, the inner-distance F decreases grad-
ually, and there are no isolated data points. When DNR is performed according to the
clustering result, there will be no problem of frequent switch action.

3. Three-Phase Symmetric Dynamic DNR Model

The DNR optimization goal is the minimum total network losses in the optimization
period, which can be expressed as:

min
Td

∑
t=1

NL

∑
l=1

P2
l,t + Q2

l,t

V2
l,t

rl Ht (4)

where NL represents the branches’ set, rl represents branch resistance, Vl,t represents the
voltage amplitude of the terminal node of branch l at period t, and Pl,t and Ql,t are the
active power and reactive power at the end of branch l at period t, respectively.

To ensure that the solution of the DNR problem is feasible, the following constraints
need to be considered.

(1) Power balance constraint

S′i,t = SL,i,t − SG,i,t +
k

∑
j=1

Si,j,t, i = 1, 2, · · · , NL; t = 1, 2, · · · , Td (5)

Si,t = S′i,t + ∆Si,t, i = 1, 2, · · · , NL; t = 1, 2, · · · , Td (6)
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where Si,t and S′i,t are the complex power of the start node and the end node of branch i in
period t, respectively, SL,i,t is the load power of the end node of branch i in period t, SG,i,t is
the injection power of the DG connected to the end node of branch i in period t, Si,j,t is the
complex power of the j-th out-branch of the end node of branch i in period t, and ∆Si,t is
the complex power consumed by branch i.

(2) Node voltage constraints
The voltage of node i in any period t should meet:

min(Vi,t|i = 1, 2, · · · , NB; t = 1, 2, · · · , Td ) ≥ Vmin (7)

max(Vi,t|i = 1, 2, · · · , NB; t = 1, 2, · · · , Td ) ≤ Vmax (8)

where NB represents nodes’ number in the distribution network, and Vmin/Vmax are the
allowable minimum/maximum values of node voltage, respectively.

(3) Branch capacity constraint
Limited by the maximum allowable carrying capacity, the power Si,t of branch i in any

period t should meet:

Si,t ≤ Smax
i i = 1, 2, · · · , NL; t = 1, 2, · · · , Td (9)

where Smax
i represents the rated capacity of branch i.

(4) Network topology constraints
The reconstructed network should meet [8]:

∑
k∈ΩB

αk = NB − 1 (10)

β(i, j) + β(j, i) = αk (11)

∑
j∈Ω(i)

β(i, j) = 1 (12)

β(i, j) ∈ {0, 1}, i = 1, 2, . . . , NB, j ∈ Ω(i) (13)

αk ∈ {0, 1}, k = 1, 2, · · · , NL (14)

where αk is the 0–1 variable that reflects the status of branch k; αk = 1 indicates that the
branch is connected. Otherwise, the branch is opened. β represents the node child–parent
correlation matrix, in which the elements are all binary variables; if β(i, j) = 1, it means that
the node i is the parent node of node j. Ω(i) represents a collection of all nodes connected
to node i.

4. Solution Algorithm
4.1. Solution Space

Due to the fact that the proposed three-phase symmetric dynamic DNR model is a
nonlinear integer programming problem, a heuristic method is employed to solve it to
improve the solution efficiency. Motivated by this, we first describe the solution space
of the model. Considering the characteristics of the open-loop DN operation, one switch
in each loop must be in the open status (tie switch), and the other switches are in the
closed status (section switch). When the status of the tie switch and a section switch is
reversed, a new radial topology is obtained. Therefore, we use the loop as the unit and use
a matrix to describe the topology of the DN. Take the 16-bus system [30] shown in Figure 2
as an example.
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Figure 2. A three-feeder symmetric distribution network with 16-bus.

The network consists of three source points (node 1~node 3) and 16 branches with
switches. Each tie switch in the open status corresponds to a loop, so the network contains
three loops. The branches contained in each loop are arranged to form the following basic
loop matrix.

Sp0 =

 1 2 5 6 8 14 0
5 7 10 11 15 0 0
1 3 4 10 12 13 16

 (15)

Selecting one branch from each row of Sp0, and taking the corresponding switches as
the tie switches and the other switches as the section switches, then a three-phase symmetric
distribution network topology can be obtained, so the matrix Sp0 can be regarded as the
solution space of DNR.

Because there are repeated elements between the rows of the basic loop matrix Sp0,
the random selection of branches may lead to invalid solutions. For example, when
selecting {5, 5, 1}, that is, branch B5 and branch B1 are opened and other branches are
closed, the corresponding network topology is a loop network, which does not meet
the constraints (10)~(14), so the solution is invalid. Hence, we use the power moment
method [31] to filter the repeated elements of each row in the matrix Sp0 so as to obtain the
compressed solution space S′p.

S′p =

 2 8 6 14 0 0
7 5 11 10 15 0
4 3 1 13 12 16

 (16)

In addition, some studies [32] have shown that for a certain loop of the three-phase
symmetric distribution network, opening the branch connected to the lowest voltage point
and closing the original tie switch can most effectively reduce the active power loss of
the loop. To further compress the solution space without losing the optimal solution as
much as possible, a heuristic rule is proposed, which selects the z nodes with the lowest
voltage in each loop, and then the branch set of the loop network is replaced by the
branches connected to these nodes in the loop matrix, thereby effectively compressing the
solution space.

Taking the system shown in Figure 2 as an example, we close the switches B14, B15,
and B16 and perform power flow calculation. The voltage of each node can be calculated
and sorted from low to high as:

12 < 9 < 11 < 5 < 7 < 8 < 6 < 16 < 10 < 15 < 14 < 4 < 13 < 3 = 2 = 1 (17)

Then, we set z = 2; in other words, we select the two lowest voltage nodes in each loop
and find their adjacent branches, as illustrated in Table 2.
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Table 2. Selected branches in each loop.

Loop
Number Tie Switch Lowest Voltage

Node
Adjacent
Branches

Second Lowest
Voltage Node

Adjacent
Branches

1 B14 9 B6, B8, B9 11 B8, B14

2 B15 8 B5, B6, B7 10 B7, B15

3 B16 7 B4, B16 6 B3, B4

It can be seen from Table 2 that the branches that are not in the corresponding loop
are removed. For example, in the branch set {B6, B8, B9}, B9 is not in loop 1, so it should be
removed. Then, the branch matrix (solution space) can be obtained.

Sp =

 6 8 14
5 7 15
3 4 16

 (18)

The solution space is obviously reduced compared to S′p. According to [30], the
optimal solution of the symmetric distribution network is {B8, B7, B16}, which is still in
Sp. The essence of this heuristic rule is to find the most promising branch for reducing the
power loss in each loop, thereby filtering out numerous poor solutions.

4.2. Improved Fireworks Algorithm

The fireworks algorithm [33,34] shows excellent global optimization performance and
computational efficiency in solving complex optimization problems. The number of sparks
produced by the fireworks explosion is negatively correlated with the explosion radius.
Based on the enlightenment of this relationship, the FWA seeks the optimal solution space
iteratively. First of all, in the solution space, we randomly select the initial solution as the
fireworks and evaluate its fitness. It is considered that the fireworks with small explosion
radius and more sparks are regarded as good; otherwise, the fitness is poor. The sparks that
do not meet the constraints should be modified. After comprehensive evaluation, a new
generation of fireworks is obtained, and the abovementioned steps are performed in turn.
In each iteration, we select the fireworks that have the best fitness as the optimal fireworks,
and the best fireworks y(k) are selected through k iterations, which is the optimal solution.

Dynamic DNR is a nonlinear, discrete and multi-constrained NP problem, and based
on this, we propose an IFWA. According to Equation (4), the fitness function of the fireworks
algorithm is taken as the DN active power loss. It is assumed that the fitness of the optimal
fireworks of the k-th iteration is y(k).

y(k− 1) ≥ y(k) k ≥ 2, k ∈ Z (19)

where Z is a set of integers greater than 0.
The adaptive coefficient β is defined to represent the survival generations of the

optimal fireworks under the current iteration. When the optimal fitness of the first iteration
or two adjacent iterations is different, the survival generation is 0. When the optimal
fitness of two adjacent iterations is equal, the survival generation is increased by one.
Therefore, β is an adaptive coefficient, which can better reflect the search status of the
current algorithm.

β =

{
0 k = 1, y(k− 1) > y(k)
β + 1 y(k− 1) = y(k)

(20)

The explosion operator is an important part of the fireworks algorithm that deter-
mines the search range and search granularity of the algorithm. To further facilitate the
optimization ability of the fireworks algorithm, the explosion radius is improved by the
adaptive coefficient in the iterative process. On the one hand, to promote the local search
capability, Aopt of the optimal fireworks decreases gradually with the increase in β. On the
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other hand, to avoid falling into the local optimization, with the increase in β, the explosion
radius Aother of non-optimal fireworks is gradually increased. The above process can be
expressed as: {

A′opt = Aopt
M

(M+β)

A′other = Aother
(M+β)

M

(21)

where M is a constant, Aopt and Aother are the optimal and non-optimal fireworks explosion
radius before improvement, respectively, and A′opt and A′other are the optimal and non-
optimal fireworks explosion radius after improvement, respectively.

When the explosion radius is decreased to a very small value, the rounded solution is
the same as the original solution, that is, there is an invalid variation. To avoid this case,
the explosion radius given by Equation (22) is further adjusted, and the explosion radius is
set to an integer that is not less than 1.

A′′ =
{

round(A′) , A′ ≥ 0.5
1 , A′ < 0.5

(22)

where A′ and A′′ are the fireworks explosion radius before and after rounding, respectively.
round () is the rounding function.

In the FWA, while iteration times reach the maximum, the algorithm ends and the
optimal fireworks are selected as the final solution. If the optimal fireworks obtained
after k iterations (not the maximum number of iterations) continuously survive a certain
generation C that is large enough, then the optimal fireworks can be considered as the final
solution. To ensure the rapidity and accuracy of optimization, it is assumed that C is a large
termination constant. So, the improved termination strategy is:

V ≥ Cork ≥ kmax (23)

With the progress of the iterative process, when the explosion radius is reduced to a
certain extent, each explosion may produce a large number of the same sparks, thus affect-
ing the search ability of the algorithm. Inspired by this, we implement a small mutation
strategy that performs an explosion in each dimension for current optimal fireworks Ropt,
thus a new spark is generated and the other dimensions remain unchanged during the
operation. The spark Rj generated on the j-th dimension can be expressed as:

Rj = Ropt +

[
(2λ− 1)

Nj

3

]
, λ ∈ [0, 1], j = 1, 2, · · · , n (24)

where n represents the dimension of fireworks, λ depicts an arbitrary constant, and Nj
denotes the feasible range of fireworks in dimension j.

Through the small mutation operation of the optimal fireworks, a large number of
different new solutions can be obtained nearby the current optimal solution, and this
effectively promotes the algorithm’s local search capability.

4.3. Dynamic DNR Steps Based on IHCTC and H-IFWA

Dynamic DNR based on IHCTC and H-IFWA is demonstrated in Figure 3, and the
detailed steps are as follows.
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Step 1: Reading data of DN include distribution lines, transformers, DGs, and
loads, etc.

Step 2: Based on the day-ahead load forecasting data and the active power of DGs, the
hierarchical clustering method considering timing constraints is proposed to divide the time
of the day into several reconfiguration periods, and the load status of the corresponding
period is expressed according to the data of the clustering center.

Step 3: According to the operation characteristics and topological structure of the
three-phase symmetric distribution network, the basic loop matrix Sp0 is formulated.

Step 4: Using the power moment method to filter the repeated elements of each row
in the matrix Sp0, the compressed solution space S′p is obtained.

Step 5: Open the branch connected to the lowest voltage point and close the original
tie switch, and calculate the voltage of each node.

Step 6: Choose z nodes with the lowest voltage in each loop based on the heuristic
rules, and then the branch set of the loop network is replaced by the branches connecting
to these nodes in the basic loop matrix to further compress the solution space.

Step 7: Select the initial solution randomly as fireworks in the solution space, and
evaluate its fitness.

Step 8: It is assumed that the explosion radius is an integer of not less than 1, and the
explosion radius is modified according to the adaptive coefficient.

Step 9: The explosion operation is performed on each dimension of the current optimal
spark according to the small mutation strategy of the optimal fireworks.

Step 10: Select the individuals with good adaptability as the next generation of fireworks.
Step 11: If the termination conditions are met, output all feasible solutions. Otherwise,

proceed to the next iteration.

5. Case Studies

To validate the calculated performance of the presented heuristic rule, the IHCTC and
H-IFWA algorithm and the modified IEEE 33, IEEE 119 and a practical scale TPC 84-bus test
systems are verified as examples on a PC with AMD R7-5800H, 3.2GHz CPU, and a 64-bit
operating system. Finally, in the same configuration environment, the H-IFWA method is
compared with the ideal dynamic reconfiguration (IDR) and the dynamic reconfiguration
method in the literature [35].
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5.1. IEEE-33 Test System

The IEEE-33 test system is shown in Figure 4, and the specific data of the system can
be referred to [36]. The DGs are, respectively, installed at node 7 and node 24, and related
data are described in Table 3.
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Table 3. Data of DGs.

Node Rated Active Power (kW) Rated Reactive Power (kVar)

7 300 240
24 400 360

5.1.1. Solution Spaces

To validate that the heuristic rules in the proposed H-IFWA algorithm can effectively
reduce the solution spaces, we assume that z = 3, and Sp can be obtained, and this, compared
with the results based on the fundamental loop matrix, is displayed in Table 4.

Table 4. Comparison of solution spaces for IEEE 33-bus system.

Loop Sp0 Sp

1 {2, 3, 4, 5, 6, 7, 18, 19, 20, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0} {5, 6, 7, 33}

2 {9, 10, 11, 12, 13, 14, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0} {12, 13, 14, 34}

3 {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20,
21, 0, 0, 0, 0, 0, 0} {9, 10, 11, 35}

4 {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
25, 26, 27, 28, 29, 30, 31, 32} {17, 31, 32, 36}

5 {3, 4, 5, 22, 23, 24, 25, 26, 27, 28, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0} {24, 27, 28, 37}

As can be observed from Table 4, in comparison with the solution space Sp0, Sp is
also significantly reduced, which is due to the fact that the heuristic rule excludes some
infeasible solutions so as to reduce the range of solution spaces.
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5.1.2. H-IFWA Performance

To demonstrate the superior performance of the proposed H-IFWA algorithm, the
comparative analysis results by using the H-IFWA, MILP, FWA [37] and improved harmony
search algorithm (IHSA) [38] for 100 times are shown in Table 5. The computation time of
H-IFWA includes the entire process from the data initialization and the solution time of
the algorithm. The computation time of MILP includes the constraint generation time of
MATLAB and the solution time of CPLEX.

Table 5. Comparison of different algorithms.

Items Original
Network

Reconfigured Network

IHSA FWA MILP H-IFWA

Open switches
B33, B34,
B35, B36,

B37

B9, B14,
B28, B32,

B33

B9, B14,
B28, B32,

B33

B9, B14,
B28, B32,

B33

B9, B14,
B28, B32,

B33

Power
Loss

(kWh)

Best
146.02

94.67 94.67 94.67 94.67
Worst 99.85 112.25 94.67 94.67

Average 97.58 102.69 94.67 94.67

Lowest voltage (p.u) 0.9193 0.9490 0.9490 0.9490 0.9490

Average convergence
time (s)

Best
–

5.9 6.1 1.8 1.7
Worst 6.7 6.9 2.3 2.6

Average 6.1 6.4 1.9 2.1

As can be inferred from Table 5, the identical optimal solution can be obtained by
four algorithms, and the average power loss of MILP and H-IFWA is the lowest. However,
MILP has the best performance in average convergence time. The main reason is that the
linearization technology can simplify the DNR solution process. In addition, both IHSA
and FWA use the fundamental loop-based coding method, which has a large solution space
and contains numerous invalid solutions. The H-IFWA method greatly reduces the range
of the solution space by virtue of heuristic rules, which contains only the most potential
branch collection. Therefore, in the IEEE 33-bus system, both MILP and H-IFWA have
shown better advantages in convergence performance.

5.1.3. Sensitivity Analysis

To verify the sensitivity of the H-IFWA algorithm proposed in this paper under
different load levels, three different load levels are selected to compare the results before
and after performing DNR. Here, we take the load levels during three time periods, i.e., 14
h, 19 h, and 21 h, as a case study—this is shown in Figure 5, and the optimization results
are illustrated in Table 6.
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Table 6. Comparison of the optimization results for IEEE 33-bus system.

Case Items Original Network H-IFWA

Case 1
Power loss (kWh) 110.29 81.58

Lowest voltage (p.u) 0.9725 0.9820

Case 2
Power loss (kWh) 143.86 105.52

Lowest voltage (p.u) 0.9671 0.9785

Case 3
Power loss (kWh) 176.95 128.55

Lowest voltage (p.u) 0.9629 0.9760

As can be seen from Table 6, under three different load levels, the original network
loss of three cases is 110.29 kWh, 143.86 kWh, and 176.95 kWh, respectively. After the DNR
activity is implemented, the network loss employed in the proposed H-IFWA algorithm
is 81.58 kWh, 105.52 kWh, and 128.55 kWh, respectively, which is 26.03%, 26.65%, and
27.35% lower than that of the original scheme. Moreover, the lowest voltage after recon-
figuration is higher than that before reconfiguration, so the node voltage level after DNR
is obviously improved. Therefore, under three cases by inputting different load values,
the H-IFWA method proposed in this paper can effectively reduce power loss and voltage
fluctuation in DNR.

5.2. TPC 84-Bus and IEEE 119-Bus System

The TPC 84-bus system is shown in Figure 6, and the related parameters can be
obtained according to [36].
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5.2.1. Solution Spaces

To further validate the necessity of heuristic rules in the proposed H-IFWA algorithm,
we assume that z = 3, and the solution space Sp can be obtained, and this, compared with
the results solved by the fundamental loop matrix, is illustrated in Table 7.
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Table 7. Comparison of solution spaces for TPC 84-bus system.

Loop Number Sp0 Sp

1 {5, 4, 3, 2, 1, 55, 54, 53, 52, 51,
50, 49, 48, 47, 84, 0, 0} {5, 54, 55, 84}

2 {7, 6, 5, 4, 3, 2, 1, 60, 59, 58, 57,
56, 85, 0, 0, 0, 0} {6, 7, 85, 0}

3 {11, 43, 86, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0} {11, 43, 86, 0}

4 {12, 11, 72, 71, 70, 69, 68, 67, 66,
65, 87, 0, 0, 0, 0, 0, 0} {70, 71, 72, 87}

5 {13, 12, 11, 76, 75, 74, 73, 88, 0,
0, 0, 0, 0, 0, 0, 0, 0} {13, 75, 76, 88}

6 {14, 12, 11, 18, 17, 16, 15, 89, 0,
0, 0, 0, 0, 0, 0, 0, 0} {12, 14 18, 89}

7 {16, 15, 26, 25, 90, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0} {15, 16, 26, 90}

8 {20, 19, 18, 17, 16, 15, 83, 82, 81,
80, 79, 78, 77, 91, 0, 0, 0} {80, 81, 82, 83}

9 {28, 27, 26, 25, 32, 31, 30, 92, 0,
0, 0, 0, 0, 0, 0, 0, 0} {27, 28, 31, 92}

10 {29, 28, 27, 26, 25, 39, 38, 37, 36,
35, 34, 33, 32, 31, 30, 93,0} {37, 38, 39, 93}

11 {34, 33, 32, 31, 30, 46, 45, 44, 43,
94, 0, 0, 0, 0, 0, 0} {32, 33, 34, 94}

12 {40, 39, 42, 41, 95, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0} {40, 41, 43, 95}

13 {53, 52, 51, 50, 49, 48, 47, 64, 63,
62, 61, 60, 59, 58, 57, 56, 96} {62, 63, 64, 96}

It can be concluded from Table 7 that, in comparison with Sp0, Sp derived from the
proposed H-IFWA method is also significantly reduced. Thus, the solving speed of DNR is
accelerated. After reconfiguration, the set of open switches is {B55 B7 B86 B72 B13 B89 B90
B83 B92 B39 B34 B42 B62}.

5.2.2. H-IFWA Performance

More importantly, to further explain the superior performance of H-IFWA in the actual
TPC 84-bus system, a comparison is made between the proposed H-IFWA, MILP, simulated
annealing (SA) [39] and GA for 200 times, and the comparison results are displayed in Table 8.

Table 8. Comparison of different algorithms for TPC 84-bus system.

Items Original
Network

Reconfigured Network

SA GA MILP H-IFWA

Power
Loss (kWh)

Best
531.99

469.88 469.88 469.88 469.88
Worst 498.22 489.25 469.88 470.11

Average 489.82 479.73 469.88 469.89

Lowest voltage (p.u) 0.9193 0.9285 0.9285 0.9285 0.9285

Average convergence
time (s) – 257.43 303.43 9.77 4.86

As can be observed from Table 8, in terms of the convergence speed, the H-IFWA
method is the best. The main reason is that the solution space of H-IFWA is small and does
not require too many iterations, which verifies that H-IFWA has a faster convergence speed.
As is shown Table 5, compared with H-IFWA, the solution efficiency of MILP is higher
than that in the 33-bus system. However, the number of MILP constraints will gradually
increase as the system scale expands, which will increase the constraint processing time
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and solution time. Therefore, the computation time of MILP is longer than that of H-IFWA
in the actual TPC 84-bus system.

Finally, the IEEE 119-bus system [40] is tested to further illustrate the effect of the
H-IFWA method compared with the improved tabu search (ITS) [41], harmony search
algorithm (HSA) [42], and MILP [40]. The comparison results are listed in Table 9.

Table 9. Comparison of different algorithms for IEEE 119-bus system.

Items Original
Network

Reconfigured Network

HSA ITS MILP H-IFWA

Power loss
(kWh)

Best
1301.9

865.86 854.21 869.7 869.7
Worst 1288.1 1282.1 869.7 870.1

Average 952.6 953.01 869.7 869.8

Lowest voltage (p.u) 0.8783 0.9323 0.9323 0.9383 0.9383

Average convergence time
(s) – 9.04 8.61 11.4 7.36

As illustrated in Table 9, the performance of H-IFWA is better than HSA and ITS.
The optimal reconfiguration scheme of H-IFWA is {B22 B26 B34 B39 B42 B51 B58 B71 B74
B95 B97 B109 B122 B129 B130}, which is the same as that of MILP. From the comprehensive
analysis of Tables 5, 8 and 9, it can be concluded that when dealing with a large-scale DNR
problem, H-IFWA has a significant improvement in computational efficiency compared
to other algorithms. To sum up, our proposed method has better solving efficiency than
existing algorithms, and the reconfiguration scheme is relatively stable.

5.3. Comparison with IDR and MPTI Method

DNR is carried out on the IEEE-33 test system by using the daily load data in [43].
In this process, DGs are considered, in which the photovoltaic is connected to node 7 and
the wind farm is connected to node 24. The active power of both is illustrated in Figure 7.
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Table 10. Performance comparison. 
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T = 3 T = 4 
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5.3.1. Comparison with IDR

To demonstrate the difference between the H-IFWA method proposed in this paper and
the ideal dynamic reconfiguration (IDR) method more clearly, according to the combination
of single-stage static reconfiguration schemes during 24 periods, an IDR scheme is obtained
without considering the limit of switch operation times. The comparison results are shown
in Figure 8 and Table 10, respectively.
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Table 10. Performance comparison.

Reconfiguration
Scheme

Original
Network

IDR
H-IFWA

T = 3 T = 4

Total energy loss
(kWh) 1593.99 1003.59 1012.37 1011.76

Saved energy
loss (kWh) 0 590.40 581.62 582.23

Energy
reduction rate 0 37.04% 36.49% 36.53%

Total number of
switch actions 0 33 8 10

From Figure 8 and Table 10, the total energy loss of H-IFWA is 1012.37 kWh (T = 3)
and 1011.76 kWh (T = 4), which is 0.87% and 0.81% higher than the total energy loss of IDR,
respectively. At the same time, IDR can save energy up to 590.40 kWh, which is higher
than H-IFWA by 8.78 kWh (T = 3) and 8.17 kWh (T = 4), respectively. The total energy loss
and saved energy loss of H-IFWA are very close to IDR. On the contrary, the number of
switching actions of H-IFWA (8 (T = 3) or 10 (T = 4)) is much lower than IDR (33). From
these aspects, it is easy to draw the conclusion that H-IFWA can not only meet the DNR
constraints, but also significantly reduce the active power loss. Therefore, H-IFWA shows
superior performance. In addition, the computation time of IHCTC is 0.28 s, which can
meet the engineering requirements of dynamic reconfiguration.

Additionally, the lowest voltages of three dynamic DNR schemes in each period are
shown in Figure 9.

Symmetry 2021, 13, x FOR PEER REVIEW 16 of 19 
 

 

Additionally, the lowest voltages of three dynamic DNR schemes in each period are 

shown in Figure 9. 

2 4 6 8 10 12 14 16 18 20 22 24

0.92

0.94

0.96

0.98

1

Time(h)

V
o

lt
ag

e(
p

.u
)

 

IDR
Result after clustering(T=3)

Original result

 

Figure 9. Lowest voltage under three dynamic DNR schemes. 

As is perceived in Figure 9, the voltage level of the original result is the lowest. In the 

first segment interval (1–8 h) and the third segment interval (22–24 h), the original net-

work voltage magnitude reaches 0.95 p.u or an even higher voltage magnitude, so the 

effect of reconfiguration on increasing the voltage magnitude during these periods is not 

obvious. However, in the second segmentation interval (9–16 h), the lowest voltage of the 

system in the two reconfiguration schemes is greatly increased. This shows that the two 

reconfiguration schemes can effectively increase the voltage magnitude. 

5.3.2. Comparison with MPTI Method 

Furthermore, to validate the superior performance of H-IFWA, DNR is implemented 

according to the data in [35], in which the membership partition of time intervals (MPTI) 

method was used, and the comparison results of three schemes are illustrated in Table 11. 

Table 11. Comparison of dynamic reconfiguration schemes. 

Reconfiguration 

Scheme 

Time  

Interval 
Open Switches 

Energy Loss 

(kWh) 

Saved Energy 

Loss (kWh) 

Loss Reduc-

tion Rate 

Original network -- 33-34-35-36-37 2217.50 0 0 

Literature [35] 

1–8 7-9-14-32-37 

1540.91 676.59 30.51% 9–21 7-9-14-32-37 

22–24 7-9-14-32-37 

Proposed 

method 

T = 1 1–24 7-9-14-32-28 1530.10 687.40 31.00% 

T = 2 
1–16 7-9-14-32-28 

1526.65 690.85 31.15% 
17–24 7-9-14-32-37 

T = 3 

1–16 7-9-14-32-28 

1525.78 691.72 31.19% 17–21 7-9-14-32-37 

22–24 7-9-14-32-28 

It is highlighted from Table 11 that the results of the three schemes solved by using 

the MPTI method in [35] are consistent, which has the same effect as single-stage static 

reconfiguration. However, the proposed H-IFWA method belongs to dynamic reconfigu-

ration, which can flexibly divide the reconfiguration periods according to actual needs. It 

is worth mentioning that, with the increase in time-division, the number of reconfigura-

tion schemes also increases, and the energy loss also shows a downward trend. When T = 

3, the energy loss is dropped to 1525.78 kWh and the saved energy loss reaches 691.72 

kWh. Furthermore, when T = 1, the dynamic reconfiguration result of the H-IFWA method 

is also better than that of the MPTI method in [35]. Combined with the actual requirements 

Figure 9. Lowest voltage under three dynamic DNR schemes.

As is perceived in Figure 9, the voltage level of the original result is the lowest. In
the first segment interval (1–8 h) and the third segment interval (22–24 h), the original
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network voltage magnitude reaches 0.95 p.u or an even higher voltage magnitude, so the
effect of reconfiguration on increasing the voltage magnitude during these periods is not
obvious. However, in the second segmentation interval (9–16 h), the lowest voltage of the
system in the two reconfiguration schemes is greatly increased. This shows that the two
reconfiguration schemes can effectively increase the voltage magnitude.

5.3.2. Comparison with MPTI Method

Furthermore, to validate the superior performance of H-IFWA, DNR is implemented
according to the data in [35], in which the membership partition of time intervals (MPTI)
method was used, and the comparison results of three schemes are illustrated in Table 11.

Table 11. Comparison of dynamic reconfiguration schemes.

Reconfiguration Scheme Time
Interval

Open
Switches

Energy Loss
(kWh)

Saved
Energy Loss

(kWh)

Loss
Reduction

Rate

Original network – 33-34-35-36-
37 2217.50 0 0

Literature [35]
1–8 7-9-14-32-37

1540.91 676.59 30.51%9–21 7-9-14-32-37

22–24 7-9-14-32-37

Proposed
method

T = 1 1–24 7-9-14-32-28 1530.10 687.40 31.00%

T = 2
1–16 7-9-14-32-28

1526.65 690.85 31.15%
17–24 7-9-14-32-37

T = 3
1–16 7-9-14-32-28

1525.78 691.72 31.19%17–21 7-9-14-32-37

22–24 7-9-14-32-28

It is highlighted from Table 11 that the results of the three schemes solved by using
the MPTI method in [35] are consistent, which has the same effect as single-stage static
reconfiguration. However, the proposed H-IFWA method belongs to dynamic reconfigura-
tion, which can flexibly divide the reconfiguration periods according to actual needs. It is
worth mentioning that, with the increase in time-division, the number of reconfiguration
schemes also increases, and the energy loss also shows a downward trend. When T = 3,
the energy loss is dropped to 1525.78 kWh and the saved energy loss reaches 691.72 kWh.
Furthermore, when T = 1, the dynamic reconfiguration result of the H-IFWA method is also
better than that of the MPTI method in [35]. Combined with the actual requirements of
the distribution network (including power quality and allowable switch operation times),
different reconfiguration schemes can be selected appropriately, which further verifies the
superiority of the presented algorithm in this paper.

6. Conclusions

In this paper, an improved hierarchical clustering technique based on timing con-
straints combined with an improved fireworks algorithm is presented to tackle the dynamic
DNR problem. Numerical experiments are carried out on three representative IEEE 33,
IEEE 119 and TPC 84-bus test systems to verify the effectiveness of the proposed method.
The conclusions can be summarized as follows:

(1) IHCTC is developed to divide periods in terms of the load status and the output
condition of DGs, and then the improved fireworks algorithm based on heuristic rules
is proposed to recast the intractable dynamic reconfiguration problem as multiple
single-stage static reconfiguration problems, which reduces the complexity of dynamic
reconfiguration.

(2) Compared with the advanced algorithms used in the existing literature, the proposed
H-IFWA method not only has higher solution efficiency and avoids a large number of
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invalid solutions, but also can minimize the network loss as much as possible, so it is
more suitable for the actual distribution network operation.

However, the practical distribution network usually has voltage-dependent loads, and
the uncertainty of DG power can also impact the reconfiguration solutions. Dealing with
the uncertainty in a distribution network with voltage-dependent loads and comparing
clustering with partitioning methods considered in the solution method [44,45] are the
focus of our future research.
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