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Abstract: (1) Background: This paper deals with unevenly aged, whole-stand models from mixed-
effect parameters diffusion processes and Voronoi diagram points of view and concentrates on the
mixed-species stands in Lithuania. We focus on the Voronoi diagram of potentially available areas
to tree positions as the measure of the competition effect of individual trees and the tree diameter
at breast height to relate their evolution through time. (2) Methods: We consider a bivariate hybrid
mixed-effect parameters stochastic differential equation for the parameterization of the diameter and
available polygon area at age to ensure a proper description of the link between them during the
age (time) span of a forest stand. In this study, the Voronoi diagram was used as a mathematical tool
for the quantitative characterization of inter-tree competition. (3) Results: The newly derived model
considers bivariate correlated observations, tree diameter, and polygon area arising from a particular
stand and enables defining equations for calculating diameter, polygon-area, and stand-density
predictions and forecasts. (4) Conclusions: From a statistical point of view, the newly developed
models produced acceptable statistical measures of predictions and forecasts. All the results were
implemented in the Maple computer algebra system.

Keywords: Voronoi diagram; diffusion process; bivariate probability density function; diameter;
polygon area; stand density

1. Introduction

Forest statisticians often need to address complex issues in important whole-stand,
unevenly aged growth models with high levels of uncertainty that affect individual trees.
Providing scientific evidence for effective decision processes in forest areas is a key issue,
and stochastic calculus is an essential tool [1].

In the past few decades, mathematical models based on diffusion processes were
fruitfully applied to describe stochasticity phenomena belonging to even extremely dif-
ferent disciplinary fields that range in scale from human population in biology [2] to
cryptocurrency in finance [3] and from infectious disease in medicine [4] to networks in
neuroscience [5]. Mixed-effect parameters diffusion processes provide a convenient tool to
account for differences between several experiments or several subjects [6].

One of the important aims of modern forest regeneration is the investigation of the
mapped tree community distribution in a stand area and its evolution through time. The
distribution of individual trees depends both on the initial conditions present in a for-
est stand and the successive development of trees through changes in size components
and mortality events. At present, results are large datasets of observations and statistical
analysis acquired by using competition indices to both direct and indirect stand mea-
surements [7]. To operate with these data, it is necessary to investigate information in
a convenient form for the mathematical modeling of individual-based tree growth and
yield. Independently of the type of an individual tree or whole-stand stochastic modelling
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(having a random variable), the consideration of a diffusion process has particular chal-
lenges. Diffusion processes allow for us to compute both the solution of the corresponding
stochastic differential equation in a form of probability density function and their statistical
moments, mainly mean, quantiles, and variance. The mechanism of the evolution of the
competition among living trees in a forest stand can be successfully described by using a
relatively young mathematical tool—continuous stochastic differential equations (SDEs).
SDEs serve the purpose of analysis in a wide variety of generic growth models with dif-
ferent resolutions. The most advanced statistical models of this kind were formulated in
terms of multivariate diffusion processes [8].

The process by which tree seedlings start to grow successfully in a new place is
spatially multivariate, with numerous unknown variables. A potentially available area
for an individual seedling embodies a variable representing the competitive strength
of individual tree–tree interactions and varies through time. Several case studies were
conducted to study the relationships between the potentially available area of a tree and its
main biometrical attributes and competition indices [9]. The competition index is widely
applied in plant ecology, but it has a smaller number of applications in individual-tree or
whole-stand modeling. From a mathematical point of view, the Voronoi diagram [10] can
be regarded as the best solution for neighboring effects on tree-size growth. To illustrate
this study, we use the Voronoi diagram method, which is used by the individual-based
tree-growth model. The Voronoi diagram formalizes a detailed structure of the position,
size, and shape of a potentially available area of individual trees with respect to the number
of trees per unit area and nearness of their contiguous neighbors. Moreover, Voronoi
polygons reflect the local variation of the number of trees in a given location. A variable
outlined by the value of the area of the Voronoi polygon is used as a descriptive parameter
of spatial arrangement and as a predictor of stand density models.

Almost all the published research on natural mechanisms of maintaining tree-species
diversity focuses on the principles of spatial measures and competition-index construction
and their biological and mathematical reasoning [9]. Previous relationships on the key
competition index include only local neighbors and are static. Unfortunately, it is insuf-
ficient, as each competition index systematically changes through time, which is of great
importance and highly correlated with tree-size variables. Therefore, this paper focuses on
the Voronoi polygon area of a tree and its dynamics. The dynamics of the polygon area
is described by a diffusion process that accounts for the competition effect of contiguous
neighbors and its correlation with tree-size or -stand variables.

This paper deals with whole-stand models from a diffusion process of view and
concentrates on mixed-species stands in Lithuania. The innovation of this paper lies in
the following: (1) the Voronoi diagram of potentially available areas to tree positions
as the measure of the competition effect of individual trees, and its evolution through
time is described using a Gompertz-type diffusion process; (2) the link of stand density
with potentially available area and tree diameter is analyzed; (3) the mean and quantile
attribute equations of the potentially available area, tree diameter, and stand density are
described; and (4) the significance of differences in the distributions of different tree species
is assessed. This paper carries out further research from the following directions: the
first aspect analyzes the stochastic fixed-effect parameters process and then the stochastic
mixed-effect parameters process; the third aspect illustrates the computational properties
of the derived models.

The study was conducted in naturally and artificially regenerated areas by using data
collected from over 58,000 trees positioned in a network of 50 permanent, rectangular
sampling plots. As significant variables in the present study, we used such assessed
attributes as species, the location of the individuals (Cartesian coordinates x, y), tree
diameter at 1.3 m above ground level, and age. In order to determine the individual area of
the i-th (i = 1, . . . , n) tree, Voronoi polygon area Pi was calculated.

By utilizing the additive and multiplicative noise systems, we define the hybrid bi-
variate Vasicek–Gompertz-type SDE. The inclusion of random effects in the SDE produced



Symmetry 2021, 13, 1457 3 of 20

a more accurate model to account for the error between model predictions and observed
dataset. Model building in forestry was traditionally formalized by empirical models
supporting the decisions of forest managers [11]. In addition, large published growth and
yield systems were described by regression analysis, developed on a statistical basis that
actually sought only to highlight the importance of a particular response variable in pre-
dicting the future, remaining static and deterministic. The stochastic differential equation
approach opened the way to a stochastic dynamical formulation of the individual-tree or
whole-stand growth process that appeared much later in statistical forestry [12–14].

2. Materials and Methods
2.1. Voronoi Diagram

Considering data in the form of a given set of n points (xi; yi), i = 1, . . . , n within a
planar region A, we can assign an area to (xi; yi) consisting of that part of A that is closer
to (xi; yi) than to any other point (xj; yj). A Voronoi diagram involves the partitioning of
a planar region A into regions or polygons Ai on the basis of the distance to a specified
discrete set of points [15]. The Voronoi diagram is a mathematical tool for the quantitative
characterization of natural phenomena, such as inter-tree competition. In these polygons,
trees with which the area neighbors are in direct competition for available light and
nutrients are shown [16]. Each area Ai is a convex polygonal region. Voronoi polygons Ai
vary with increasing time, and the number of trees decreases. Considering the dynamic of
the Voronoi diagram allowed for both the quantification of its temporal dynamics and the
characterization of the number of trees in a stand and its dynamics through time.

A generic definition of Voronoi diagrams was mathematically first introduced by Au-
renhammer [17]. Voronoi cell Ai, associated with point (xj; yi), is the set of all points in A, of
which distance to point (xj; yi) is not greater than their distance to other point (xj; yj), where
j is any index different from i. If we assume that d((x; y),B) = inf{d((x; y),(a1; a2))|(a1; a2)
∈B} denotes the distance between point (x; y) and subset B, then:

Ai =
{
(x; y) ∈ A

∣∣d((x; y), Ai) ≤ d
(
(x; y), Aj

)
f or all j 6= i

}
. (1)

The Voronoi diagram is simply the corpus of polygons Ai, i = 1, . . . , n. In the past
decade, mathematical algorithms and the rapid development of computational capacities
provided a new chance to develop Voronoi diagram-based applications. In this study,
we discuss mathematical models and their analyses based on areas of generated Voronoi
polygons. To illustrate our work, we computed the Voronoi polygon of each individual
tree in a plot, which was remeasured four times and is visualized in Figure 1, which shows
that the areas of the Voronoi cells change through age (time).

2.2. Bivariate SDEs of Diameter and Polygon Area

In forestry studies, most tree attributes are considered to be functions of the tree
diameter at breast height D [18]. For explaining the dynamics of tree-size variables, the
incorporation of the distance of neighboring trees into a model improves predictions [19].
Moreover, appropriate evaluation of individual-tree size-variable is a fundamental require-
ment for the analysis of stand variables, such as the number of trees and volume per hectare.
This study considers a stochastic approach for the parameterization of diameter D and poly-
gon area P at age to ensure the proper descriptions of their link during the age (time) span of
a forest stand. In this section, we state the stochastic mixed-effect bivariate (diameter D and
polygon area P) model and derive the corresponding bivariate probability density function.
We also introduce the procedure for random-effect calibration. The Vasicek–Gompertz-
type bivariate hybrid stochastic mixed-effect parameters model was used to parameterize
diameter and polygon area at age-discrete data. The univariate Gompertz-type model was
applied to the analysis of stem volume and tree-stem taper from different tree species [20].
Below, stochastic vector Xi(t) =

(
Xi

1(t), Xi
2(t)

)T
=
(

Di(t), Pi(t)
)T , i = 1, . . . ,M, t ∈ [t0; T],
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M is the number of individuals (plots), and T is a finite horizon, T < ∞. Hybrid bivariate
Vasicek–Gompertz-type SDE is defined as:

dXi(t) = Ai
(

Xi(t)
)

dt + D
(

Xi(t)
)

B
1
2 · dWi(t)P

(
Xi(t0) = x0

)
= 1, i = 1, . . . , M, (2)

Ai(x) =
(

βd

(
αd + ϕi

d − x1

)
,
((

αp + ϕi
p

)
− βpln(x2)

)
x2

)T
B =

(
σdd σdp
σdp σpp

)
, (3)

(
D(x)B

1
2

)(
D(x)B

1
2

)T
=

(
1 0
0 x2

)(
σdd σdp
σdp σpp

)(
1 0
0 x2

)

Figure 1. Voronoi diagram of plot remeasured on four succeeding occasions: (a) 1983rd-year cycle of
measurement (mean age, 43.70 years); (b) 1988th-year cycle of measurement (mean age, 48.72 years);
(c) 1996th-year cycle of measurement (mean age, 57.13 years); (d) 2019th-year cycle of measurement
(mean age, 83.12 years); red, Scots pine trees; green, Norway spruce trees; yellow, birch trees; circles,
tree position.

This study focusses on initial distribution, defined by deterministic initial value(
Xi

1(t0), Xi
2(t0)

)
= (x10, x20) =

(
x10, δ+ ϕi

0
)
, and δ is an unknown fixed-effect parameter

to be estimated. SDE of form (2) consists of two parts. The deterministic part in the
model is drift function Ai(x). Random term D

(
Xi(t)

)
B

1
2 · dWi(t), which corresponds

to the uncertain part of the model, is referred to as the system noise. In Equation (2),
Wi(t) =

(
Wi

1(t), Wi
2(t)

)T represents the bivariate Brownian motion, of which the time
derivative is white noise. Moreover, Brownian motion increments dWi(t), i = 1, . . . ,M,
are considered to be independent across all plots. Random effects ϕi

d ϕi
p, and ϕi

0 are
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independent and normally distributed random variables with zero mean and constant
variances, respectively, ϕi

d ∼ N
(
0; σ2

d
)
, ϕi

p ∼ N
(

0; σ2
p

)
, and ϕi

0 ∼ N
(
0; σ2

0
)
. Fixed-effect

parameters vector θ to be estimated is defined as:

θ =
(

αd, αp, βd, βp, σdd, σpp, ρdp, δ, σd, σp, σ0

)
σdp =

√
σddσppρdp. (4)

The solution of the Vasicek–Gompertz-type SDE (2) has bivariate normal-lognormal dis-
tribution N1LN1

(
µi(t

∣∣t0, x0); Σ(t
∣∣t0)
)

with mean vector µi(t
∣∣t0, x0) and variance–covariance

matrix Σ(t|t0) , defined as:

µi(t|t0, x0) =

(
µi

d(t|t0, x10)

µi
p(t
∣∣∣t0, x20)

)
=

(
(αd + ϕi

d) +
(
x10 − (αd + ϕi

d)
)
e−βd(t−t0)

e−βp(t−t0)ln(δ + ϕi
0) +

1−e−βp(t−t0)

βp

(
αp + ϕi

p −
σpp
2

) ) (5)

Σ(t|t0) =

 vdd(t|t0) vdp(t
∣∣∣t0)

vdp(t
∣∣∣t0) vpp(t

∣∣t0)

=

 1−e−2βd(t−t0)

2βd
σdd

1−e−(βd+βp)(t−t0)

βd+βp

√
σddσppρdp

1−e−(βd+βp)(t−t0)

βd+βp

√
σddσppρdp

1−e−2βp(t−t0)

2βp
σpp

. (6)

We can separately calculate the probability distribution of each random variable if we wish
to restrict our attention to the value of just one, for example, diameter D or polygon area P. The
marginal distribution of Xi

1(t)
∣∣Xi

1(t0) = x10 is normal N1
(
µi

d(t
∣∣t0, x10) ; vdd(t|t0)

)
, and the

marginal distribution of Xi
2(t)

∣∣Xi
2(t0) = x20 is lognormal LN1

(
µi

p(t
∣∣∣t0, x20) ; vpp(t

∣∣∣t0)
)

with

means µi
d(t
∣∣t0, x10) and µi

p(t
∣∣∣t0, x20) and variances vdd(t|t0) and vpp(t|t0), respectively.

For the diameter dynamic, the mean, median, mode, qth quantile (0 < q < 1), and
variance trends can be listed as:

mi
d(t|t0, x10) = mei

d(t|t0, x10) = moi
d(t|t0, x10) = µi

d(t
∣∣∣t0, x10), (7)

mqi
d(t, q|t0, x10) = Φ−1

q

(
µi

d(t|t0, x10); vdd(t|t0)
)

, (8)

wi
d(t|t0, x10) = vdd(t|t0), (9)

where Φ−1
q (·; ·) is the inverse of the standard normal distribution function.

For the polygon area dynamic, the mean, median, mode, qth quantile (0 < q < 1), and
variance trends can be listed as:

mi
p(t|t0, x20) = exp

(
µi

p(t
∣∣∣∣t0, x20) +

1
2

vpp(t|t0)

)
, (10)

mei
p(t|t0, x20) = exp

(
µi

p(t
∣∣∣t0, x20)

)
, (11)

moi
p(t|t0, x20) = exp

(
µi

p(t|t0, x20)− vpp(t|t0)
)

, (12)

mqi
p(t, q|t0, x20) = LΦ−1

q (µi
p(t
∣∣∣t0, x20); vpp(t|t0)), (13)

wi
p(t|t0, x10) = exp

(
2µi

p(t
∣∣∣t0, x20) + vpp(t|t0)

)
·
(
exp

(
vpp(t|t0)

)
− 1
)
, (14)

where LΦ−1
q (·; ·) is the inverse of the standard normal distribution function.

Conditional distribution of Xi
1(t)

∣∣Xi
1(t0) = x10 at a given

(
Xi

2(t) = x2
)

is univariate
normal N1

(
ηi

d(t, x2
∣∣t0, x0); λd( t|t0 )

)
, and conditional distribution of Xi

2(t)
∣∣Xi

2(t0) = x20 at

a given
(
Xi

1(t) = x1
)

is univariate lognormal LN1

(
ηi

p(t, x1

∣∣∣t0, x0); λp( t|t0 )
)

, with means
and variances given as:

ηi
d(t, x2|t0, x0) = µi

d(t
∣∣∣∣t0, x10) +

vdp(t|t0)

vpp(t|t0)

(
ln(x2)− µi

p(t
∣∣∣t0, x20)

)
(15)
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λd(t|t0) = vdd(t|t0)−

(
vdp(t|t0)

)2

vpp(t|t0)
, (16)

ηi
p(t, x1|t0, x0) = µi

p(t
∣∣∣∣t0, x20) +

vdp(t|t0)

vdd(t|t0)

(
x1 − µi

d(t
∣∣∣t0, x10)

)
, (17)

λp(t|t0) = vpp(t|t0)−

(
vdp(t|t0)

)2

vdd(t|t0)
. (18)

For the diameter growth model, the conditional mean, median, mode, qth quantile
(0 < q < 1), and variance trends can be listed as:

mci
d(t, x2|t0, x0) = meci

d(t, x2|t0, x0) = moci
d(t, x2|t0, x0) = ηi

d(t, x2|t0, x0), (19)

mqci
d(t, x2, q|t0, x0) = Φ−1

q (ηi
d(t, x2

∣∣∣t0, x0); λd(t|t0)), (20)

wci
d(t|t0) = λd(t|t0). (21)

For the polygon area growth model, the conditional mean, median, mode, qth quantile
(0 < q < 1), and variance trends can be listed as:

mci
p(t, x1|t0, x0) = exp

(
ηi

p(t, x1|t0, x0) +
1
2

λp(t|t0)

)
, (22)

meci
p(t, x1|t0, x0) = exp

(
ηi

p(t, x1|t0, x0)
)

, (23)

moci
p(t, x1|t0, x0) = exp

(
ηi

p(t, x1|t0, x0)− λp(t|t0)
)

, (24)

mqci
p(t, x1, q|t0, x0) = Φ−1

q (ηi
p(t, x1

∣∣∣t0, x0); λp(t|t0)), (25)

wci
p(t, x1|t0, x0) = exp

(
2ηi

p(t, x1|t0, x0) + λp(t|t0)
)
·
(
exp
(
λp(t|t0)

)
− 1
)
. (26)

2.3. Data

The field-study area is located in the municipality of Kazlų Rūda in Lithuania. A major
part of the Kazlų Rūda municipality is located in the fertile Užnemunė lowland and is among
the most wooded areas in Lithuania, with about 59.4% of the territory covered by large forests.
The specific allocation comprises the area covered by stands of pine (Pinus sylvestris), 63.8%;
spruce (Picea abies), 30.2%; silver birch (Betula pendula Roth and Betula pubescens Ehrh.), 5.8%;
and others, 0.2%. All data were collected during fieldwork in 1983–2019 across the Kazlų
Rūda forests (latitude, 54◦44′54.222′′ N; longitude, 23◦29′27.7944′′ E; altitude, 68 m). Mean
temperatures vary from −16.4 ◦C in winter to 22 ◦C in summer. Precipitation is distributed
throughout the year, although predominantly in summer; the average is approximately
680 mm a year. During the 1983–1987 period, 50 permanent experimental plots were
established in the Kazlų Rūda forests in Lithuania. According to regeneration mode, the
50 field-sample plots vary between those naturally and artificially regenerated and spread
in pure or mixed-species stands. Each sample plot consisted of about 0.16–0.72 ha and was
remeasured several times, from 1 until 6 (see Figure 1, showing 4 cycles) at 2- to 36-year
intervals. The attributes recorded for each tree in the considered plots were the tree species,
age, location of the sample trees (planar coordinate position x and y), and diameter at
breast height. The age of the i-th tree (i varied from all the trees until the 10th) in the
first measurement was recorded by counting its growth rings on the increment core (for
even-aged stands, from entries in documents), and the ages of the remaining trees were
obtained from the arithmetic mean. The accuracy of planar coordinate position was 1 dcm,
and diameter measurements were performed with approximately 1 mm accuracy. The
50 field-sample plot dataset was randomly divided into estimation and validation datasets.
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The estimation dataset consisted of measurements from 40 plots, and the validation dataset
compounded the remaining measurements from 10 plots. Table 1 shows the summary
statistics of the field-sample data.

Table 1. Tree characteristics of sample plots (0.16–0.72 ha) selected for the study.

Species Data Number of
Trees Min Max Mean St. Dev. Number of

Trees Min Max Mean St. Dev.

Estimation Validation

Pine
t (year) 28,982 5.0 172.0 49.14 22.16 6997 7.0 197.0 67.90 19.06
d (cm) 28,982 0.5 61.0 17.87 9.17 6997 3.0 59.2 24.35 9.02
p (m2) 28,982 0.09 120.21 9.24 7.56 6997 0.44 84.84 13.02 8.54

Spruce
t (year) 11,493 12.0 207.0 59.63 21.57 7001 7.0 191.0 67.94 21.01
d (cm) 11,493 0.20 62.0 11.68 7.34 7001 3.0 61.8 13.24 8.51
p (m2) 11,493 0.11 160.24 9.17 8.32 7001 0.26 77.76 9.46 7.65

Birch
t (year) 2880 5.0 107.32 47.75 17.88 663 16.0 129.73 60.29 15.87
d (cm) 2880 0.90 45.40 14.46 8.13 663 3.0 50.0 19.91 9.30
p (m2) 2880 0.33 173.82 8.70 7.01 663 0.89 51.93 9.88 8.05

t (year) 43,410 5.0 207.0 51.84 22.27 14,711 7.0 197.0 67.55 19.94
All d (cm) 43,410 0.20 62.0 16.0 9.07 14,711 3.0 61.80 18.87 10.35

p (m2) 43,410 0.09 173.82 9.18 7.73 14,711 0.26 84.84 11.16 8.29

3. Results
3.1. Parameter-Estimating Results

The key research problem in this study is the latest developments of accurate and
computationally optimal parameter-estimation procedures based on the approximated
maximum-likelihood technique, which cannot be implemented in the presence of a closed-
form expression for the mixed-effect parameters SDE [21]. Our developed maximum-
likelihood estimation technique relies on the fact that the conditional bivariate probability
density function has an exact form. Therefore, the likelihood function maximization
technique with respect to parameter vector θ for a given set of discretely observed diameter
and polygon area data is defined by a two-step procedure.

To evaluate the proposed Vasicek–Gompertz-type mixed-effect parameters SDE (2), an
approximated log-likelihood technique for estimating the parameters was set up on the ba-
sis of the discrete observations from estimation dataset

{(
di

1, pi
1
)
,
(
di

2, pi
2
)
, . . . ,

(
di

ni
, pi

ni

)}
on a fixed time interval

{
ti
1, ti

2, . . . , ti
ni

}
, i = 1, . . . ,M. The randomly selected 40 samples

were used to fit the SDE model defined by Equation (2), and the results of the estimat-
ing parameters are summarized in Table 2. All parameters were statistically significant
(p < 0.05).

Table 2. Vasicek–Gompertz-type system for diameter and polygon area: parameter estimates.

Species αd βd αp βp σdd σpp ρdp δ σd σp σ0

All 48.3358 0.0086 0.0875 0.0273 1.3363 0.0199 0.2405 1.7344 11.5987 0.0121 1.5185
Pine 59.8450 0.0081 0.0860 0.0251 0.8308 0.0174 0.2056 1.3111 11.3134 0.0098 0.9627

Spruce 77.4686 0.0030 0.0836 0.0280 0.6393 0.0250 0.2851 1.7769 26.8149 0.0120 1.3815
Birch 23.6670 0.0234 0.0802 0.0258 1.7425 0.0200 0.1823 2.0643 8.6172 0.0131 0.3988

3.2. Bivariate and Marginal Distributions

After the fixed-effect parameters were obtained in Section 3.1, which are listed in Table 2,
they were used to evaluate the accuracy of the prediction and forecasting in subsequent
sections by using data from the validation dataset. The bivariate mixed-effect parameters
SDE model was developed by combining the two univariate models through a bivariate
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stochastic process. The model considered two correlated observations, tree diameter and
polygon area, reflecting the high variation of stand density among stands of Lithuania. The
main goal in an SDE modeling framework is to determine the probability density function
of the solution, formulated as a diffusion process since it capacitates for calculating any
univariate moment, which allows for calculating the mean, variance, and tolerance regions
for bivariate cases. In our setting, the newly developed bivariate density and marginal and
conditional densities were visually evaluated corresponding to the diameter and polygon
area observed data from the validation dataset at a given average stand age. Therefore,
the corresponding observed data from the validation dataset and its fitted distribution
were graphically visualized. The Voronoi tessellations presented in Figure 1 show dynamic
of polygon areas via stand age (time). These diagrams also demonstrate information
about variations in the polygon area, which grows with age. Figures 2–5 illustrate the fitted
marginal probability density functions and underlying frequency distributions (histograms)
for new plots from the validation dataset with two cycles of remeasurements at an average
stand age. All the fitted probability density functions take the values of the fixed-effect
parameters from Table 2. Random effects ϕd, ϕp, and ϕ0 for a new plot from the validation
dataset were calibrated as:

∧
ϕ = argmax

(ϕd ,ϕp ,ϕ0)

(
∑m

j=1 ln
(

f
(

x1j, x2j, tj

∣∣∣∣∧θ, ϕd, ϕp, ϕ0

))
+ ln

(
φ(ϕd

∣∣∣∧σd)
)
+ ln

(
φ
(

ϕp

∣∣∣∧σp

))
+ ln

(
φ
(

ϕ0

∣∣∣∧σ0

)))
(27)

where {(x11, x21), (x12, x22), . . . , (x1m, x2m)} is the newly observed dataset, t0 = 4,

(x10, x20) =
(
0.1, δ̂ + ϕ0

)
, f

(
x1, x2, t

∣∣∣∣∣ ∧θ1, ϕd, ϕp , ϕ0

)
is the bivariate normal-lognormal

density function with the mean and variance defined by Equations (5) and (6), φ(·|σ) is
the univariate normal density function with zero mean and standard deviation σ, and the
estimated values of fixed-effect parameters are denoted by “hat” (listed in Table 2).

Figure 2. Estimated marginal and conditional probability density functions and frequency distribution for all tree species
in a randomly selected stand from the validation dataset in two cycles of remeasurements: (a) diameter distributions
(mean age, 71.9 years; and mean polygon area, 19.43 m2); (b) polygon area distributions (mean age, 71.9 years; and mean
diameter, 23.12 cm); (c) diameter distributions (mean age, 106.4 years; and mean polygon area, 24.11 m2); (d) polygon area
distributions (mean age, 106.4 years; and mean diameter, 31.06 cm); estimated marginal probability density functions, solid
lines; conditional (diameter-dependent) probability density functions, dotted lines.
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Figure 3. Estimated marginal and conditional probability density functions and frequency distribution for Scots pine tree
species in a randomly selected stand from the validation dataset in two cycles of remeasurements: (a) diameter distributions
(mean age, 63.7 years; and mean polygon area, 13.85 m2); (b) polygon area distributions (mean age, 63.7 years; and mean
diameter, 23.62 cm); (c) diameter distributions (mean age, 98.4 years; and mean polygon area, 17.52 m2); (d) polygon area
distributions (mean age, 98.4 years; and mean diameter, 32.33 cm); estimated marginal probability density functions, solid
lines; conditional (diameter-dependent) probability density functions, dotted lines.

Figure 4. Estimated marginal and conditional probability density functions and frequency distribution for Norway spruce
tree species in a randomly selected stand from the validation dataset in two cycles of remeasurements: (a) diameter
distributions (mean age, 57.6 years; and mean polygon area, 12.26 m2); (b) polygon area distributions (mean age, 57.6 years;
and mean diameter, 10.64 cm); (c) diameter distributions (mean age, 91.3 years; and mean polygon area, 15.47 m2);
(d) polygon area distributions (mean age, 91.3 years; and mean diameter, 20.30 cm); estimated marginal probability density
functions, solid lines; conditional (diameter-dependent) probability density functions, dotted lines.

Figures 2–5 show that univariate conditional probability density functions defined
by inserting additional explanatory variable polygon areas or diameters undergo indis-
tinguishable changes in comparison with corresponding univariate marginal densities.
The similarity of the marginal and conditional distributions suggests that the additional
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explanatory variable (polygon area or diameter) has a relatively small effect on the values
of the response variable (diameter or polygon area). Moreover, the figures superpose
frequency distribution and estimated normal or lognormal probability distributions that
correspond to the probability density function of the solutions of SDE (2). Frequency dis-
tributions are not exactly in agreement with the normal or lognormal distribution shapes
due to the variation in tree age or probably did not arise from our presented form. The tree
diameter histograms shown in Figures 2–5 confirm the assumption that the tree-diameter
distribution in a particular forest stand has an approximately symmetrical shape. The
lack of symmetry in Figure 4 for Norway spruce trees occurs probably due to the planned
thinning in the stand, as lightening works are usually carried out in stands of this age.
The symmetry and standard deviation of the diameter distribution increase with age. In
contrast, the polygon area histograms reveal asymmetry of the distribution, and the long
tail extends to the right. Histograms of the polygon area show a number of unusual ob-
served values. This scenario may be the result of a directional felling or soil properties.
Lastly, the newly derived bivariate probability density function was a good match for our
validation data.

Figure 5. Estimated marginal and conditional probability density functions and frequency distribution for silver birch tree
species in a randomly selected stand from the validation dataset in two cycles of remeasurements: (a) diameter distributions
(mean age, 44.7 years; and mean polygon area, 6.11 m2); (b) polygon area distributions (mean age, 44.7 years; and mean
diameter, 18.60 cm); (c) diameter distributions (mean age, 81.0 years; and mean polygon area, 10.44 m2); (d) polygon area
distributions (mean age, 81.0 years; and mean diameter, 25.94 cm); estimated marginal probability density functions, solid
lines; conditional (diameter-dependent) probability density functions, dotted lines.

For the observed diameter and polygon area data fitted with the bivariate Vasicek–Gompertz-
type SDE (2), the tolerance region of mean vector µi(t

∣∣t0, x0) , defined by Equation (5), takes the
following well-known inequality [22]:((

x1
ln(x2)

)
− µi(t|t0, x0)

)T

[Σ(t|t0)]
−1
((

x1
ln(x2)

)
− µi(t|t0, x0)

)
≤ χ, (28)

where x is the tolerance coefficient [23]. For lognormally distributed polygon area data, we
plot a tolerance region using a logarithmic axis. Figures 6–9 show the tolerance regions
for β = 0.95 and confidence level γ = 0.95, which correspond to the randomly selected
stand from the validation dataset with two cycles of remeasurements. The random effects
were calibrated by Equation (27). For the tolerance region plots, the x value was chosen
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from Table 1 in [23]: the setting β = 0.95 and γ = 0.95 produces a x of 10.02. The bivariate
tolerance region for the Vasicek–Gompertz-type model (2) enables us to decide whether
the newly developed distribution function corresponds well with the observed data of
the diameter and polygon area. Figures 6–9 illustrate that the 95% tolerance regions had
reasonable coverage rates for different tree-species scenarios. Information concerning
tolerance regions is implicit in the hybrid bivariate distribution derived for the Vasicek–
Gompertz-type SDE (2).

Figure 6. Tolerance region for mean vector with the observed sample from the validation dataset of all tree species in
two measurement cycles: (a) tolerance region of diameter and polygon area for first cycle (mean age, 71.9 years; mean
diameter, 23.12 cm; and mean polygon area, 19.43 m2); (b) tolerance region of diameter and polygon area for fourth cycle
(mean age, 106.4 years; mean diameter, 26.50 cm; and mean polygon area, 24.11 m2); tolerance region, solid line; observed
dataset, circles.

Figure 7. Tolerance region for mean vector with the observed sample from the validation dataset of Scots pine tree species
in two measurement cycles: (a) tolerance region of diameter and polygon area for first cycle (mean age, 63.7 years; mean
diameter, 23.62 cm; and mean polygon area, 13.85 m2); (b) tolerance region of diameter and polygon area for fourth cycle
(mean age, 98.4 years; mean diameter, 32.33 cm; and mean polygon area, 17.52 m2); tolerance region, solid line; observed
dataset, circles.

Figure 8. Tolerance region for mean vector with the observed sample from the validation dataset of Norway spruce tree
species in two measurement cycles: (a) tolerance region of diameter and polygon area for first cycle (mean age, 57.6 years;
mean diameter, 10.64 cm; and mean polygon area, 12.26 m2); (b) tolerance region of diameter and polygon area for fourth
cycle (mean age, 91.3 years; mean diameter, 20.30 cm; and mean polygon area, 15.47 m2); tolerance region, solid line;
observed dataset, circles.
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Figure 9. Tolerance region for mean vector with the observed sample from the validation dataset of silver birch tree species
in two measurement cycles: (a) tolerance region of diameter and polygon area for first cycle (mean age, 44.7 years; mean
diameter, 18.60 cm; and mean polygon area, 6.11 m2); (b) tolerance region of diameter and polygon area for fourth cycle
(mean age, 81.0 years; mean diameter, 25.94 cm; and mean polygon area, 10.44 m2); tolerance region, solid line; observed
dataset, circles.

4. Discussion

Figures 2–5 show that very high variation existed in the shape of the diameter and
polygon area frequency distributions among plots of a given stand age. In our models, this
variation was well accounted for by the used diffusion process defined by SDE (2). Since the
observed sample plots represent forest stands in the region, the plot effects were generally
included by using three random variables (effects). To properly test our mixed-effect model
of diameter, polygon area, and number of trees per hectare, we used observed sample
plots from the validation dataset to show its robustness in predicting (via current age) and
forecasting (future age).

4.1. Modeling Tree-Diameter Dynamics: Predicting and Forecasting

Traditionally, individual-tree-diameter-growth regression models describe growth
as a function of an age (tree or stand). Most individual-tree-diameter-growth models
were framed using an algebraic difference approach [24] and its mathematical generaliza-
tions [25]. The SDE (2) developed in this study enables us to describe a wide range of tree-
and stand-growth variables. To apply the mixed-effect SDE model defined by Equation (2),
we had two adaptation strategies—prediction and forecasting. First, the underlying ran-
dom effects of the model were precisely calibrated (using all remeasurement cycles from
the validation dataset). Hence, random effects were calibrated by Equation (27) using data
from the validation dataset in order to define the predictions (dynamic against the age) of
the mean, variance, and quantiles of the diameter or polygon area in a particular stand.
In this strategy, we could average the results of multiple realizations of tree diameters in
different plots and obtain important characteristics (mean and variance) that could not
be seen in one tree realization. Second, the underlying random effects of the model were
not precisely calibrated (using only the first measurement cycle in a plot). Hence, random
effects were calibrated by Equation (27) using measurements of diameter, polygon area,
and age at the initial measurement cycle from the validation dataset in order to define the
forecasts, at the 5-, 13-, and 35-year forecast periods, of the diameter or polygon area for
each individual tree. Most remeasured plots from the validation dataset were unevenly
aged and mixed-species. Figure and table illustrations are separately presented for all tree
species, Scots pine tree species, Norway spruce tree species, and silver birch tree species.
Figure 10 shows predictions of the mean diameter, 0.05 and 0.95 quantiles for all, Scots
pine, Norway spruce, and silver birch tree species for two randomly selected stands from
the validation dataset.
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Figure 10. Dynamic of mean, 5%, and 95% percentiles of diameter with observed datasets for two
randomly selected stands from the validation dataset: (a) all tree species; (b) Scots pine tree species;
(c) Norway spruce tree species; (d) silver birch tree species; observed dataset of diameters, circles;
mean trend, solid lines; percentiles, dashed lines; first stand, black; second stand, red.

The mean prediction error (percentage of prediction error, %) B, mean absolute pre-
diction error (percentage of absolute prediction error, %) AB, root-mean-square error
(percentage of root-mean-square error, %) RMSE, and coefficient of determination R2 were
used to evaluate the results of the mean diameter-marginal and conditional model fit de-
fined by Equations (7) and (19), respectively. The calculated results of statistical measures
using the validation dataset, the fixed-effect parameters from Table 2, and random effects
calibrated by Equation (27) are presented in Table 3. The prediction performance of both
models (marginal and conditional) showed that both models were highly capable of identi-
fying the mean value of the diameter in a stand. Subsequently, only a small improvement
in the statistical measures was found when we used the polygon area as an additional
explanatory variable (conditional model (19)). Table 3 illustrates the accuracy of mean
diameter predictions by using the observed validation dataset.

Table 3. Statistical measures for marginal and conditional models of mean (stand) diameter predictions.

Tree
Species

Marginal Mean (Equation (7)) Conditional Mean (Equation (19))

B
(%)

AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2

All 0.019
(0.10)

0.798
(3.99)

1.133
(5.67) 0.949 −0.431

(−2.16)
0.782
(3.91)

0.989
(4.95) 0.961

Pine −0.131
(−0.50)

0.841
(3.19)

1.141
(4.33) 0.973 −0.410

(−1.56)
0.846
(3.21)

1.158
(4.39) 0.972

Spruce 0.130
(0.90)

0.977
(6.80)

1.258
(8.76) 0.928 −0.345

(−2.40)
0.906
(6.30)

1.167
(8.12) 0.938

Birch −1.038
(−5.94)

1.775
(10.15)

3.096
(17.71) 0.816 −1.354

(−7.74)
1.872

(10.71)
3.086

(17.65) 0.817

The marginal and conditional models defined by Equations (7) and (19) can also be
used successfully as individual-tree-based models in forecasting tree growth regardless of
species, age, and tree polygon area. In Equation (7), if initial point (x10, x20) =

(
0.1, δ̂ + ϕi

0
)

was changed by point (x10, x20) =
(

di
in,j, pi

in,j + 0.
)

, i = 1, . . . ,K (K is the number of the ob-
served sample plots from the validation dataset), we could calculate forecasts of individual-
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tree diameters and compare them with the observed dataset by determining the duration of
the forecast period (5, 13, and 35 years), where

(
di

in,j, pi
in,j

)
is the diameter and polygon area

of the j-th tree in the i-th plot at base age tin,j, and random effects ϕi
d ϕi

p and ϕi
0 are equated

to 0. Table 4 shows the forecast statistical measures of a tree-individual scenario model
calculated for the 5-, 13-, and 35-year forecast periods using the fixed-effect parameters
estimates in Table 2.

Table 4. Statistical measures of diameter forecasts for 5-, 13-, and 35-year forecast periods.

Tree
Species

5-Year Forecast Period 13-Year Forecast Period 35-Year Forecast Period

B
(%)

AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2

All −0.054
(−0.31)

0.949
(5.52)

1.440
(8.37) 0.977 −0.185

(−094)
2.140

(10.82)
2.911

(14.72) 0.914 −0.359
(−1.43)

4.606
(18.45)

5.654
(22.65) 0.739

Pine −0.335
(−1.48)

0.982
(4.34)

1.447
(6.39) 0.968 −0.919

(−3.65)
2.178
(8.65)

2.816
(11.19) 0.886 −2.352

(−7.76)
4.469

(14.74)
5.674

(18.71) 0.615

Spruce 0.147
(1.24)

0.880
(7.42)

1.402
(11.82) 0.965 0.255

(1.83)
1.927

(13.85)
3.005

(21.60) 0.859 0.681
(3.62)

4.123
(21.89)

5.159
(27.39) 0.736

Birch 0.020
0.10)

1.286
(6.85)

1.757
(9.38) 0.960 −0.321

(−1.50)
2.697

(12.59)
3.563

(16.64) 0.832 1.289
(4.92)

4.196
(16.03)

5.405
(20.65) 0.679

In general, the relative success of the 35-year forecast period in forecasting individual
tree diameters showed that the values of statistical measures were considerably smaller
than statistical measures were for the 5- and 13-year forecast periods. Therefore, the shorter
(5 and 13 years) forecast periods provided us with reasonably accurate forecasts of tree
diameters but performed quite poorly farther into the future. Compared to different tree
species, Norway spruce species produced the lowest value of all statistical measures.

4.2. Modeling Tree Polygon Area: Predicting and Forecasting

The tree polygon areas show spatial tessellation based on closeness to trees in a
particular stand. It was suggested by mathematician Voronoi [10] and named after him:
Voronoi polygons (diagrams). A particular forest stand is driven with occasional events,
and the spatial tree arrangement in it is featured with complexity and variability. Most
studied Voronoi polygons are only static. A first approach for the dynamization of Voronoi
diagrams could be an investigation by a procedure for inserting and deleting single trees
(points), each in linear time. In modeling real dynamic scenes of a particular forest stand,
parallel continuous changes of trees with a fast update of the Voronoi diagram are desirable.
Four realizations at different times of a Voronoi polygon in a particular stand are presented
in Figure 1. The main result of the present work consists in the dynamization of the
underlying Voronoi polygon areas by the Gompertz-type diffusion process. Figure 11
shows predictions of the mean polygon area and 0.05 and 0.95 quantiles for two randomly
selected stands from the validation dataset. Random effects were calibrated by Equation (27)
using measurements of tree positions from the validation dataset, and the fixed-effect
parameters are from Table 2.

The results of statistical measures of polygon area predictions, calculated using tree
positions from the validation dataset, the fixed-effect parameters from Table 2, and random
effects calibrated by Equation (27), are presented in Table 5, which clarifies the importance
of the diameter employed in the modeling process. The prediction performance of both
models defined by Equations (10) and (22) showed that both models were highly capable
of identifying the mean value of the polygon area in a plot. On the other hand, only
small improvement in the statistical measures was found (up to 3% in the coefficient
of determination) when we used diameter as an additional explanatory variable in the
conditional model defined by Equation (22).
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Figure 11. Dynamic of mean, 5%, and 95% percentiles of polygon area with observed datasets for two randomly selected
stands from the validation dataset: (a) all tree species; (b) Scots pine tree species; (c) Norway spruce tree species; (d) silver
birch tree species; observed dataset, circles; mean trend, solid lines; percentiles, dashed lines; first stand, black; second
stand, red.

Table 5. Statistical measures for marginal and conditional models of mean polygon area predictions.

Tree
Species

Marginal Mean (Equation (10)) Conditional Mean (Equation (22))

B
(%)

AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2

All −0.305
(−2.46)

1.062
(8.58)

1.410
(11.26) 0.929 −0.184

(−1.49)
0.914
(7.39)

1.184
(9.57) 0.949

Pine −0.392
(−3.17)

0.726
(5.87)

1.009
(8.16) 0.958 −0.276

(−2.23)
0.651
(5.27)

0.883
(7.14) 0.968

Spruce −0.441
(−3.78)

1.155
(9.89)

1.597
(13.68) 0.913 −0.283

(−2.42)
1.062
(9.10)

1.454
(12.46) 0.928

Birch 0.202
(1.84)

1.628
(14.84)

2.318
(21.13) 0.790 0.442

(4.03)
1.571

(14.32)
2.145

(19.56) 0.820

Statistical measures of forecasts of trees’ individual polygon areas using an observed
validation dataset, the fixed-effect parameters from Table 2, and at random effects equal to
zero, ϕi

d = 0., ϕi
p = 0., ϕi

0 = 0., i = 1, . . . , K, are presented in Table 6 for the forecast periods
of 5, 13, and 35 years. The conditional model defined by Equation (22) was evaluated using
a data subset of diameters drawn from the validation dataset at the projected (forecast
period) age and showed that the influence of diameters cannot greatly improve the forecast
ability of a mixed-effect polygon area model. Statistical measures in Table 6 show that the
accuracy of the model forecast decreases significantly with increasing the forecast period
to 35 years.
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Table 6. Statistical measures for the marginal model (Equation (10)) of polygon area forecasts for 5-, 13-, and 35-year
forecast periods.

Tree
Species

5-Year Forecast Period 13-Year Forecast Period 35-Year Forecast Period

B
(%)

AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2

All −0.601
(−6.01)

1.126
(11.26)

1.539
(15.38) 0.959 −0.555

(−4.69)
2.756

(23.31)
3.963

(33.51) 0.786 −1.581
(−11.09)

5.107
(35.83)

6.746
(47.33) 0.463

Pine −0.762
(−6.34)

1.253
(10.43)

1.621
(13.49) 0.959 −1.194

(−8.72)
2.969

(21.70)
3.850

(28.13) 0.803 −3.655
(−23.78)

5.959
(38.66)

7.167
(46.50) 0.408

Spruce −0.384
(−4.65)

0.983
(11.90)

1.466
(17.74) 0.953 0.221

(2.19)
2.601

(25.81)
4.238

(42.04) 0.725 0.664
(5.12)

4.575
(35.25)

6.798
(52.38) 0.405

Birch −0.539
(−6.04)

1.004
(11.25)

1.198
(13.43) 0.971 −0.785

(−7.93)
2.504

(25.31)
3.373

(34.09) 0.827 0.201
(1.37)

5.788
(39.61)

7.458
(51.13) 0.491

4.3. Modeling Stand Density: Predicting and Forecasting

To manage the evolution of the number of trees per hectare from the early sapling stage
to any stage in mixed-species, unevenly aged forests, reliable predictive and forecast models
are needed. The complete size–density trajectory of a stand from an early development
stage follows the form framed by the maximal size–density relationship [26]. Recently,
diffusion processes were used to define maximal size–density equations [27]. Many various
stand-density measures were developed as relationships of mean area available to trees in
a particular stand [28,29]. The stand density expresses a stand occupancy in abstract form;
consequently, in this study, the stand density per hectare dynamic is related to the dynamic
of the polygon area, defined by Equations (10) and (22), in the following forms for all the
tree species:

Ni(t|t0, x20) =
10000

mi
2(t|t0, x20)

, (29)

Ni(t|t0, x20, x11) =
10000

ηi
2(t, x11|t0, x0)

, (30)

and for constituent tree species:

Ni(t|t0, x20) = ocin
10000

mi
2(t|t0, x20)

, (31)

Ni(t|t0, x20, x11) = ocin
10000

ηi
2(t, x11|t0, x0)

, (32)

where ocin is the occupation proportion of a specific tree species in a stand at an age of the
first measurement (0 < ocin < 1).

Sustainable forest management requires the comprehensive understanding of the long-
term dynamics of stand density. The stand-density models defined by Equations (29)–(32)
enable us to evaluate stand density in both prediction and forecasting scenarios. For calcu-
lating predictions of stand density, we used the fixed-effect parameters from Table 2 and
the random effects calibrated by Equation (27), using a full validation dataset. Figure 12
shows the mean stand-density dynamics for all tree species and constituent tree species
scenarios and compares with observed datasets for three randomly selected stands from
the validation dataset. The accuracy measures of the mean stand-density predictions are
presented in Table 7.
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Figure 12. Dynamic of mean stand density with observed datasets for three randomly selected stands from the validation
dataset: (a) all tree species; (b) Scots pine tree species; (c) Norway spruce tree species; (d) silver birch tree species; observed
dataset, circles; mean trend, solid lines; first stand, black; second stand, red; third stand, blue.

Table 7. Statistical measures for marginal and conditional models of mean stand-density predictions.

Tree
Species

Marginal Mean (Equation (29) or (31)) Conditional Mean (Equation (30) or (32))

B
(%)

AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2

All 0.686
(0.07)

102.23
(10.50)

166.149
(17.07) 0.873 −8.253

(−0.84)
90.608
(9.31)

147.297
(15.13) 0.901

Pine 19.339
(4.30)

37.682
(8.39)

49.302
(10.97) 0.966 16.429

(3.65)
34.762
(7.74)

44.767
(9.96) 0.972

Spruce −3.720
(−0.62)

76.165
(12.74)

123.67
(20.67) 0.934 −14.901

(−2.49)
68.768
(11.50)

110.925
(18.56) 0.947

Birch 5.177
(7.89)

9.920
(15.12)

14.118
(21.52) 0.984 4.860

(7.41)
10.214
(15.57)

14.151
(21.57) 0.984

The Voronoi polygon of tree positions is a powerful tool for understanding the spatial
competition properties on the basis of closeness to trees in a particular stand. Relatively few
studies reported the construction of Voronoi polygons in forest-stand modeling [30] despite
a wide array of potential applications. Dynamic Voronoi polygons have applications among
stand-density models, as they can be used to accurately define the rate of natural mortality
among trees within a forest. Results of diameter importance for stand-density modeling
processes are shown in the conditional models defined by Equations (30) and (32), presented
in Table 7, which shows that employing the diameter in the modeling process provided
small improvement in statistical measures (up to 3% in the coefficient of determination).

In stand-density dynamic models, transition probability density functions only con-
sider natural mortality that is influenced by competition, whereas general response func-
tions account for the effects of the site index, basal area, and other factors [31]. The newly
developed stand-density dynamic functions defined by Equations (29)–(32) were developed
with the purpose of formalizing a whole-stand model for predicting and forecasting a given
mixed-species forest stand. As such, the observed dataset (40 plots) from long-term remea-
surements (from 1 until 6 cycles) of permanent plots was used to evaluate the fixed-effect
parameters for both predicting and forecasting scenarios. Concerning the stand-density
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forecast scenario, the random effects for a new stand were calibrated by Equation (27) using
the first measurement cycle observed sample from the validation dataset. Comparisons of
stand-density forecasts (projections) among the forecast periods of 5, 13, and 35 years are
presented in Table 8.

Table 8. Statistical measures of mean stand-density forecasts (Equations (29) and (31)) for 5-, 13-, and 35-year forecast periods.

Tree
Species

5-Year Forecast Period 13-Year Forecast Period 35-Year Forecast Period

B
(%)

AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2

All −59.492
(−5.36)

60.113
(55.41)

72.799
(6.56) 0.981 −24.644

(−2.73)
94.991
(10.54)

118.212
(13.11) 0.897 62.025

(8.53)
103.635
(14.67)

125.749
(17.30) 0.605

Pine −15.920
(−3.25)

40.292
(8.24)

53.640
(10.97) 0.966 31.761

(7.36)
46.707
(10.82)

56.766
(13.15) 0.938 74.438

(20.26)
87.838
(23.90)

105.201
(28.63) 0.751

Spruce −24.434
(−5.50)

37.735
(8.50)

56.291
(12.68) 0.982 −58.010

(−15.04)
60.760
(15.73)

104.466
(27.08) 0.914 −19.460

(−6.57)
29.808
(23.90)

51.048
(17.26) 0.925

Birch −68.224
(−9.68)

70.412
(9.99)

90.988
(12.91) 0.973 −82.303

(−15.26)
90.418
(16.76)

128.911
(23.90) 0.891 −36.060

(−8.68)
59.143
(14.25)

78.997
(19.03) 0.900

All the tested models for all the tree species provided good forecasts for data with
high statistical measures. All the models for Scots pine, Norway spruce, silver birch, and
all the tree species resulted in high coefficients of variation for the forecast periods of 5,
13, and 35 years in intervals of 96.6–98.2%, 89.1–93.8%, and 60.5–92.5%, respectively. Both
scenario models for Scots pine trees were comparably better. Similar results were obtained
in model ranking on the basis of B, B%, AB, AB%, RMSE, and RMSE%. Statistically, the
marginal models defined by Equations (29) and (30) and the conditional models defined by
Equations (30) and (32) provided similar forecasts for all forecast periods.

5. Conclusions

In this paper, we have studied the evolution of the mixed-species, unevenly aged forest
stands by using a bivariate hybrid diffusion process and Voronoi diagram. The growth
model considers two different system states (tree diameter and polygon area). In summary,
derived individual-tree and whole-stand models describe how trees grow in diameter and
how forest-stand structures are modified over time. On the other hand, one of the most
fundamental features of our developed models is that they are strongly symmetrical, as
they allow for forecasting trajectories in the future and the past. Numerical example by
using experimental sample plots in Lithuania with measurements of tree position, age, and
diameter at breast height showed high accuracy of the obtained results and the importance
of the work. From a statistical point of view, the newly developed growth models produced
acceptable predictions and forecasts. Our proposed bivariate hybrid diffusion process and
Voronoi diagram approach also outperformed other existing techniques [32,33]. The newly
developed hybrid bivariate distribution also provides a further in-depth understanding of
the behavior of the stand basal area and volume.

Future work should try to extend our work to describe hybrid 3-, 4-, and 5-variate
diffusion processes and copula approach for developing the link between state variables, as
an example, diameter, height, crown width, crown base height, and available polygon area.
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