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Abstract: The conventional green screen keying method requires users’ interaction to guide the whole
process and usually assumes a well-controlled illumination environment. In the era of “we-media”,
millions of short videos are shared online every day, and most of them are produced by amateurs in
relatively poor conditions. As a result, a fully automatic, real-time, and illumination-robust keying
method would be very helpful and commercially promising in this era. In this paper, we propose
a linear model guided by deep learning prediction to solve this problem. The simple, yet effective
algorithm inherits the robustness of the deep-learning-based segmentation method, as well as the
high matting quality of energy-minimization-based matting algorithms. Furthermore, thanks to the
introduction of linear models, the proposed minimization problem is much less complex, and thus,
real-time green screen keying is achieved. In the experiment, our algorithm achieved comparable
keying performance to the manual keying software and deep-learning-based methods while beating
other shallow matting algorithms in terms of accuracy. As for the matting speed and robustness,
which are critical for a practical matting system, the proposed method significantly outperformed all
the compared methods and showed superiority over all the off-the-self approaches.

Keywords: chroma key; deep learning; image matting; linear discriminant analysis; soft segmentation

1. Introduction

Thanks to the rapid development of computer graphics, the compositing shot has be-
come a common choice in the film and television industry. Green/blue screen keying plays
a crucial role in image/video compositing [1] and has already shown its production-level
matting quality in many applications. This “well-developed” technology, however, requires
professional users’ guidance and other ad hoc settings such as a specially designed lighting
apparatus for even illumination and a matte screen material to reduce light reflection. In
recent years, with the surge of “we-media”, millions of short videos are shared online
every day, and most of them are produced by amateurs in relatively poor conditions. As a
result, an Automatic, Illumination-invariant and Real-time (AIR) keying method could be
very commercially promising in the age of the mobile Internet. In this paper, we propose a
totally automatic and real-time green screen keying algorithm for unconstrained scenarios
such as screens with natural light, shadows, and marks on them. Though little attention
has been given by the research community, as we show later in this paper, achieving an
“AIR” keying algorithm is not a trivial task. Firstly, it is hard to directly employ the existing
keying methods [2,3] in AIR keying as there is no human mark or interaction in the process.
Secondly, the sophisticated matting algorithms [4–7] also need initialization annotation
by humans and cannot perform sufficiently well in video processing production. Most
recently, the deep-learning-based matting algorithms have illustrated their high robustness
in very challenging scenarios [8–11]. However, due to the high computational complexity,
they cannot achieve real-time speed on low-resolution (typically below 512× 512) images.
This resolution cannot meet the basic requirements of today’s video or image applications,
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which usually require at least 1080P frames. One can of course upsample the low-resolution
matting result to higher resolution, but the pixelwise matting accuracy will decrease signif-
icantly. Actually, the contradiction between the requirements of pixelwise accuracy and
real-time speed is a long-standing and essential problem in the research of deep learn-
ing. In this work, we tried to address this long-standing problem by introducing deeply
guided linear models and a framework for smartly combining deep models and shallow
models. In the training stage, a deep network was trained to robustly classify each pixel
into foreground and background, on low-resolution images. When testing, linear models
were trained online under the supervision of the deep network, and then, the α value
for each pixel was determined in a coarse-to-fine style. The yielded green screen keying
method is totally Automatic, Illumination-invariant, and Real-time (AIR). It achieved much
better matting results than the existing shallow and deep matting approaches, in terms
of accuracy, speed, and robustness. When compared to the state-of-the-art commercial
keying software with human interactions, our method illustrated comparable accuracy and
overwhelming superiority on speed. The contribution of this work is three-fold:

• First, to the best of our knowledge, our keying algorithm is the first AIR keying
method in the literature;

• Second, the combination between the coarse output of deep learning and an online-
trained linear model is novel and also inspiring from the perspective of machine
learning [12,13];

• Finally, to conduct a more comprehensive evaluation, we designed and generated a
new green screen dataset, Green-2018. This dataset is not only larger than the existing
ones [3], but also contains much more variances in terms of the foreground object
category, the illumination changes, and the texture pattern of the green screens. This
dataset is suitable to design better algorithm for the more challenging tasks such as
outdoor green screen keying.

The rest part of this paper is organized as follows. In Section 2, the motivation of the
proposed method as well as its flowchart are introduced. Section 3 proposes a small, yet
effective CNN. Section 4 presents the algorithm details of the deeply guided linear model.
Section 5 introduces the new green screen dataset, while the last two sections give the
experiment (Section 6) and conclusions (Section 7), respectively.

2. Overview of the Proposed Method

Without controlled illumination and effective guidance by humans, one firstly needs a
highly robust segmentation algorithm to distinguish background and foreground. Moti-
vated by the success of deep learning [14,15], in this work, we also employed deep neural
networks for AIR green screen keying. However, as we explain later, the robust CNN
model can hardly achieve high robustness and high pixelwise accuracy simultaneously,
especially when the time budget is limited.

2.1. A Dilemma Existing in Deep Learning Matting

Although deep learning has achieved great success in the field of computer vision, it
still faces some fundamental difficulties. For pixelwise classification/regression problems,
it is hard for a single deep network to perform prediction precisely given a limited time
budget, e.g., 40 ms per image (the real-time criterion). The dilemma is two-fold: the
running time of most deep networks increases quickly as the input image size grows; it
is also not easy to obtain pixelwise precise prediction for a high-resolution image from a
low-resolution prediction. In addition and more essential, in deep networks, each pixel
of a prediction map is rendered from a large neighboring region on the input image. The
neighboring region, formally termed the “receptive field” [16–18], plays a significant role
in explaining the high robustness of deep learning [19–21]. However, its drawback is also
obvious: as the receptive fields of two neighboring pixels are very alike, it is very hard to
generate the prediction map with sharp boundaries on which the adjacent map pixels are
assigned distinct values. Researchers have been making considerable effort to alleviate
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the problem via more complex network topologies [22–26], while introducing even more
computational complexity. We demonstrate this dilemma in Figure 1. From the figure, we
can see that, although the predicted alpha matte by the deep network is globally robust, it
has ambiguous boundaries, which reduces the “user experience” significantly. In contrast,
narrow methods (KNN matting [6] and information flow [27]) can generate more precise
alpha values in some local regions.

Image Deep Learning KNN matting

Figure 1. The dilemma of the deep-learning-based matting algorithm. From left to right: the original
image, the prediction by deep learning, and the matting results by KNN matting.

2.2. Our Solution

In this work, we propose to address the above problem via smartly fusing the deep
and shallow learning approaches. The flowchart of our algorithm is shown in Figure 2.
From the chart, we can see that the high-resolution test image (Ih) is downsampled into
one middle-resolution image (Im) and one low-resolution image (Il). In the first stage, an
offline-trained, light-weight, and symmetrical CNN is applied to Il to roughly classify each
small region into foreground and background. The initial prediction is then upsampled
to match the middle-sized Im as learning guidance for the following shallow model. In
the second step, a linear model is trained online based on the raw features (RGB values
and texture features in this work) extracted only from this particular image to fine-tune
the initial classification result. As we show in Section 4, the loss function employed in
this stage can be considered as a Linear Discriminant Analysis (LDA) loss regularized by
an affinity term, which usually yields a smoother mask while maintaining the prediction
accuracy. The third step is conducted on the high-resolution image (Ih), where we focus
on the “uncertain” region U defined by the previous linear classification. Soft matting
values in this region αi ∈ [0, 1], ∀i ∈ U are determined by a sigmoid function, whose
hyperparameter is selected via brute force searching with standard KNN matting loss, as
we describe in Section 4.
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Figure 2. The flowchart of the proposed 3-stage AIR keying algorithm.

3. A Small, yet Effective CNN for Segmentation on Green Screens

In recent years, much effort has been made to handle the natural matting problem,
in which the foreground and background are not predefined. Though accused of being
ill-posed, deep-learning-based methods [8–10,28] still illustrate high accuracy in this task.
Recent approaches have also focused on matting without any external input [29–32] and
matting with a known natural background [33,34]. It seems we can easily pick one of
the above “off-the-self” matting networks for our green screen matting. However, those
networks are relatively large to extract more abstract semantic information, which is
important for robust natural matting. On the contrary, in green screen matting, some
low-level features are already informative enough, and thus, the above networks are
unnecessarily complex and slow in our task.

In [35], Liu et al. proposed a small network for edge detection. Considering the
similar motivation of exploiting the multiscale information, we designed our segmentation
network based on its RCF model. To achieve an even higher forward speed so that the
whole system is real-time, we further shrank the RCF model by reducing the channel
numbers, as well as removing some redundant skip connections, as we show in Figure 3.
In this work, we term this reduced RCF as R2CF, whose structure is shown in Figure 3.
We can see that the backbone of the R2CF network is the shrunken version of the VGG-16
network [36,37] with three extra branches and their corresponding intermedia loss layers.

In practice, we trained the R2CF model based on the training set of the proposed new
green screen dataset (described in Section 5). We initialized the network’s parameters via
the “Xavier” strategy and employed the conventional Stochastic Gradient Descent (SGD)
for optimization. The minibatch size was 32, and the base learning rate was 0.003 and
dropped by 10 times every 30,000 iterations. The momentum and weight decay were
set to 0.9 and 0.00004, respectively. One needs to perform SGD for 100,000 iterations to
obtain good performance. The learned deep model performed sufficiently well in practice,
though one can still observe some segmentation flaws (see Figure 4), which could be almost
totally corrected by the following linear classifier, as we introduce in Section 4. On the
other hand, the network was very efficient, with the speed below 10 ms per image on a
middle-level GPU.
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Figure 3. The R2CF network composed of 13 convolution layers and 3 fully connected layers. Similar
to its prototype, VGG-16 [36], all the convolutional layers are divided into 5 groups as conv1, ...,
conv5. Feature maps from conv3, conv4, and conv5 are integrated together after being filtered by the
1× 1 convolutional layers. The three obtained feature maps are then finally summed up elementwise,
after another 1× 1 convolutional layer. The upsampling process is conducted to guarantee all feature
maps have the same size.

Figure 4. The illustration of the predictions of the proposed R2CF.
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4. The Deeply Guided Linear Models for High-Resolution Accurate Matting
4.1. Training Features

As explained in Section 2.1, one cannot expect deep learning to predict pixelwise
accurate segmentations or alpha mattes, especially with a limited time budget. Given the
output of R2CF, we extracted the two-channel feature map just before the final softmax
layer to calculate the “trimap” Tl ∈ Rwl×hl as:

Ti
l =


1 : ηi > 0.75
0.5 : 0.5 ≤ ηi ≤ 0.75
0 : ηi ≤ 0.5

∀i (1)

where Ti
l is the i-th pixel on the low-resolution trimap Ti

l and the value ηi is obtained via:

ηi =
exp(−λ · fi)

(exp(−λ · fi) + exp(−λ · bi))
(2)

where fi and bi are the values of the two-channel output of the R2CF network, on the i-th
pixel’s location. They stand for the confidence of being the foreground and background on
this pixel, respectively. Then, the low-resolution trimap is resized to the mid-resolution
version: Tl ∈ Rwl×hl → Tm ∈ Rwm×hm .

In the second stage, as shown in Figure 2, training samples are collected randomly
on both the background region (Ti

m <= 0.01) and the foreground region (Ti
m >= 0.99). In

this paper, the feature of each training sample contains two parts: the normalized RGB
value and the texture feature extracted on a small adjacent region (3× 3 in this work). In
mathematical form, the feature f i ∈ R15 is written as:

f i = [Ri, Gi, Bi, βi], ∀i, (3)

where βi denotes the local texture feature of a pixel, which is defined as:

βi =
1
Zi
·Hist∆θ(mgrad, dgrad) (4)

where function Hist∆θ(mgrad, dgrad) represents the histogram function based on the gradient
directions weighted by the corresponding gradient magnitude; Zi is the normalization
parameter, so 1T βi = 1. In this work, we set ∆θ = 30; thus, the dimension of β and f i is 12
and 15, respectively.

4.2. Two Types of Loss Functions

Given the training sample set { f 1, f 2, . . . , f N}with the corresponding labels {l1, l2, . . . ,
lN}, lj ∈ {0, 1}, which are actually the sampled pixel values on the trimap Tm, we tried to
train a linear model such that:

αj = ωT f j + b.

To obtain a good estimation of ω and b, we firstly built the classification loss following
Linear Discriminant Analysis (LDA) [38] as:

minω Lossc = ωT(S+w + S−w )ω (5)

s.t. 1
N+ ∑i∈P f i > 1 + 1

N− ∑j∈N f j (6)

where P and N stand for the positive and negative subsets of the training samples and S±w
denotes the “within scatter matrix” defined in the LDA algorithm [38].

Recall that the LDA was proposed for general classification, which is different from the
matting problem, where the pixels are actually related geometrically. We thus introduced
the affinity loss from the family of spectral-based matting [4,6] into the above optimization
problem. Specifically, we employed the strategy of KNN matting [6] to build the affinity
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matrix Lrgb (here, the subscript rgb indicates that the kernel values in this affinity matrix are
calculated on the RGB values), with the hyperparameter k = 7. Given the affinity matrix L,
our affinity loss is written as:

Lossa = αTLrgbα = ωTF · Lrgb · FTω = ωTL̂rgbω (7)

Now, the combined loss function is defined as:

minω ωT(S+w + S−w + λL̂rgb)ω (8)

s.t. 1
N+ ∑i∈P f i > 1 + 1

N− ∑j∈N f j (9)

In practice, we set λ = 1000, and the introduction of the affinity loss leads to smoother
alpha output, which can benefit the following matting step.

Note that the generalization and optimization are the most time-consuming parts of
the KNN matting algorithm. Each of them usually takes more than 1000 ms on a mid-
resolution image. In our case, however, this problem did not exist. The reason is two-fold.
First, as we assumed a linear model to represent the pixel’s alpha value, one does not need
to sample all the pixels on the image, whose number is usually over a million. Actually, in
our experiment, we only sampled 1500 positive samples and 1500 negative samples, which
were sufficient to offer good results. Secondly, and more importantly, thanks to the linear
assumption, the quadratic matrix Lrgb collapses into the extremely small one L̂rgb, which
was only 15× 15 in this work. As a result, the optimization problem of Equation (9) can be
easily solved via off-the-shelf quadratic programming solvers, within 5 ms.

4.3. Fine-Tuning the Alpha Values via Brute Force Searching

As shown in Figure 2, in Step 3, we firstly calculate the binary version the output of
last step as:

α̃j = ωT f j + b

and then, an “unknown” region on the image is obtained via a simple Gaussian filtering
and thresholding process. We fix the binary value of α̃ outside the unknown area and
recalculate the inside ones as:

α̃j =
1

1 + exp[−λ · (ωT f j + b− µ)]
(10)

The hyperparameters λ and µ are determined via a brute force searching procedure
whose loss function is exactly the loss function defined in KNN matting [6]. Note that
when performing the brute force searching, it is not necessary to take all the unknown
pixels into consideration. In this work, we only randomly sampled 2000 unknown pixels
to estimate the best λ and µ. The other 10,000 pixels in the known region were sampled to
calculate the affinity matrix of KNN matting. All of Step-3 typically takes only 15 to 20 ms.

5. The New Green Screen Dataset

To the best of our knowledge, the only publicly available green screen dataset was
that proposed in [3], which contains four videos captured in controlled environments. To
test the algorithm in more challenging scenarios, in this work, we generated a bigger and
more comprehensive green screen dataset, called “Green-2018” in this paper. We illustrate
the dataset in Figure 5. To obtain the high-quality ground-truth alpha, all the images in
the new dataset were synthetically composed from a foreground image (with a precise
alpha matte) and a background image. Unlike the existing dataset, which only focuses
on human objects, the Green-2018 dataset has various foreground types including animal,
human, and furniture. On the other hand, the background images in the new dataset also
involve more variance. As we show in Figure 5, there are two main attributes, which are
textured (we only focus on the green background here; thus, the textured background
is also generated by using a number (two in our case) of different green colors) or pure
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green screen and natural or controlled lighting condition, respectively. We rendered our
dataset through randomly locating the foreground objects with random scales. To make
the synthetic images closer to the real ones, shadows were also rendered on some of the
background images.

compose 

Fg Bg 

composed image 

alpha 

with mark pure green 

natural 
illum.  

controlled 
light 

Figure 5. The illustration of the proposed new green screen dataset (portraits were permitted in
October 2018). Top: the illustration of foreground and background fusion; bottom: the image
samples of Green-2018 with 2 major attributes, which are textured or pure green screen and natural
or controlled lighting condition, respectively. Note that the outside region of the green screen is
treated as foreground in the dataset.

The whole dataset contains 657 foreground images and 2693 background images. We
divided them into two subsets for training and testing, respectively. Our training subset
contains 20,370 merged images, which were generated from 485 foreground and 2010
background images, while the test subset includes the last 172 foreground images and 683
background images, and 3096 composed test images were rendered.

6. Experiments and Results

In this section, we compare the proposed method with different types of approaches,
which can solve the green screen matting problem. Three state-of-the-art shallow matting
algorithms were compared: closed-form matting [4], KNN matting [6], and the most
recently proposed information flow matting [27]. Two typical deep-learning-based matting
methods, i.e., deep image matting [8] and IndexNet Matting [39], were also performed in
the comparison.
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Meanwhile, we also illustrate the comparison between our automatic method and the
off-the-shelf manual keying software, i.e., After Effect (AE) from Adobe. Following the
conventional setting in the matting literature [6,27,40], we report the performance via four
evaluation metrics, which are SAD, MSE, Connectivity, and Gradient, respectively.

As mentioned in Section 5, we evaluated all the involved methods on two datasets, i.e.,

• The original dataset introduced in [3]. This is a pure green screen dataset including
only four videos. We called this dataset TOG-16;

• Our Green-2018 dataset, which contains textured and pure green screen, as well as
more foreground categories.

Note that there is no matting α ground-truth offered in the TOG-16 dataset; we
manually labeled 100 images of this dataset and evaluated the matting performance on
the shrunken version of TOG-16. The experiments was conducted on a PC with an Intel
i5-8600 CPU, 32G memory, and a NVIDIA GTX-1080Ti GPU.

6.1. The Running Speed

In a practical matting system, one usually requires a real-time running speed. Conse-
quently, we firstly compare the running speed of all the involved methods in Table 1.

Table 1. The comparison on running time (in ms) of different keying methods.

Methods Running Time (ms/img)

closed-form [4] 3950
KNN matting [6] 20,000

information flow [27] 15,000
deep matting [8] 312

IndexNet matting [39] 6613
AE-Keylight 30,000

this work 42

From the speed comparison, we can see that only our method can be considered
as real-time, the second fastest matting algorithm being deep matting [8], which only
ran at around 3 fps. Note that, except the proposed method, the running time of all the
other method was not taken into account in the generation time of “trimap”. Our method
illustrates the obvious superiority in efficiency.

6.2. The Matting Accuracy
6.2.1. The Comparison to Other Matting Algorithms

As introduced above, the proposed method is “end-to-end”. However, that is not true
for all the other compared methods: they all require “trimaps” for matting. For a fair com-
parison, the required “trimaps” were obtained by using our R2CF model. The test results
are shown in Tables 2 and 3. As we can see, for both the simple and complicated scenarios,
our method showed comparable performance to the deep-learning-based methods and
showed obvious superiority over the shallow approaches.

Table 2. Matting performance on TOG-16.

Methods SAD MSE Connectivity Gradient
(×104) (×10−3) (×10−3) (×10−3)

closed-form [4] 2.59 9.55 4.54 3.12
KNN matting [6] 2.24 7.43 3.87 3.86

information flow [27] 2.22 8.11 3.90 4.01
deep matting [8] 1.72 1.60 1.10 3.25

IndexNet matting [39] 2.46 3.30 1.54 4.49
this work 1.27 3.64 3.29 2.00
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More comparison results are shown in Figure 6. From the images, one can say that the
proposed method performed well in most scenarios and showed high robustness, as can
be seen in Tables 2 and 3.

Figure 6. The green screen keying result on different video sequences. From left to right: the
input image; the ground-truth alpha map; the matting result of closed-form matting; the result of
information flow matting; the result of KNN matting; the result of the proposed method. Each row
shows the test results on one image, with different automatic matting algorithms.

Table 3. Matting performance on Green-2018.

Methods SAD MSE Connectivity Gradient
(×104) (×10−2) (×10−3) (×10−3)

closed-form [4] 15.7 6.94 56.1 6.31
KNN matting [6] 10.9 4.66 39.6 6.61

information flow [27] 13.5 5.93 53.1 9.12
deep matting [8] 1.36 0.18 6.0 2.20

IndexNet matting [39] 0.87 0.15 3.0 2.12
this work 2.83 1.63 7.75 3.59

6.2.2. The Comparison with Manual Keying Software

Besides the automatic matting algorithms proposed in the literature, manual matting
software dominates the current market. The software is mostly designed based on a single
key color (green or blue) background. We also evaluated our method by comparing to the
manual method on two randomly picked videos from TOG-16. The quantitative results
are shown in Table 4 from which one can see the accuracy of our method compared to
the manual commercial software. Note that the software was operated by an amateur
user with one week of AE experience. When testing, the operator only performed manual
keying on the first frame and used the samekeying parameter for all the following frames
of the sequence.
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Table 4. The keying performance comparison between our method and the manual software. Note
that the software was handled by an amateur user with one week of AE experience.

Methods SAD MSE Connectivity Gradient
(×104) (×10−3) (×10−3) (×10−3)

AE-Keylight 14.6 52.91 34.25 14.73
this work 12.8 36.94 20.1 10.05

6.2.3. The Matting Robustness

From the comparison results shown in Section 6.2.1, one could say that the proposed
method enjoys a fast running speed while usually performing worse than the deep-learning-
based method, which also demonstrated state-of-the-art matting performance on some
well-known matting datasets [8,39].

However, the situation changed dramatically when the same experiment was con-
ducted on some real-life images, rather than the “synthetic” images employed in the
Green-2018 dataset. We captured eight video sequences with a real human shown in front
of the same background setting as in Green-2018 (see Figure 7). As can be seen, the “trimap”
obtained using the R2CF model became imperfect and sometimes even incorrect. In this
scenario, the deep-learning-based methods deteriorated rapidly, and the proposed method
still maintained a relatively high matting accuracy. Our method illustrated much higher
matting robustness against the “state-of-the-art” matting approaches.

Figure 7. The real-life matting performance (portraits were permitted in October 2018). From left
to right: the input image; the imperfect “trimap” obtained by using the R2CF model; the matting
result of deep image matting [8]; the result of IndexNet matting [39]; and the result of this work.
One can see that as the “trimap” becomes incorrect, the deep-learning-based methods are influenced
dramatically, while the proposed method performs much more stably.
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7. Conclusions

In this paper, we proposed a novel way to achieve automatic illumination-invariant
and real-time keying on green screens. Linear models and deep learning results were
smartly combined to generate robust matting results, with a nearly real-time (around 42 ms
per image) speed. Besides, a new green screen dataset, which contained more foreground
variances and more challenging backgrounds, was built. To the best of our knowledge, this
is the first algorithm that can perform AIR keying, and the proposed dataset is also the first
in-the-wild green screen dataset. The superiority in the efficiency, accuracy, and robustness
of the proposed method was also proven in our experiment. In the future, our work will
focus on improving the quality of the coarse output of the offline-trained CNN, which is
very important to us. In addition, we will apply our proposed approach to a higher image
resolution and more complex scenes to verify its effectiveness.
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