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Abstract: Deep learning has been applied in the field of network intrusion detection and has yielded
good results. In malicious network traffic classification tasks, many studies have achieved good
performance with respect to the accuracy and recall rate of classification through self-designed models.
In deep learning, the design of the model architecture greatly influences the results. However, the
design of the network model architecture usually requires substantial professional knowledge. At
present, the focus of research in the field of traffic monitoring is often directed elsewhere. Therefore,
in the classification task of the network intrusion detection field, there is much room for improvement
in the design and optimization of the model architecture. A neural architecture search (NAS) can
automatically search the architecture of the model under the premise of a given optimization goal.
For this reason, we propose a model that can perform NAS in the field of network traffic classification
and search for the optimal architecture suitable for traffic detection based on the network traffic
dataset. Each layer of our depth model is constructed according to the principle of maximum coding
rate attenuation, which has strong consistency and symmetry in structure. Compared with some
manually designed network architectures, classification indicators, such as Top-1 accuracy and F1
score, are also greatly improved while ensuring the lightweight nature of the model. In addition, we
introduce a surrogate model in the search task. Compared to using the traditional NAS model to
search the network traffic classification model, our NAS model greatly improves the search efficiency
under the premise of ensuring that the results are not substantially different. We also manually
adjust some operations in the search space of the architecture search to find a set of model operations
that are more suitable for traffic classification. Finally, we apply the searched model to other traffic
datasets to verify the universality of the model. Compared with several common network models
in the traffic field, the searched model (NAS-Net) performs better, and the classification effect is
more accurate.

Keywords: NAS; network traffic classification; surrogate model

1. Introduction

Deep learning, as a new, hot research topic in machine learning, is widely used in
image recognition [1], speech recognition [2], natural language processing [3] and other
fields and has achieved many fruitful results. In the field of network intrusion detection,
numerous scholars have extensively explored the network model of malicious network
traffic classification and achieved excellent results. These studies often focused on feature
selection [4], training strategy [5], model stacking [6] and other aspects, but there were
few studies on the topological structure of classification models. A network that can solve
complex problems often also has a complex structure, such as AlexNet [7], InceptionNet [8],
MobileNet [9] and other architectures that were carefully designed by researchers in
the field of image recognition. People usually rely on rich experience and professional
knowledge for the design of a network architecture, which makes this type of design
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very difficult for most people. This causes the focus of researchers in the field of traffic
classification to deviate from the design of a network model architecture. NAS, a research
hotspot in recent years, can search for effective architectures for specific deep-learning
problems without manual intervention, replacing the process of designing cumbersome
network architectures. With the continuous advancement of NAS research and application,
people have realized that NAS is an indispensable component of automatic machine
learning (AutoML) [10–12].

To simultaneously ensure the classification accuracy and the lightweight nature of
the model, the architecture search needs to complete a multi-objective optimization task.
Evolutionary algorithms (EAs) are an algorithm type that is widely used in architecture
search. EAs explore the optimal solution to the problem solved by imitating the process
of natural biological evolution and natural selection. Using EAs to search for a neural
network architecture usually imposes certain restrictions on the network architecture,
such as setting the depth of each layer and the set of optional operations for each layer
in advance. Common multi-objective optimization algorithms based on evolutionary
algorithms include multi-objective particle swarm optimization (MOPSO), ant colony
optimization (ACO), non-dominated sorting genetic algorithm II (NSGA-II) [13], multi-
objective evolutionary algorithm based on decomposition (MOEA/D), and so on.

However, even a limited search space has a huge number of candidate architectures, so
a large number of unevaluated candidate architectures are generated during the population
iteration process, which undoubtedly leads to unpredictable time consumption and the
necessity of huge computing resources. For this reason, many scholars have put forward
corresponding solutions in this respect, such as weight sharing [14], and changing archi-
tecture search strategy [15]. These methods can improve the efficiency of an architecture
search to a certain extent, but all need to optimize the parameters of candidate architectures.
In [16], a surrogate model was adopted to predict the performance of candidate architec-
tures that can navigate the direction of the architecture search task. However, since building
an accurate surrogate model requires a large number of training samples, it is inevitable
that the searched network architecture needs to be extensively sampled when training the
surrogate model, which results in its low efficiency in the initial stage of the search task.
In [17], an online surrogate model was dynamically constructed for each iteration when
using a genetic algorithm to search for the model architecture and used the surrogate model
to predict the performance of the generated offspring when using a genetic algorithm to
perform population iteration. In the last part, the Pareto frontier architecture was selected
for parameter optimization, which greatly conserves computing resources.

The search task of neural architecture has made great progress in the field of image
recognition, but research on NAS and improving search efficiency is rare in the field of
network intrusion detection. Therefore, we propose a NAS model applied in the field of
network traffic, which uses a genetic algorithm to complete the architecture search task.
To improve the search efficiency of the model, the surrogate model is introduced in the
process of architecture evaluation. At the same time, in the process of the architecture
search, different operation blocks are selected, and related operation blocks in the image
recognition field are introduced. By fusing the knowledge of different fields, the network
architecture most suitable for traffic datasets can be easily discovered, and the accuracy of
the model classification can be improved.

The main contributions of this paper are summarized as follows.

1. In the network intrusion detection task, NAS is introduced to search for more effective
architectures. The classification model is better than the manually designed network
traffic classification model. At the same time, in the architecture search task, the
online surrogate model is used to optimize the architecture search efficiency, which
results in a significant improvement in search efficiency, compared with the general
NAS model.
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2. On the basis of previous studies, by filtering suitable operation blocks and introducing
new operation blocks to adapt to the network traffic dataset, the performance of the
search model is improved, so as to improve the search space of the network architecture.

3. The network architecture search model is evaluated in different network traffic
datasets and compared with the manually designed network traffic classification
models, including CIC-DoS2017, ISCXIDS2012 and CIC-DDoS2019. Experiments
show that our model offers strong scalability and effectiveness.

The rest of this paper is arranged as follows: Section 2 introduces the related work
of this paper, and the details of our NAS model, which include the search space, search
strategies and performance evaluation strategies. Section 3 shows the data processing and
our experimental results. Finally, the conclusions are given in Section 4.

2. Materials and Methods
2.1. Classification Method for Malicious Network Traffic

With the continuous development of the internet, an increasing number of network
security problems are exposed. For the task of network traffic detection and management,
the classification of malicious traffic is essential. At present, there are many classification
algorithms that can complete the task of traffic classification, such as SVM [18], KNN [19],
and random forest [20], in traditional machine learning. The effect of this kind of re-
search largely depends on the selection of features. Instead of manual intervention to
select features, ref. [21] proposed an unsupervised method, which is used for large-scale
data analysis and improves classification accuracy, to automatically extract network flow
features. Ref. [22] used the supervised pretraining of CNN and the data reconstruction
module based on Autoencoder to construct a structure that can extract deep features from
a small number of abnormal samples. This solves the problem that the abnormal behavior
in the network environment is far less prevalent than the normal behavior, resulting in
the poor performance of model anomaly detection. Ref. [23] proposed an unbalanced
distribution encrypted traffic classification scheme based on random forest, using a feature
selection scheme to filter out redundant features, and using a mixed sampling scheme to
effectively solve the sample imbalance problem. Ref. [24] proposed a repeated Bayesian
Stackelberg game based on machine-learning technology, which improves the detection
performance of cloud-based systems and has high operation efficiency. Ref. [25] proposed a
resource aware maxmin game theoretical model, which improved the detection probability
of distributed attacks in multiple users’ virtual machines (VMs), reduced the false positive
rate of anomaly detection system, and improved the utilization efficiency of resources in the
detection process. Ref. [26] compared the classification effects of different types of machine
learning on the KDD99 dataset. The machine learning algorithms include SVM, naive
Bayes, J.48 and decision table. Ref. [27] designed an adaptive ensemble machine-learning
model, which integrated the decision tree, random forest, KNN, DNN and other basic clas-
sifiers. An accuracy rate of 85.2% was achieved by adopting the adaptive voting algorithm
on the NSL-KDD dataset. Ref. [28] proposed a hybrid layered intrusion detection system,
which combined different machine-learning algorithms and feature selection techniques to
achieve higher accuracy and lower false positive rate on NSL-KDD dataset.

With the rise of deep learning, models such as CNN [29], RNN [30] and LSTM [31] can
automatically learn useful depth features to classify from the original traffic data. In the
field of network intrusion detection, to improve the classification effect of deep learning
models, researchers have primarily made some improvements in the loss function, model
input characteristics and so on. Ref. [32] proposed a deep-learning system (BDHDLS),
which used several deep learning models to learn different data distributions of clusters.
Compared with the previous single model BDHDLS, the detection rate of network intrusion
detection was greatly improved. Ref. [33] introduced the angle margin into the depth
feature space to increase the interclass spacing and reduce the intraclass spacing in the
traffic classification task, which improved the classification performance of the model.
Deep learning can also achieve good results in various other fields in addition to traffic,
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and the design of a network architecture for classification models requires much experience
and professional knowledge from researchers, which is also the key to further improving
the classification effect of the model.

For the task of traffic data processing, ref. [34] combined the relevant principles of
the image field and transformed the hexadecimal data in the original PCAP package into
6× 6, 8× 8, 16× 16, and 32× 32 gray images as the input of the model. Ref. [35] proposed
the concept of network traffic images (NTIs), transformed the network traffic into two
dimensions, and classified it by using a deep convolution neural network. The accuracy of
the network traffic classification task is 98.93%.

2.2. Neural Architecture Search

NAS is a subdomain of AutoML, which can be divided into three parts: search space,
search strategy and performance evaluation strategy. BlockQNN [36] designed different
block structures referring to the current mainstream deep neural network architectures,
such as ResNet [37] and Inception [38]. The model is constructed by block stacking, and the
network architecture search space can be greatly reduced by the block design. Moreover,
due to the variable structure of the block stacking, it only needs to stack different numbers
of blocks for different datasets or tasks, which endows the model with strong generalization
ability. Ref. [39] designed two kinds of cells: normal cells and reduction cells (the operation
in a normal cell will not change the size of the input feature map, while the operation in
a reduction cell will halve the size of the input feature map). The model is also stacked
by several cells. Ref. [40] took a series of operations, such as convolution and pooling, as
search operands. The search space of the network architecture is defined and represented
by coding. Combined with the genetic algorithm, network architecture coding is searched
iteratively. Finally, good results are achieved on the CIFAR, ImageNet and human chest
X-ray datasets. Darts [41] weakened the discrete search space into a continuous search
space and searched the high-performance network architecture with complex graphical
topology. Meanwhile, darts studied a double-layer optimization problem: for the process
of NAS, it also optimized the network parameters at the same time.

In the neural network architecture search task, the search strategy defines how to find
the appropriate architecture more rapidly and effectively. The common search strategies
include random search, Bayesian optimization, evolutionary algorithms, reinforcement
learning, gradient-based algorithms and so on. Among them, the evolutionary algorithm
is widely used in architecture search. Ref. [16] proposed a progressive NAS model, which
used a sequential model-based optimization (SMBO) strategy to accelerate the search of
the network model in a complex search space. Ref. [42] combined the particle swarm
optimization (PSO) algorithm to search the deep learning network model architecture on
hyperspectral datasets, using one-dimensional PSO-NET and three-dimensional PSO-net
as spectral and spectral spatial HSI classifiers, and achieved good results on two famous
hyperspectral datasets. Ref. [43] proposed a randomly enhanced tabu algorithm as a
controller to select candidate architectures in the process of NAS, which enabled the model
to balance global exploration and local exploration more effectively.

The purpose of NAS is to find a network architecture with high performance from the
huge search space. To guide the search process, it is necessary to evaluate the performance
of the selected candidate architecture. In [40], the candidate architecture was trained on
the training dataset, and its performance indicators were obtained on the verification
dataset, but it undoubtedly consumed substantial computing resources. Therefore, it is
very important to choose an appropriate performance evaluation strategy for the efficient
optimization of the NAS search network architecture. Ref. [17] regarded the NAS as
a two-level optimization problem: the upper layer completes the optimization of the
network architecture, and the lower layer completes the optimization of the network
parameters. For the lower layer optimization, a “super network” is trained in advance. In
the architecture search stage, the weights of the candidate architectures are directly relayed
from the super network as the initialization of the lower-level optimization. This makes it
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unnecessary for candidate networks to perform gradient optimization from the beginning,
which greatly saves computing resources. In addition, the online surrogate model is used
in the lower-level optimization, that is, an offline surrogate model is trained before the
population iteration of the genetic algorithm to evaluate the performance of the offspring.
This online surrogate model greatly improves the efficiency of searching samples because
it is not necessary to evaluate the performance of each offspring by using the gradient
descent method.

2.3. Search Space

The search space defines the possible topological structures of all candidate architec-
tures and can be divided into three categories, according to network types: chain archi-
tecture space, multibranch architecture space, and search space constructed by cell/block.
In the chain structure, the output of the upper layer network is the input of the lower
layer network. When the number of network layers is large, gradient dispersion easily
occurs. In the multibranch architecture space, some artificial designs are introduced, such
as skip connections, which are similar to the residual structure in ResNet and can alleviate
the gradient dispersion problem caused by the increase in network depth. The NAS task
based on cells does not need to search the whole network architecture. For example, two
different types of cells—normal cells and reduction cells—were proposed in [39]. The
final network is composed of these two kinds of cells, which greatly reduces the search
space and improves the search efficiency. Moreover, the model performs well on different
datasets by migrating cells.

Our NAS model search space references [40]. We limit the search space so that the
structure of the search model is N stacked cells, and each cell contains M operation blocks.
At the same time, to build an extensible architecture, we use two types of cells to stack the
network: (1) normal cell—input and output have the same feature map size; (2) reduction
cell—after entering this cell, the size of the feature map is halved. We use a directed acyclic
graph composed of five nodes to construct these two types of cells. Each node has a
double branch structure. Two inputs are mapped to one output. The operation block in
the search space contains operations and connections, which makes the search space more
comprehensive. Figure 1 shows the architecture coding process. There are five nodes in the
process, and the search parameters include five operations and five connections.

Figure 1. Network coding process. The code (1122334053) contains operations and connections.

In addition, compared with the original search space, the relevant operation block is
introduced in the Inception to stack the features of different receptive fields, which can
obtain better features and improve the classification effect of the model. Table 1 shows the
optional operations for the searching space. Among them, Inception A, Inception B and
Inception C contain four different receptive field operations, and the structure is shown
in Figure 2.
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Table 1. Optional operations in the search space.

skip connect 3 × 3 dilated convolution
3 × 3 max pooling 5 × 5 dilated convolution
3 × 3 avg pooling 1 × 7 then 7 × 1 convolution

3 × 3 depthwise separable convolution Inception A
5 × 5 depthwise separable convolution Inception B
7 × 7 depthwise separable convolution Inception C

Figure 2. Structural diagram of Inception operation blocks. The n values of Inception A, Inception B
and Inception C in the figure are 3, 5 and 7, respectively.

The operation blocks searched in the search space contain operations and connections.
In a cell structure, if the total number of nodes is n, then the searchable connection combi-
nation is (n + 1)!. Considering that there are two different types of cell structures (normal
cell and reduction cell) in the search space, the total connection combination is ((n + 1)!)2.
In addition, since the optional operands are n_ops, considering the number of cell types,
the total number of operands in a cell is (n_ops)2n. In summary, for a cell structure, the
number of possible resultant combinations of a cell is β, as follows in (1).

β = ((n + 1)!)2 · (n_ops)2n. (1)

2.4. Search Strategy

The search strategy defines how to find the appropriate network architecture more
rapidly and effectively. The evolutionary algorithm is widely used in architecture search.
The optimization objectives in the architecture search process are usually manifold. Com-
mon multi-objective optimization strategies based on evolutionary algorithms include
NSGA-II, MOEA/D and MOPSO. In this paper, three different algorithms are used to
search the neural network architecture.

2.4.1. NSGA-II

NSGA-II is a fast and elite multi-objective genetic algorithm. In addition, NSGA-
II proposes a crowding comparison method for individual sorting, which improves the
diversity of the algorithm results. NSGA-II imitates the principles of natural selection and
survival of the fittest, and obtains the final high-quality population through population
iteration. First, the population is initialized, according to the given parameters. After
the generation of offspring through selection, crossover and mutation, the parents and
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offspring are merged and sorted, according to the dominance relationship and crowding
degree. Then, suitable individuals are selected to generate new parents. Finally, the
population iteration is repeated until the end condition of population iteration is reached,
and a high-quality population is obtained. As one of the most popular multi-objective
genetic algorithms, the NSGA-II algorithm is described as Algorithm 1.

Algorithm 1 General framework of NSGA-II
Input: Number of generations G, population size P, offspring size S, crossover

probability pc, mutation probability pm.
Output: pop

1 pop← random sampling(P) // generate initial population;
2 for arch in pop do
3 acc← SGD(arch) // arch stands for the individual in the population pop;
4 end
5 it = 1;
6 while it < G do
7 o f f ← generate(S, pc, pm) // generate the offspring using the current

population;
8 for arch in off do
9 acc← SGD(arch);

10 end
11 pop← pop ∪ o f f ;
12 // Limit the number of individuals in the population to population size P;
13 pop← selection(pop, P, pc, pm);
14 it = it + 1;
15 end
16 Return pop

2.4.2. MOEA/D

MOEA/D is called the multi-objective evolutionary algorithm based on decomposi-
tion. MOEA/D introduces decomposition into a multi-objective optimization algorithm
and transforms the multi-objective optimization problem into many single objective op-
timization subproblems. For each subproblem, the information of a certain number of
adjacent subproblems is used for optimization, and a set of Pareto optimal solutions are
obtained. In MOEA/D, the definition of weight λ is shown as (2). m is the number of
optimization indicators.

λ = (λ1, . . ., λm)
T , λi ≥ 0 and

m

∑
i=1

λi = 1 (2)

Usually, there are two ways to transform the multi-objective optimization problem
into many scalar optimization problems. Equation (3) shows the first method of weight
sum (ws). The space where x is located is the variable space. f contains m real valued
objective functions. The multi-objective optimization problem f is transformed into the
scalar optimization problem gws(x|λ) by weight λ. One of the disadvantages of the ws
method is that it does not perform well on nonconvex functions.

minimize gws(x|λ) =
m

∑
i=1

λi fi(x). (3)

Equation (4) shows another method: the Tchebycheff method (te). Here, z∗ is the
reference point (z∗1 , . . ., z∗m)

T . | fi(x) − z∗i | is equivalent to a coordinate transformation.
Different from the weight aggregation of the first method, the Tchebycheff method is the
maximum value of comparison, that is, given a set of λ = (λ1, . . ., λm)

T and input x, select
the maximum value of λi| fi(x)− z∗i | (on the right side of the equation), and then, according
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to the minimum objective optimization principle, select a smaller value (the left side of the
equation); here, x is the independent variable. One disadvantage of this method is that its
aggregate function is not smooth for continuous multi-objective optimization problems,
but its performance is still better than that of the ws method.

minimize gte(x|λ,z∗) = max1≤i≤m{λi| fi(x)− z∗i |}.

z∗i = min { f ∗i (x)|x ∈ Ω}3 (4)

Specifically, first, a certain size of population is initialized, and each individual in the
population is assigned a weight to transform the multi-objective optimization problem
into a single objective optimization subproblem. Then, the parents are selected from the
individual groups of several adjacent subproblems of each subproblem to generate the
offspring, and population optimization is carried out, according to the weight vectors of
different subproblems. In every subproblem, each generation of the population is a set
composed of the current optimal solution.

2.4.3. MOPSO

MOPSO is a multi-objective optimization algorithm that simulates social behavior
and has a unique search mechanism and convergence performance. In the application
of particle swarm optimization (PSO) to multi-objective optimization, the key is how to
choose the individual optimal solution and the global optimal solution. For the individual
optimal solution, in the two states A and B of a particle in MOPSO, if each optimization
goal of A is better than that of B, then A is selected as the individual optimal solution of the
particle. If the two states cannot be distinguished strictly, the best state is selected randomly.
For the global optimal solution, MOPSO chooses one according to the crowding degree in
the optimal solution set (the lower the crowding degree, the higher the probability of the
particle being selected).

In MOPSO, first, a certain number of particles are initialized randomly, and the fitness
(multi-objective optimization index) is calculated. Then, the individual optimal solution
and global optimal solution of each particle are initialized. Then, the algorithm updates
the position and velocity of the particle, according to the velocity formula, as in (5), and
the position formula, as in (6), where r1 and r2 are random numbers, w represents the
internal factor, c1 represents the local velocity factor, c2 represents the global velocity
factor, pbest represents the individual optimal solution, and gbest represents the global
optimal solution. After the velocity and position of the particles are updated, the particle
fitness is recalculated, and the individual optimal solution pbest and the global optimal
solution gbest are updated, according to the fitness. Finally, the iteration is repeated
until it converges or reaches the maximum number of iterations to obtain high-quality
search results.

vi = w× vi + c1r1(pbest− pi) + c2r2(gbest− pi). (5)

pi = pi + vi. (6)

2.5. Surrogate Model

Because substantial computing resources are needed to iteratively optimize the candi-
date architectures one by one to make them converge, we introduce a surrogate model to
predict the performance of the model in the process of model architecture search, using a
genetic algorithm. The input of the model is neural network architecture coding (as shown
in Figure 1), and the output is the neural network performance prediction (such as accuracy,
F1 value, etc.).

We use three different prediction surrogate models: multi-layer perceptron (MLP) [16],
classification and regression trees (CART) [44], and Gaussian process (GP) [45]. MLP
generally has three layers: input layer, hidden layer and output layer. The hidden layer
and input layer are generally fully connected, while the hidden layer to the output layer
is generally a softmax regression. CART is a kind of decision tree. The CART algorithm
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can be used to create both a classification tree and regression tree. In this study, in order
to predict the performance of the model (discrete value), a regression tree is established.
The steps of the GP model to complete the regression task are as follows: (1) determine
the Gaussian process; (2) determine the expression of prediction points, according to the
posterior probability; (3) solve the super parameters by maximum likelihood; and (4) input
data to obtain the prediction results.

It cannot be guaranteed that every surrogate model can perform well in different
classification tasks. We use an adaptive switching (AS) selection mechanism, select the best
prediction model (by comparing the correlation between prediction and actual value) in
each iteration to train three kinds of surrogate models at the same time when training the
surrogate models, and select the appropriate model adaptively through cross selection.

2.6. Lightweight Model

With the same size of the receptive field, the number of (n + 2) × (n + 2) convolution
kernel parameters is (n + 2)2, while that of two n × n convolution kernels is 2 × n2. To
make the model lightweight, we use the superposition of two n × n convolution kernels to
replace the (n + 2) × (n + 2) convolution kernel in the searchable operation structure. At
the same time, in the face of some large convolution kernels, a 1 × n convolution kernel
and a n × 1 convolution kernel are added to replace a n × n convolution kernel to reduce
the number of parameters, as the number of parameters of the former is (1 × n) + (n × 1),
which is less than n × n of the latter. In addition, different sizes of depth separable
convolution and whole convolution are used to replace the general convolution kernel so
that the model parameters are reduced when the receptive field is the same.

We use FLOPS (floating point operations per second), parameters, model reasoning
ability and other indicators to measure the complexity of the model.

2.7. Proposed Approach

Based on the genetic algorithm, we use three different multi-objective optimization
algorithms, namely, NSGA-II, MOEA/D and MOPSO, to search the neural network ar-
chitecture of the traffic screening model. To improve the efficiency of the network search,
a surrogate model is introduced in the process of the architecture search. Figure 3 and
Algorithm 2 show our NAS model (Efficient-NAS) and the specific steps of the architecture
search task.

Figure 3. Efficient-NAS structure. The whole model is divided into two layers: the outer layer is composed of Steps 1–5,
which are used to maintain the evaluated architecture set. Step 3 is also used as an inner layer network to iterate with the
assistance of the surrogate model.

We divide our model into two layers: the outer layer maintains a set of architectures,
Archive, stores the architecture evaluated by the SDG method, and trains the surrogate
model through this architecture collection. The inner layer uses a surrogate model to
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optimize multi-objective tasks. The multi-objective optimization algorithms are NSGA-II,
MOEA/D and MOPSO. The performance evaluation of the candidate architecture by the
surrogate model only requires minimal computing resources, which greatly improves the
efficiency of the multi-objective optimization task in the inner layer of the NAS model.

Step 1: Randomly initialize the number of 100 architectures to Archive, that is, ran-
domly select the network architecture codes from the specified search space. Each code
represents a network architecture, and the performance of each architecture in the initial-
ization population is evaluated. The model parameters are trained by the gradient descent
method, and performance indexes, such as Top-1 error and the F1 score, are obtained.

Step 2: For the existing Archive training surrogate model, the input is the model
architecture code, and the output is the predicted model performance index.

Step 3: Three multi-objective optimization algorithms based on evolutionary algo-
rithms (NSGA-II, MOEA/D and MOPSO) are used to generate a high-quality architecture
set through the inner layer iteration on the initialization of architectures. In the process of
the inner layer iteration, the surrogate model is used to predict the performance to improve
the search efficiency.

Step 4: A certain number (default: 8) of candidate architectures are obtained by
screening the Pareto frontier.

Step 5: Gradient descent parameter optimization is performed on the selected candi-
date architectures to obtain the real performance indicators. These candidate architectures
are added to Archive, and Step 2 is repeated for a certain number of iterations.

Algorithm 2 General framework of Efficient-NAS
Input: Network traffic dataset, number of initial samples I, number of outer

iterations K, number of inner iterations G.
Output: Archive

1 Archive← Random sampling(I);
2 for Arch in Archive do
3 Acc← SGD(Arch);
4 end
5 while it < K do
6 predictor ← Archive;
7 α← Archive;
8 α̃←MOAS(predictor, G, α) // (NSGA-II, MOEA/D and MOPSO);
9 candidates← α̃;

10 for Arch in candidates do
11 Acc← SGD(Arch);
12 end
13 Archive← Archive ∪ candidates;
14 it = it + 1;
15 end
16 Return Archive

3. Results and Discussion
3.1. Data Description

Dataset 1 CIC-DoS2017: The dataset contains an application layer of denial of service
(DoS) attacks on the internet. This kind of attack is usually divided into high capacity
attacks and low capacity attacks. High capacity attacks are usually called flooding attacks.
The nature of these attacks is similar to the traditional DoS attack, which is characterized
by sending a large number of application layer requests (such as HTTP GET, DNS query,
and SIP INVITES) to the victim. The characteristic of a low-capacity DoS attack is to
transmit a small amount of attack traffic to the victim, strategically. Because one-time
attacks usually take advantage of specific weaknesses or vulnerabilities in application-level
protocols/services, the dataset is mainly more general in application layer DoS slow attacks,
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which are usually manifested in two kinds of changes: slow sending and slow reading. A
testbed environment is established. The victim network server runs Apache Linux v.2.2.22,
PHP5 and Drupal v.7 as the content management system. The most common attack is the
DoS type of the application layer. The generated application layer DoS attacks are mixed
with the normal traffic of the ISCX-IDS dataset. Four types of attacks are conducted with
different tools, and eight different application layer DoS attacks are obtained. These attacks
are aimed at the 10 web servers with the most connections in the ISCX dataset, and the
resulting set contains 24 h network traffic, with a total size of 4.6 GB. We extract the attack
types of these eight different application layers from the dataset, and the traffic distribution
is shown in Table 2.

Table 2. Data distribution of dataset CIC-DoS2017.

Flow Types Number Percentage (%)

Ddossim 8480 2.79
Goldeneye 89,814 29.51

Hulk 60,601 19.91
Slowbody (rudy) 21,261 6.99

Slowbody (Slowhttptest) 36,762 12.08
Slowheaders (Slowhttptest) 45,848 15.07

Slowheaders (Slowloris) 21,099 6.93
Slowread 20,452 6.72

Dataset 2 ISCXIDS2012: The data in the ISCXIDS2012 dataset contain normal traffic
and malicious traffic (infiltrating the network from inside, HTTP Denial of Service, Dis-
tributed Denial of Service using an IRC Botnet, and Brute Force SSH). Based on the concept
of the configuration file, the behavior of central users is abstracted into a configuration
file. Different attack scenarios are designed to generate real-world malicious traffic. The
dataset contains network activities spanning 7 days, and the specific distribution is shown
in Table 3.

Table 3. Data distribution of dataset ISCXIDS2012.

Flow Types Number Percentage (%)

Benign 1,433,293 94.4165
Brute Force SSH 14,056 0.9259

DDoS 45,016 2.9654
HttpDoS 6533 0.4304

Infiltrating Transfer 19,156 1.2619

Dataset 3 CIC-DDoS2019: In the dataset CIC-DDoS2019, researchers analyzed new
attacks that can be executed, using TCP/UDP-based protocols at the application layer, and
proposed new classifications: reflection-based DDoS and exploitation-based attacks. They
all accomplish the attack by using a legitimate third-party component to hide the attacker’s
identity. In the former attack type, the attack can be executed through the application layer
protocol, using the transport layer protocol, that is, the transmission control protocol (TCP),
user datagram protocol (UDP), or a combination of the two. For the latter, the attack can
also be performed through application-layer protocols, using transport-layer protocols,
such as TCP and UDP. The dataset uses a B-Profile system to describe the abstract behavior
of human interaction and to generate natural, benign background traffic in the proposed
testbed. The dataset builds abstract behaviors for 25 users based on HTTP, HTTPS, FTP,
SSH, and email protocols. In order to facilitate the test, we use only the first day’s traffic
data in our study and limit the number of samples to alleviate data imbalances. The specific
distribution is shown in Table 4.
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Table 4. Data distribution of dataset CIC-DDoS2019.

Flow Types Number Percentage (%)

PortMap 2311 0.9345
NetBIOS 60,000 24.2622

LDAP 60,000 24.2622
MSSQL 2268 0.9171

UDP 60,000 24.2622
UDP-Lag 60,000 24.2622

SYN 2719 1.0995

3.2. Data Processing

There are many kinds of traffic data processing. Although the purpose of processing
files is to extract single sample data from PCAP files one by one, due to different operations,
such as flow cutting and redundancy removal, the results may be different. For example,
ref. [34] processed the original traffic data into n × n grey images and then input them into
the deep learning model. In [46], a traffic data processing integration tool USTC-TK2016
was mentioned, which can process the original traffic data from the PCAP package into
trainable sample data. We refer to various methods of previous traffic data processing,
and, according to the actual application scenario, the traffic data processing in this study is
divided into three steps, as shown in Figure 4.

Figure 4. Data processing scheme. In the process of data processing, combined with the integration
tool USTC-TK2016 and Python, the traffic data are processed into suitable model training sample data.

Traffic packet segmentation: The original traffic packets on the network are divided
into PCAP packet formats, according to different attack types, such as time and IP address.
The redundancy of generated PCAP packets is removed by, for example, deleting out-of-
order and retransmitted packets.

Data streaming: Combined with the integration tool USTC-TK2016, different kinds of
PCAP files are processed into streams in the form of five tuples. In the process of streaming,
duplicate files and empty files are deleted.

Generation of the training and testing sets: The hexadecimal numbers are extracted
from the data stream, processed into a 28× 28 matrix and saved in the form of a JSON file.
Due to the imbalance of some categories in the dataset, we limit the maximum number of
samples for each attack category to 10,000. At the same time, the data should be labeled,
and the label information should include the address and category of the sample data.
Finally, the labeled data are divided into training and testing sets at a ratio of 8:2.

3.3. Implementation Details

In this study, we use the Python language and PyTorch framework to experiment
on a single NVIDIA 2080Ti GPU. Data processing, and model training and testing are all
performed in the environment of Ubuntu 16.04/RTX 2080Ti × 1/Cuda 11.0 + Cudnn 11.0.
The Python and PyTorch versions are Python 3.7.7 and PyTorch 1.2.0.

3.3.1. NAS Parameter Setting

In parameter setting, because the network traffic data obtained, according to the data
processing scheme, are smaller than the image data size, to prevent the model from fitting,
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the number of cells searched is set to 1, and the number of blocks (block structure in a
cell) is set to 5. To ensure that there are enough samples to support agent model training,
the number of initialization architectures is 100. During each population iteration, the
individuals in the initialization parent species are Pareto optimal solutions of the evaluated
architecture set. The number of sub algebra items generated by each iteration is 40, and
30 iterations are used to obtain a high-quality population. Then, eight optimal architectures
are selected from the high-quality population for evaluation and are added to the evaluated
architecture; the whole process is iterated 30 times. The specific parameter settings are
shown in Table 5.

Table 5. NAS parameter setting (partial).

Parameter Types Parameter Names Instructions Values

Model structure

n_cells Number of cells to search 1

n_blocks Number of blocks in a cell 5

n_nodes Number of nodes per phases 4

Outer layer search strategy

n_iterations Number of iterations to run search 30

n_doe Number of architectures to train before fitting the
surrogate model 100

n_iter Number of architectures to train in each iteration 8

Inner layer search strategy
(NSGA-II)

pop_size Population size of networks 40

n_gens Number of population iterations 30

n_offspring Number of offspring created per generation 40

Inner layer search strategy
(MOEA/D)

n_partitions Number of weights (equal to number of population) 100

n_gens Number of population iterations 30

n_neighbors Number of neighboring reference lines to be used for
selection 20

prob_neighbor _mating Probability of selecting the parents in the neighborhood 0.7

Inner layer search strategy
(MOPSO)

particles Number of particles 30

cycle_ Number of iterations 30

w Inertial factor 1

c1 Local velocity factor 2

c2 Global velocity factor 2

mesh_div The number of equal meshes 10

Because a cell contains n_block block structures, a block contains n_nodes nodes. In
addition, since two different types of cells (normal cell and reduction cell) are set, the
number of architecture codes to be searched should be multiplied by 2. Considering the
change in the number of input channels, the number of network architecture codes in the
search space is n_var, as in (7).

n_ var = n_cells× n_blocks× n_nodes× 2 + 1 = 41. (7)

During the architecture search process, every iteration of the outer architecture search
is completed, and n_iter architectures are selected from the population after iteration for
parameter optimization. The process is iterated for n_iterations times in total. Therefore,
the total number of architectures evaluated in the whole architecture search task is n_arch,
as follows in (8).

n_arch = n_doe + n_iterations× n_iter = 340. (8)
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3.3.2. Model Training Parameter Setting

During the process of model training, the Adam algorithm is used to optimize param-
eters, and cosine annealing is used to adjust the learning rate. Each architecture is trained
for 15 rounds during parameter training to ensure that the parameters converge as much
as possible. For other training parameters, refer to Table 6.

Table 6. Model training parameter setting (partial).

Parameter Names Values

learning_rate 0.025
momentum 0.9
batch_size 128

epochs 15

3.4. Experimental Results and Analysis
3.4.1. The Evaluation Index

The evaluation index is mainly divided into three parts: the first part evaluates the
classification effect of different types of data from the perspective of the model; the second
part evaluates the lightweight evaluation index; and the third part evaluates the quality of
the search results from the perspective of NAS.

Evaluation index of model effect: To evaluate the classification results of the ex-
periment, four indexes, namely, accuracy, recall, precision and weight-F1, are used. The
expression of the index is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (9)

Recall =
1
N

N

∑
i=1

TP
TP + FN

. (10)

Precision =
1
N

N

∑
i=1

TP
TP + FP

. (11)

Weight− f 1 =
N

∑
i=1

w
2× Precision× Recall

Precision× Recall
. (12)

For Class A, TP represents the number of samples that are actually Class A and
predicted to be Class A, TN represents the number of samples that are not actually Class A
and predicted not to be Class A, FP represents the number of samples that are not actually
Class A but predicted to be Class A, FN represents the number of samples that are not
actually Class A but predicted not to be Class A, N represents the total number of samples,
and W represents the proportion of sample data in Category I with respect to the total
sample data of all categories. Accuracy is the proportion of correctly classified samples
among all sample data, and recall is the average proportion of correctly classified samples
in the real results. Precision is the average of the proportion of each correct classification in
the prediction results, and Weight-F1 is the harmonic average of precision and recall.

Architecture search effect evaluation index: To evaluate the computational power
consumption of the model, the FLOPs parameter of the model is calculated. FLOPs is
the abbreviation for floating point operations, which means the number of floating-point
operations. It is understood as the amount of computation and can be used to measure the
complexity of the algorithm or model.

Architecture search effect evaluation index: For the single objective optimization
task, the search results can be evaluated in two respects—the computing resources con-
sumed by the architecture search and the optimized model index—while the computing
resources can be evaluated by the time consumed by the search task and the number of
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optimized architectures in the search process. For multi-objective optimization tasks (for
example, optimizing model classification accuracy and model complexity at the same time),
in addition to evaluation from the perspective of computing resources, we also need to
consider a number of evaluation indexes. In this study, we consider the hypervolume
index. The hypervolume index represents the volume of the hypercube bounded by the in-
dividuals in the solution set and the reference points in the target space. The hypervolume
index evaluation method is a Pareto-compliant evaluation method, that is, if one solution
set S is better than another solution set S′, then the hypervolume index of solution set S
will also be greater than that of solution set S′.

3.4.2. Classification Effect of NAS-Net

To better complete the task of traffic classification through the architecture obtained
by NAS, the model obtained by NAS and the general, manually designed classification
model are applied to the traffic dataset. These networks include the manually designed
LeNet, CNN, ResNet, VGG and our NAS-Net. The results are shown in Table 7.

Table 7. Comparison of model effects.

Model F1 Score Parms (MB) Flops (MB)

LeNet 0.889749 0.044256 0.2860
CNN 0.952205 0.117672 0.0968

ResNet 0.981752 11.171784 456.76
VGG 0.978461 20.038344 398.29

NAS-Net 0.995681 0.054048 14.9763

Compared with ResNet and VGG, NAS-net has a higher F1 score and smaller FLOPs.
For LeNet, because its network architecture is too simple, even though it has a very low
model complexity, its F1 score index is relatively low, and its performance is not as good as
those of other network models. The complexity of the self-designed CNN network model
is higher than that of LeNet, and the F1 score is also higher but it is still not high enough,
compared with ResNet, VGG and NAS-Net. In summary, we can draw a conclusion:
the architecture searched by NAS (NAS-Net) is more suitable for the task of network
intrusion detection.

3.4.3. Search Efficiency

First, in the process of NAS, we introduce surrogate models to improve the search
efficiency. To quantify the search efficiency, we first compare the single-objective optimiza-
tion results before and after introducing the surrogate models, that is, the total number of
architectures evaluated when reaching the highest F1 score.

It can be seen from Table 8 that after introducing the surrogate model, Efficient-NAS
is 1.72× faster than Original-NAS. In addition, from the comparison of the F1 scores, our
NAS model can achieve higher classification accuracy with higher efficiency.

Table 8. Comparison before and after adding surrogate models.

Model F1 Score N_arch a Avg Speedup

Original-NAS b
0.9583 601

403 1.722×0.9576 246
0.9609 362

Efficient-NAS c
0.9641 299

234 1×0.9660 158
0.9632 246

a Represents the number of architectures whose parameters are optimized by SGD-based weight optimization.
b NAS without surrogate model. c Introduces the surrogate model of NAS.
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Second, to compare the relative search efficiency between Efficient-NAS, which in-
troduced the surrogate model, and Original-NAS, the hypervolume metric (hv) is used
to measure the performance of objective optimization. We conduct three experiments on
different NAS models. Figure 5 shows the change curve of the hypervolume with respect
to the number of evaluation architectures in the process of the architecture search in which
a larger hypervolume value indicates a better Pareto frontier.

Figure 5. Comparison of hypervolume metrics. The curve in the figure represents the average hyper-
volume value of the three experiments, and the grey area represents the range of experimental results.

Based on the increase rate of the super volume measurements, we observe that
Efficient-NAS achieves a better Pareto frontier. In addition, when completing the architec-
ture search task, 340 architectures are evaluated by Efficient-NAS, while 620 architectures
are evaluated by Original-NAS.

Figure 6 shows the comparison of search results. It can be seen from the figure that
before the introduction of the surrogate model, the model is more inclined to search for
models with higher classification accuracy, while after the introduction of the surrogate
model, the search results of the model are more evenly distributed with respect to the two
optimization indicators (Top-1 error and Flops), which indicates higher diversity versus
the former model. In general, after introducing the surrogate model, the results of the
model are not very different from the previous results (the difference of Top-1 error is
approximately 5% when FLOPs is larger than 10 MB), but the search efficiency is improved
by nearly 172.2%, which can prove the effectiveness of introducing the surrogate model in
improving the search efficiency of the architecture.

Figure 6. Search task optimal dissolution point graph.
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3.4.4. Representation of Surrogate Model

By introducing the surrogate model and using different surrogate models to select
adaptively, the computing resources required in the population iteration process are greatly
reduced. The main task of the surrogate model is to predict the accuracy of the model
architecture to guide the direction of the architecture search. We use 340 architectures
to verify the performance of the surrogate models, of which 100 architectures are used
as the initial architectures of the training surrogate model, while the rest are used as
the testing set of the performance test of different surrogate models. As the experiment
continues, the evaluated architectures continue to add training sets to train the surrogate
model to simulate the search process of NAS. Figure 7a–c shows the performance of three
different surrogate models (GP, CART and MLP) in predicting the architecture performance
(predicted Top-1 error; (%) represents the architecture performance index predicted by the
surrogate model). When only one surrogate model is used for the performance prediction,
the performance is inconsistent. Figure 7d shows the comparison of the tau index, which
can represent the correlation between the two groups of indicators. With the change in
N_arch, none of the three surrogate models’ tau index remains the best.
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Figure 7. Surrogate model performance comparison. Differently colored points or curves represent different surrogate models.

In the experiment, instead of using the above three surrogate models, we use the AS
model, which adaptively selects different surrogate models in the search task. We record
the performance evaluation results of the surrogate models during the architecture search
process. The performance of the four different forms of surrogate models in the prediction
mode is shown in Table 9. Tau is the correlation coefficient between the prediction index
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and the real index. It can be seen that the adaptive selection mode improves the accuracy
of our performance predictor.

Table 9. Correlation coefficient comparison among surrogate models.

Surrogate Model Tau

GP 0.4735
CART 0.7449
MLP 0.6737
AS 0.7454

3.4.5. Comparison of Different Operations

A total of twelve optional operations are defined in the complete search task. Different
operations on the traffic datasets have different effects. To improve the classification effect,
optional operations are continuously screened. At the same time, the inception operation
block is introduced to integrate the knowledge of the image recognition field and traffic
detection field to obtain better results. Finally, the selected model operation is shown in
Table 1. The changes in the hypervolume metric before and after replacement are shown in
Figure 8; a larger hypervolume value indicates a better Pareto frontier. After adding the
new operation block (Efficient-NAS V2), the NAS model can be closer to the frontier, that
is, it can better complete the search task.

Figure 8. The hypervolume value change curve before and after the introduction of a new operation
block. The curve in the figure represents the average hypervolume value of the three experiments.

3.4.6. Comparison of Different Search Strategies

In this study, three different multi-objective optimization algorithms are used for the
architecture search task. These algorithms are NSGA-II, MOEA/D and MOPSO. After 30
iterations, the architectures generated by different algorithms are obtained, and the scatter
diagrams of these architectures are shown in Figure 9. First, before the introduction of the
surrogate model, the search results of the NAS model are relatively concentrated, and the
diversity is low. After the introduction of the surrogate model, the results of the NSGA-II
algorithm are more uniform with respect to the distribution of two optimization indexes
(Top-1 error and FLOPs). The MOEA/D algorithm tends to search the architecture with
high accuracy, which leads to more concentrated search results. The results of the MOPSO
algorithm concentrate on one area, which is poor in terms of diversity and accuracy. This is
because in the process of using the MOPSO algorithm to search the network architecture,
all particles tend to represent an ideal optimal solution set, and we use a surrogate model
to repeat this process, which leads to amplification of the trend (to one point). Based on the
scatter plot of the four experimental results, we can preliminarily conclude that the NSGA-II
algorithm can approach the Pareto frontier after introduction of the surrogate model.
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Figure 9. The architecture scatter diagram obtained from Original-NAS and Efficient-NAS (NSGA-II, MOEA/D and MOPSO).

Comparing the distribution of the Pareto frontier architectures obtained by the three
algorithms, as shown in Figure 10, we can see that the search results of NSGA-II and
MOEA/D exhibit little difference, but NSGA-II has a more uniform frontier distribution
and higher architecture diversity as compared with the MOEA/D algorithm. MOPSO
performs the worst because its results are too concentrated.

Figure 10. The distribution of the Pareto frontier architecture from NSGA-II, MOEA/D and MOPSO.
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3.4.7. Experimental Results on Multiple Datasets

To verify the universality of the NAS model, the model with better performance in
the search results is applied to different datasets and compared with other networks. The
results are shown in Table 10. From the data in the table, we can see that the network model
searched by NAS offers good performance in each dataset, which verifies the universality
of the model, that is, it can adapt to most traffic datasets.

Table 10. Comparison of models with different datasets (F1 score). The bold font NAS-Net is the
experiments of proposed model.

Model CIC-DoS2017 ISCXIDS2012 CIC-DDoS2019

LeNet 0.889749 0.984727 0.945900
CNN 0.952205 0.989345 0.993975

ResNet 0.981752 0.989775 0.995437
VGG 0.978461 0.989779 0.995762

NAS-Net 0.995681 0.989781 0.995766

In addition, we compare the recent research methods in the anomaly detection di-
rection in Table 11. From the comparison results, we can see that our model has a great
improvement in performance indicators on different datasets, which proves the effective-
ness of the NAS model.

Table 11. Experiment results and comparison of different datasets.

Datasets Methods Prec Recall Acc F1-Score

CIC-DoS2017 Varghese and Muniyal [47] - - 0.8833 -
Proposed work 0.9942 0.9944 0.9957 0.9957

ISCXIDS2012
Le et al. [48] 0.9475 0.975 - 0.9708

Siddiqi and Pak [49] 0.9286 0.9351 0.9520 0.9317
Proposed work 0.9891 0.9899 0.9898 0.9898

CIC-DDoS2019

Scaranti et al. [50] 0.8903 - 0.8865 -
Shurman et al. [51] - - 0.9919 -

Babić et al. [52] 0.9780 0.8436 0.9036 0.9059
Proposed work 0.9964 0.9919 0.9958 0.9957

4. Conclusions

In this paper, we propose a network architecture search algorithm in the field of
network traffic combined with a surrogate model to solve the problem of network traffic
domain model architecture design. First, compared with the general manually designed
network architecture, the network architecture we search has better classification accu-
racy and enables lightweight models. Second, we introduce a surrogate model into the
network architecture search task to predict the performance of candidate architectures,
which improves the efficiency of the architecture search and alleviates the problems of
the requirement of large computing resources and substantial time consumption of the
network search algorithm to a certain extent. For the application of the surrogate model,
we design corresponding training strategies according to NSGA-II, MOEA/D and MOPSO
and train a online surrogate model before each iteration. This reduces the number of
samples required for training the surrogate model, and the prediction performance of our
surrogate model will increase as the architecture search task continues. Third, the feasibility
of the neural network architecture search model with an agent model in the field of traffic
detection is verified by setting up contrast experiments. For some optional operations
in the architecture search task, we introduce the image domain-related operation block
(Inception operation block) on the original basis to obtain a set of operation sets suitable for
the network traffic datasets so that the search network architecture has better performance.
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Finally, the universality of the network model obtained by the architecture search is verified
by the classification task for other traffic datasets.

In future work, we will perform further research focused on the following aspects:
(1) adjustment of the architecture search space optional operations to further improve the
classification effect; (2) optimization of the search strategy to improve the diversity of the
search results; (3) expansion of the number of targets that can be optimized (not just in
terms of model classification accuracy and FLOPs) and improvement of the evaluation
means of the architecture search effect.
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