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Abstract: This paper discusses and provides some analytical studies for a modified fractional-order
SIRD mathematical model of the COVID-19 epidemic in the sense of the Caputo–Katugampola
fractional derivative that allows treating of the biological models of infectious diseases and unifies
the Hadamard and Caputo fractional derivatives into a single form. By considering the vaccine
parameter of the suspected population, we compute and derive several stability results based on
some symmetrical parameters that satisfy some conditions that prevent the pandemic. The paper
also investigates the problem of the existence and uniqueness of solutions for the modified SIRD
model. It does so by applying the properties of Schauder’s and Banach’s fixed point theorems.
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1. Introduction

The coronavirus pandemic was a major worldwide challenge in 2020. The severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for COVID-19
infection. The first cases were reported in Wuhan, China (see [1,2]); the virus spread
throughout the rest of the world, leading to a pandemic outbreak that persisted throughout
2020 [3].

COVID-19 was declared to be a global threat, following its spread, and it affected
212 countries around the world. The available antivirals and vaccines at that point in time
were ineffective against the new virus, while the new vaccines have reached the final stage
of development and are being tested on larger populations.

A better understanding and evaluation of the existence, stability, and control of
infectious diseases can be acquired through modeling them mathematically [4–7]. However,
mathematical models’ classical approaches are not highly accurate in modeling such
diseases; hence, the introduction of fractional differential equations for handling these
problems becomes necessary. Of their various applications in applied fields, we mention
optimization problems, artificial intelligence, medical diagnoses, etc. For further reading
on the subject, readers can refer to the following works (Samko et al. 1993 [8], Podlubny
1999 [9], Kilbas et al. 2006 [10], Diethelm 2010 [11]).

The severity of this pandemic was a cause of concern for researchers throughout the
world; this led some of them to study its origins, such as Hasan’s recent study et al. [12],
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which offered an insight into a novel COVID-19 compartmental SIRD model, whose
representation is as follows:

d
dtS(t) = −β

I(t)S(t)
N ,

d
dtI(t) = β

I(t)S(t)
N − (γ + κ)I(t),

d
dtR(t) = γI(t),
d
dtD(t) = κI(t).

t ≥ 0. (1)

This model requires that the total populationN be divided into the following epidemiolog-
ical classes:

S : Susceptible class, I : Infected class, R : Recovered class, and D : Death class.

The parameters could be described as follows:

◦ β is the average number of contacts per person per time t,
◦ γ is the recovery rate,
◦ κ is the death rate.

Studying fractional calculus has been regarded as essential in the past few decades.
It is considered to be an effective alternative to the integer-order models capable of de-
scribing and processing different structures’ properties of preservation and inheritance
(see [8,10,13,14]).

Techniques of decomposition, homotopy, and variation were used to comprehensively
analyze the mathematical models [15–18]. Currently, many methods such as the residual
power series, symmetry, spectral, Fourier transform, similarity, and collocation methods
are used to study and manage differential equations in both fractional and classical orders,
along with their systems (for more details see [6–12,17–29]).

Furthermore, the most notable definitions among the fractional differential operators
are those given by Riemann–Liouville, Caputo, and recently those given by Caputo–
Katugampola. Each operator has different features that become apparent upon their use.
The past two decades witnessed the adoption of Caputo derivatives to treat infectious
diseases’ biological models. Therefore, we employ a fractional differential operator in
order to signify that research proves the fractional derivatives’ efficiency in their descrip-
tion of acoustics, rheology, and polymeric chemistry among other scientific disciplines,
in continuous-time modeling fields [30]. Deriving our inspiration from the aforemen-
tioned work, and by considering the positive vaccination factor υ as a parameter of the
vaccine of the suspected population, we will study the ordinary model (1) under Caputo–
Katugampola derivative. When ρ > 0 and 0 < α < 1,

CDα,ρ
0+ S(t) = −υS(t)− β

I(t)S(t)
N0

,
CDα,ρ

0+ I(t) = β
I(t)S(t)
N0

− (γ + κ)I(t),
CDα,ρ

0+ R(t) = υS(t) + γI(t),
CDα,ρ

0+ D(t) = κI(t).

(2)

along with the positive initial conditions

S(0) = S0, I(0) = I0, R(0) = R0, D(0) = D0, (3)

where β, γ and κ are positive parameters could be described in the models (1), and υ is
the vaccine of suspected population, N0 > 0 is the initial total population at the moment
t = 0, with 0 ≤ t ≤ T < ∞. The changes that occur in each human population in COVID-19
transmission for the modified SIRD model (2) can be interpreted by Figure 1;
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Figure 1. Modified SIRD model transmission’s scheme for COVID-19.

It is essential to find the solution of (2) with an efficient technique. Considering this
point, our main goal in this work is to determine the main symmetrical properties of the
solution for the system of nonlinear fractional differential equation (2). First, checking the
considered model’s stability necessitates establishing some existing results, determining
the boundedness, and computing disease-free equilibrium points. Then, we provide the
necessary conditions for obtaining at least one solution or its uniqueness using the fixed
point theorems.

2. Preliminary and Necessary Definitions

The essential definitions from the fractional calculus theory are introduced in this
section. Banach space of continuous functions from [0, T] into R is denoted by C([0, T],R),
with the norm:

‖ϕ‖∞ = sup
t∈[0,T]

|ϕ(t)|.

Recently, Katugampola proposed a generalized derivative in [26,31,32]; moreover, he
demonstrated the existence of solutions for Caputo–Katugampola fractional differential
equations in [26]. It reads

CDα,ρ
0+ ϕ(t) = I1−α,ρ

0+

(
τ1−ρ d

dτ
ϕ

)
(t) =

ρα

Γ(1− α)

∫ t

0

ϕ′(τ)

(tρ − τρ)α dτ, (4)

where α ∈ (0, 1), ρ > 0 and

Iα,ρ
0+ ϕ(t) =

ρ1−α

Γ(α)

∫ t

0

τρ−1

(tρ − τρ)1−α
ϕ(τ)dτ, with ϕ ∈ C([0, T],R). (5)

At this point, it is worth mentioning that a fractional Cauchy-type problem was solved for
an existence and uniqueness theorem in [20], a decomposition formula for the derivative of
Caputo–Katugampola among others could, thus, be obtained as follows:

Iα,ρ
0+

CDα,ρ
0+ ϕ(t) = ϕ(t)− ϕ(0), for ϕ ∈ C([0, T],R). (6)

It follows from (4) that if ρ = 1, Caputo–Katugampola derivative is found to be the well-
known Caputo fractional derivative [9,10]. On the other hand, by applying the L’Hôspital
rule, when ρ→ 0+, we have

lim
ρ→0+

ρα

Γ(1− α)

∫ t

0

ϕ′(τ)

(tρ − τρ)α dτ =
1

Γ(1− α)

∫ t

0
lim

ρ→0+

ρα ϕ′(τ)

(tρ − τρ)α dτ

=
1

Γ(1− α)

∫ t

0

ϕ′(τ)

(ln t− ln s)α dτ,

which is Caputo–Hadamard fractional derivative [19,31,32].
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3. Analysis for the Modified SIRD Model of the Pandemic

Here, we present the solution’s feasibility region’s discussion and equilibrium
points’ analysis.

Lemma 1. The solution of the model under consideration is restricted to the feasible region given by

u =
{
(S, I,R,D) ∈ R4

+, 0 ≤ N (t) ≤ N0

}
,

and the pandemic will occur if S0 > γ+κ
β N0, where γ+κ

β is referred to as a threshold phenomenon
or a pandemic critical community size.

Proof. Let
N (t) = S(t) + I(t) +R(t) +D(t), (7)

then
CDα,ρ

0+N (t) = CDα,ρ
0+ S(t) + CDα,ρ

0+ I(t) +
CDα,ρ

0+ R(t) + CDα,ρ
0+ D(t) .

Now, adding all the equations of (2), we obtain

CDα,ρ
0+N (t) = −υS(t)− β

S(t)I(t)
N0

+ β
I(t)S(t)
N0

− (γ + κ)I(t) + υS(t) + γI(t) + κI(t)

= 0. (8)

Solving (8), for α ∈ (0, 1) and ρ > 0, we obtain N (t) = Cte. As the initial population is
represented with N0, then we can symmetrically write:

N (t) ≤ N0. (9)

The dynamic model of the considered population is, thus, shown to be bounded.
Following that, according to the first equation of (2), we obtain CDα,ρ

0+ S(t) ≤ 0, then
d
dtS(t) ≤ 0 or

S(t) ≤ S0. (10)

The second equation of (2) gives us

CDα,ρ
0+ I(t) ≤

βS0 − (γ + κ)N0

N0
I(t).

If S0 < γ+κ
β N0, then CDα,ρ

0+ I(t) < 0. Therefore, there is no chance for a pandemic occur-
rence due to the symmetrically decreasing of the infected class I.

Additionally, if S0 > γ+κ
β N0, we can find that CDα,ρ

0+ I(t) > 0. Thus, the pandemic will
occur due to the increasing of the infected class. The requisite result is demonstrated.

Theorem 1. The disease-free equilibrium point of (2) is

u∗ =
(

γ + κ

β
N0, 0,R0, 0

)
.

Proof. For this, we write (2) as 
CDα,ρ

0+ S(t) = 0,
CDα,ρ

0+ I(t) = 0,
CDα,ρ

0+ R(t) = 0,
CDα,ρ

0+ D(t) = 0,

(11)
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where u∗ = (S∗, I∗,R∗,D∗) is its solution. Using (11), from the second equation, we have:

βS(t)− (γ + κ)N0

N0
I(t) = 0,

then we can obtain
S(t) = S∗ =

γ + κ

β
N0.

We know that the equilibrium points for disease-free are the conditions in which COVID-19
does not spread, and that is when the death class in this pandemic decreases to its absence,
with the absence of new infections.

Therefore, as all equations of (2) depend on I(t) ≥ 0 and because S∗ = γ+κ
β N0, we

find from (11) that υ = 0 and I∗ ≤ 0. Thus I ≡ D ≡ 0, we also have from the third equation
R∗ = R0, and the required disease-free equilibrium is

u∗ =
(

γ + κ

β
N0, 0,R0, 0

)
.

Hence the theorem is proved.

Theorem 2. The pandemic free equilibrium point of (2) is locally asymptotically stable If the
susceptible class S(t) < S∗, but is unstable if S(t) > S∗.

Proof. Let u = (S, I,R,D) be the solution of
CDα,ρ

0+ S(t) = f1(t, u(t)),
CDα,ρ

0+ I(t) = f2(t, u(t)),
CDα,ρ

0+ R(t) = f3(t, u(t)),
CDα,ρ

0+ D(t) = f4(t, u(t)),

(12)

where f1≤i≤4(t, u(t)) represents the right hand side of (2). One can measure the Jacobian
matrix for (12) as follows:

J =


∂ f1
∂S

∂ f1
∂I

∂ f1
∂R

∂ f1
∂D

∂ f2
∂S

∂ f2
∂I

∂ f2
∂R

∂ f2
∂D

∂ f3
∂S

∂ f3
∂I

∂ f3
∂R

∂ f3
∂D

∂ f4
∂S

∂ f4
∂I

∂ f4
∂R

∂ f4
∂D

 =


−υ− βI

N0
− βS
N0

0 0
βI
N0

βS
N0
− γ− κ 0 0

υ γ 0 0
0 κ 0 0

. (13)

Therefore, the characteristics equation of (13) can be given as

det(J − λI) =

∣∣∣∣∣∣∣∣∣
−υ− βI

N0
− λ − βS

N0
0 0

βI
N0

βS
N0
− γ− κ − λ 0 0

υ γ −λ 0
0 κ 0 −λ

∣∣∣∣∣∣∣∣∣ = 0, with λ 6= 0,

then

λ2
(

υ +
βI

N0
+ λ

)(
βS

N0
− γ− κ − λ

)
= 0 and λ 6= 0.

Finally, as I ≡ 0 in u∗, we find the eigenvalue λ = −υ, or is given by the expression

λ =
βS

N0
− (γ + κ),

which indicates that λ is always had to be negative if S(t) < S∗, hence the required result
is obtained.
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4. Main Results

In this section, we use the fixed point theory to substantiate that at least one
solution of model (12) exists. Let u = (S, I,R,D) ∈ E, where E = [C([0, T],R+)]

4 is a
Banach space equipped with the norm

‖u‖E = ‖S‖∞ + ‖I‖∞ + ‖R‖∞ + ‖D‖∞

and let f = ( f1, f2, f3, f4), be such that
f1(t, u(t)) = −υS(t)− β

I(t)S(t)
N0

,

f2(t, u(t)) = β
I(t)S(t)
N0

− (γ + κ)I(t),
f3(t, u(t)) = υS(t) + γI(t),
f4(t, u(t)) = κI(t),

it is clear that the function f ∈ ([0, T]× E)4 is continuous.
By applying the fractional integral (5) to both sides of the system (12) and using (6),

we obtain 

S(t) = S0 +
ρ1−α

Γ(α)

∫ t
0

τρ−1

(tρ−τρ)1−α f1(τ, u(τ))dτ,

I(t) = I0 +
ρ1−α

Γ(α)

∫ t
0

τρ−1

(tρ−τρ)1−α f2(τ, u(τ))dτ,

R(t) = R0 +
ρ1−α

Γ(α)

∫ t
0

τρ−1

(tρ−τρ)1−α f3(τ, u(τ))dτ,

D(t) = D0 +
ρ1−α

Γ(α)

∫ t
0

τρ−1

(tρ−τρ)1−α f4(τ, u(τ))dτ,

By choosing u0 = (u1, u2, u3, u4) = (S0, I0,R0,D0), we obtain

u(t) = u0 +
ρ1−α

Γ(α)

∫ t

0

τρ−1

(tρ − τρ)1−α
f (τ, u(τ))dτ. (14)

In what follows, we present the principal theorems:

Theorem 3. Let β, υ, γ, κ, α, ρ, T ∈ R+, be such that α ∈ (0, 1) and

T <

(
ραΓ(α + 1)

4(β + υ + γ + κ + 3)

) 1
ρα

, (15)

then, there is at least one solution of the problem (2) and (3) on [0, T].

Proof. To begin the proof, we will transform the problem (2) and (3) into a fixed point
problem Au(t) = u(t) (see [21–25,33]), with

Au(t) = (A1u(t),A2u(t),A3u(t),A4u(t))

and

Au(t) = u0 +
ρ1−α

Γ(α)

∫ t

0

τρ−1

(tρ − τρ)1−α
f (τ, u(τ))dτ. (16)

We first notice that if u ∈ E, then (Aiu)1≤i≤4, being an operator of a constant and a
primitive of continuous functions is indeed continuous (see also the step 1 in this proof),
and therefore Au is an element of E and is equipped with the norm

‖Au‖E =
4

∑
i=1
‖Aiu‖∞

Because the problem (2) and (3) is equivalent to the fractional integral Equation (16), the
fixed points of A are solutions to the problem (2) and (3).
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Next, we prove that A satisfies the conditions of Schauder’s fixed point theorem
(see [34]), through the following steps:

Step 1 A is a nonlinear continuous operator.
Let (un)n∈N = (Sn, In,Rn,Dn) be four positive sequences such that lim

n→∞
un = u in

E. Then for each t ∈ [0, T], we have:

|Aiun(t)−Aiu(t)| ≤
ρ1−α

Γ(α)

∫ t

0

τρ−1

(tρ − τρ)1−α
| fi(τ, un(τ))− fi(τ, u(τ))|dτ, (17)

where fi satisfies (12) for each 1 ≤ i ≤ 4. Then, we can find easily that fi(t, un) →
fi(t, u) in [0, T]× E. In fact, we have∣∣∣CDα,ρ

0+ Sn(t)− CDα,ρ
0+ S(t)

∣∣∣ = | f1(t, un(t))− f1(t, u(t))|

≤ υ|Sn(t)−S(t)|+ β

N0
|Sn(t)In(t)−S(t)I(t)|

≤
(

υ +
β

N0
In(t)

)
|Sn(t)−S(t)|+ |Rn(t)−R(t)|

+
β

N0
S(t)|In(t)− I(t)|+ |Dn(t)−D(t)|

≤
(

β

N0

(
sup

t∈[0,T]
S(t) + sup

t∈[0,T]
In(t)

)
+ υ + 2

)
‖un − u‖E.

Using (7), (9) and (10), we obtain

sup
t∈[0,T]

S(t) + sup
t∈[0,T]

In(t) ≤ N0,

then ∣∣∣CDα,ρ
0+ Sn(t)− CDα,ρ

0+ S(t)
∣∣∣ ≤ (β + υ + 2)‖un − u‖E. (18)

Similarly, we have∣∣∣CDα,ρ
0+ In(t)− CDα,ρ

0+ I(t)
∣∣∣ ≤ (β + γ + κ + 2)‖un − u‖E,∣∣∣CDα,ρ

0+ Rn(t)− CDα,ρ
0+ R(t)

∣∣∣ ≤ (υ + γ + 2)‖un − u‖E,∣∣∣CDα,ρ
0+ Dn(t)− CDα,ρ

0+ D(t)
∣∣∣ ≤ (κ + 3)‖un − u‖E.

(19)

Since un → u in E, we obtain(
CDα,ρ

0+ Sn, CDα,ρ
0+ In , CDα,ρ

0+ Rn , CDα,ρ
0+ Dn

)
→
(

CDα,ρ
0+ S, CDα,ρ

0+ I , CDα,ρ
0+ R , CDα,ρ

0+ D
)

.

Then, for each i = 1, 4, we obtain fi(t, un(t))→ fi(t, u(t)) as n→ ∞ for any t ∈ [0, T].
Now let K > 0, be such that for each t ∈ [0, T], we have:

| fi(t, un(t))| ≤ K, | fi(t, u(t))| ≤ K, ∀i = 1, 4.

Then, we have:

|Aiun(t)−Aiu(t)| ≤
ρ1−α

Γ(α)

∫ t

0

τρ−1

(tρ − τρ)1−α
| fi(τ, un(τ))− fi(τ, u(τ))|dτ

≤ ρ1−α

Γ(α)

∫ t

0

τρ−1

(tρ − τρ)1−α
[| fi(τ, un(τ))|+ | fi(τ, u(τ))|]dτ

≤ 2K
ρα−1Γ(α)

∫ t

0
(tρ − τρ)α−1τρ−1dτ.
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For each i = 1, 4, the function τ → 2K
ρα−1Γ(α) (t

ρ − τρ)α−1τρ−1 is integrable ∀t ∈ [0, T].
Therefore, there exists an implication based on Lebesgue’s dominated convergence
theorem and (17), which gives us the following:

|Aiun(t)−Aiu(t)| → 0 as n→ ∞,

and hence:
lim

n→∞
‖Aun −Au‖E = 0.

Consequently, A is continuous.

Step 2 According to (15), we put the positive real

r ≥ 4ραΓ(α + 1)
ραΓ(α + 1)− 4(β + υ + γ + κ + 3)Tρα ui, ∀i = 1, 4

and define the subset Er as follows:

Er = {u ∈ E : ‖u‖E ≤ r}.

Clearly Er denotes a closed, bounded and convex subset of E.
Let A : Er → E be the integral operator given in (16), thus A(Er) ⊂ Er. In fact, using
(18) and (19) we have for each t ∈ [0, T]:∣∣∣CDα,ρ

0+ S(t)
∣∣∣ ≤ (β + υ + 2)‖u‖E.∣∣∣CDα,ρ

0+ I(t)
∣∣∣ ≤ (β + γ + κ + 2)‖u‖E,∣∣∣CDα,ρ

0+ R(t)
∣∣∣ ≤ (υ + γ + 2)‖u‖E,∣∣∣CDα,ρ

0+ D(t)
∣∣∣ ≤ (κ + 3)‖u‖E.

Then, in each case, we have

| fi(t, u(t))| ≤ (β + υ + γ + κ + 3)r, ∀i = 1, 4.

Thus

|Aiu(t)| ≤ ui +
ρ1−α

Γ(α)

∫ t

0

τρ−1

(tρ − τρ)1−α
| fi(τ, u(τ))|dτ

≤ ui +
(β + υ + γ + κ + 3)Tρα

ραΓ(α + 1)
r

≤ ραΓ(α + 1)− 4(β + υ + γ + κ + 3)Tρα

4ραΓ(α + 1)
r +

(β + υ + γ + κ + 3)Tρα

ραΓ(α + 1)
r

≤ 1
4

r, ∀i = 1, 4,

or (‖Aiu‖∞)1≤i≤4 ≤
r
4 . Then ‖Au‖E =

4
∑

i=1
‖Aiu‖∞ ≤ r. Consequently A(Er) ⊂ Er.

Step 3 A(Er) is relatively compact.
Let t1, t2 ∈ [0, T], t1 < t2 and u ∈ Er. Then, for every i = 1, 4, we obtain
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|Aiu(t2)−Aiu(t1)| =
∣∣∣∣ρ1−α

Γ(α)

∫ t2

0

(
tρ
2 − τρ

)α−1
τρ−1 fi(τ, u(τ))dτ

− ρ1−α

Γ(α)

∫ t1

0

(
tρ
1 − τρ

)α−1
τρ−1 fi(τ, u(τ))dτ

∣∣∣∣
≤ ρ1−α

Γ(α)

∫ t1

0

∣∣∣∣((tρ
2 − τρ

)α−1
−
(

tρ
1 − τρ

)α−1
)

τρ−1 fi(τ, u(τ))
∣∣∣∣dτ

+
ρ1−α

Γ(α)

∫ t2

t1

(
tρ
2 − τρ

)α−1
τρ−1| fi(τ, u(τ))|dτ

≤ (β + υ + γ + κ + 3)r
ρα−1Γ(α)

(∫ t1

0

∣∣∣∣(tρ
2 − τρ

)α−1
−
(

tρ
1 − τρ

)α−1
∣∣∣∣τρ−1dτ

+
∫ t2

t1

(
tρ
2 − τρ

)α−1
τρ−1dτ

)
(20)

We have:((
tρ
2 − τρ

)α−1
−
(

tρ
1 − τρ

)α−1
)

τρ−1 =
−1
αρ

d
dτ

((
tρ
2 − τρ

)α
−
(

tρ
1 − τρ

)α)
,

then∫ t1

0

∣∣∣∣(tρ
2 − τρ

)α−1
−
(

tρ
1 − τρ

)α−1
∣∣∣∣τρ−1dτ ≤ 1

αρ

[(
tρ
2 − tρ

1

)α
+
(

tρα
2 − tρα

1

)]
,

we have also ∫ t2

t1

(
tρ
2 − τρ

)α−1
τρ−1dτ =

−1
αρ

[(
tρ
2 − τρ

)α]t2

t1

≤ 1
αρ

(
tρ
2 − tρ

1

)α
.

Then (20) gives

|Aiu(t2)−Aiu(t1)| ≤
(β + υ + γ + κ + 3)r

ραΓ(α + 1)

[
2
(

tρ
2 − tρ

1

)α
+
(

tρα
2 − tρα

1

)]
.

It follows from t1 → t2, that the right-hand side of the above-mentioned inequality
tends to zero, ∀i = 1, 4.

As a consequence of steps 1 to 3, and through Ascoli–Arzelà theorem, we infer the
continuity of A : Er → Er, its compact nature and its satisfaction of the assumption of
Schauder’s fixed point theorem [34]. Therefore, A has a fixed point which solves the
problem (2) and (3) on [0, T]. The proof is complete.

Theorem 4. Let α ∈ (0, 1) and β, γ, κ, ρ, µ ∈ R+, be such that

µ = max{β + υ + 2, β + γ + κ + 2, υ + γ + 3, κ + 3}.

If
4µTρα

ραΓ(α + 1)
< 1, (21)

then the problem (2) and (3) admits a unique solution on [0, T].

Proof. In Theorem 3, we already achieved the transformation of the aforementioned
problem (2) and (3) into a fixed point problem (16).
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Let u, v ∈ E satisfy the problem (2) and (3) respectively. This implies that:

|Aiu(t)−Aiv(t)| ≤
ρ1−α

Γ(α)

∫ t

0

τρ−1

(tρ − τρ)1−α
| fi(τ, u(τ))− fi(τ, v(τ))|dτ (22)

For all t ∈ [0, T], we have:∣∣∣CDα,ρ
0+ Su(t)− CDα,ρ

0+ Sv(t)
∣∣∣ ≤ (β + υ + 2)‖u− v‖E.∣∣∣CDα,ρ

0+ Iu(t)− CDα,ρ
0+ Iv(t)

∣∣∣ ≤ (β + γ + κ + 2)‖u− v‖E,∣∣∣CDα,ρ
0+ Ru(t)− CDα,ρ

0+ Rv(t)
∣∣∣ ≤ (υ + γ + 3)‖u− v‖E,∣∣∣CDα,ρ

0+ Du(t)− CDα,ρ
0+ Dv(t)

∣∣∣ ≤ (κ + 3)‖u− v‖E.

Then
| fi(t, u(t))− fi(t, v(t))| ≤ µ‖u− v‖E, ∀i = 1, 4.

From (22) we find:

‖Aiu−Aiv‖∞ ≤
µTρα

ραΓ(α + 1)
‖u− v‖E, ∀i = 1, 4.

Similarly, we can find that:

‖Au−Av‖E ≤
4µTρα

ραΓ(α + 1)
‖u− v‖E.

According to (21), the above inequality indicates that A is a contraction operator.
As a consequence Banach’s contraction principle (see [34]), we conclude that A has

only one fixed point which is the unique solution of the problem (2) and (3) on [0, T]. The
proof is complete.

5. Conclusions

In this paper, we discussed some analytical studies for a modified fractional-
order SIRD mathematical model of the COVID-19 disease, with Caputo–Katugampola’s
fractional derivative being used as the differential operator, which unifies the Hadamard
and Caputo fractional derivatives into a single form. Using real data, the feasibility region
of the proposed solution and the equilibrium points’ stability analysis were derived. The
behavior of these solutions depends on some symmetrical parameters that satisfy some
conditions which prevent the pandemic from occurring. The existence of one solution, at
least, in addition to its uniqueness, requires some essential conditions derived from the
Banach contraction principle and Schauder’s fixed point theorem.
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