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Abstract: In this manuscript, we introduce and discuss the term bipolar picture fuzzy graphs along
with some of its fundamental characteristics and applications. We also initiate the concepts of
complete bipolar picture fuzzy graphs and strong bipolar picture fuzzy graphs. Firstly, we apply
different types of operations to bipolar picture fuzzy graphs and then we introduce various products
of bipolar picture fuzzy graphs. Several other terms such as order and size, path, neighbourhood
degrees, busy values of vertices and edges of bipolar picture fuzzy graphs are also discussed.
These terminologies also lay the foundations for the discussion about the regular bipolar picture
fuzzy graphs. Moreover, we also discuss isomorphisms, weak and co-weak isomorphisms and
automorphisms of bipolar picture fuzzy graphs. Finally, at the base of bipolar picture fuzzy graph
we present the construction of a bipolar picture fuzzy acquaintanceship graph, which would be an
important tool to measure the symmetry or asymmetry of acquaintanceship levels of social networks,
computer networks etc.

Keywords: bipolar picture fuzzy graphs; ring sum of bipolar picture fuzzy graph; busy value of
bipolar picture fuzzy edge; weak and co-weak isomorphisms of bipolar picture fuzzy graphs

1. Introduction

In 1965, Zadeh [1] introduced the term fuzzy sets (FSs), which is extensively used
in different fields such as life sciences, social sciences, engineering, theory of decision
making, computer sciences etc. Subsequently, many generalizations of the fuzzy sets have
been explored in the literature like interval-valued fuzzy sets (IVFSs), bipolar fuzzy sets
(BPFs), intuitionistic fuzzy sets (IFSs), picture fuzzy sets (PFSs) and so on (see e.g., [2,3]).
The term interval-valued fuzzy set (IVFS) was also introduced by Zadeh [4]. Another
generalization of fuzzy sets termed bipolar fuzzy sets (BPFSs) was introduced in [5]. In
bipolar fuzzy sets (BPFSs) the membership value was considered in the interval [-1, 1]. In
continuation, recently, the term bipolar Pythagorean fuzzy sets along with its applications
towards decision making theory is explored in [6]. Various types of relations on BFSs
were introduced in [7]. Basically, the term bipolar fuzzy relations (BPFRs) is the direct
extension of fuzzy relations. BPFRs were also given a name “bifuzzy relations”. Some
new types of bipolar fuzzy relations and bipolar fuzzy equivalence relation were discussed
in [7]. Atanassov [8] introduced the notion of intuitionistic fuzzy sets which was another
generalized form of the fuzzy sets. Similarly, the generalization of both the fuzzy sets and
intuitionistics fuzzy sets termed picture fuzzy sets (PFSs) was initiated by Cuong [9]. He
also studied several operations and characteristics of PFSs. PFS is described by assigning
three memberships values to the object which are neutral, positive and negative. After
this, Bo et al. [10] introduced few new operations and relations on PFSs. Cuong et al. [11]
introduced various types of fuzzy logical operators in the setting of PFSs.

On the other hand, Rosenfeld [12] extended the scope of fuzzy sets towards graph
theory by initiating the notion of fuzzy graphs(FGs). Later on, Bhattacharya [13] added
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several terms in the theory of fuzzy graphs. Different types of operations were introduced
and applied on fuzzy graphs (FGs) in [14]. The term complement of fuzzy graphs (FGs)
was introduced by Mordeson and Nair [15]. Generalization of fuzzy graphs named interval-
valued fuzzy graphs (IVFGs) were initited in [16]. The concepts of intuitionistic fuzzy
graphs (IFGs) were explored in [17]. Several operations were defined and applied to IFGs
in [18]. The term complex Intuitionistic fuzzy graphs and its applications toward cellular
networking were explored in [19].

The term bipolar fuzzy graphs (BPFGs) was introduced by Akram [20], he also studied
several interesting properties of these graphs. Similarly, Yang et al. [21] presented different
types of BPFGs. Talebi and Rashmanlou [22] introduced the terms complement and
isomorphism on bipolar fuzzy graphs, Ghorai and Pal [23] defined generalized regular
bipolar fuzzy graphs. Further to this, Poulik and Ghorai [24] explored different indices on
bipolar fuzzy graphs. Several characterizations of bipolar fuzzy graphs were extensively
explored in [25]. They also presented the adjacency sequence of a vertex and first and
second fundamental sequences were described in a bipolar fuzzy graph illustrative example.
They also demonstrated through examples that if G is a regular bipolar fuzzy graph (RBFG),
then its underlying crisp graph need not be regular and they showed that all the vertices
need not have the same adjacency sequence. Moreover, they verified that if G and its
underlying crisp graph are regular, then all of the vertices need not have the same adjacency
sequence. At the base of adjacency sequences, they also provided necessary and sufficient
condition for a BFG to be a regular with at most four vertices.

Further to the above, Zuo et al. [26] initiated the notion of picture fuzzy graphs
(PFGs). They applied several operations on PFGs and presented some applications of
PFGs towards social networking. Afterwards, picture fuzzy multi-graph (PFMG) was
introduced in [27]. Regular picture fuzzy graphs (RPFGs) along with its applications
towards networking communications have been explored in [28]. Recently, Koczy et al. [29]
more investigated the term PFGs and they added several significant graphical terms for
PFGs and demonstrated them with examples. They also verified the superiority of PFGs
over FGs and IFGs by providing suitable examples. Specifically, they described two real-life
problems including a social network and a Wi-Fi-network through picture fuzzy graphs
and showed that the picture fuzzy graphs are more feasible than any other existing fuzzy
structures. Recently, Amanathulla et al. [30] initiated the concept of balanced picture fuzzy
graphs (balanced PFGs). This is a special type of PFG through which one can (balanced
PFGs) define the density of a PFG based on weight and size of the graph. They also
provided an application of balanced PFG in business alliance.

In this paper, we initiate the concepts of bipolar picture fuzzy graphs, complete bipolar
picture fuzzy graphs and strong bipolar picture fuzzy graphs. We introduce the terms
size of bipolar picture fuzzy graphs, path of bipolar picture fuzzy graphs, busy value
of vertices and edges of a bipolar picture fuzzy graphs. We also study isomorphisms,
weak and co-weak isomorphisms and automorphism of bipolar picture fuzzy graphs. We
deduce in Proposition 1 that isomorphism between two bipolar picture fuzzy graphs is an
equivalence relation and hence we can study the symmetry between two social networks
through it. Finally, we construct a bipolar picture fuzzy acquaintanceship graph, which is
asymmetric.

2. Preliminaries

In this section, we present some basic concepts related to fuzzy graphs. One may
consult [31] for the basics of classical graph theory.

Definition 1. [1] A fuzzy set (FS) S defined on X is represented by the collection

S = {(x, αS(x)) : x ∈ X, αS(x) ∈ [0, 1]}
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Definition 2. [32] The Cartesian product of the FSs S1, ..., Sn on X1, ..., Xn is the FS on the
product X1 × ...× Xn having a membership function

µ(S1×...×Sn)(x) = {min(αSi (xi)) : x = (x1, ..., xn), xi ∈ Xi}

Definition 3. [32] The mth power of a fuzzy S on X has the membership function

αSm(x) = {[αS(x)]m : x ∈ X}

Definition 4. [33] A bipolar fuzzy set (BPFS) is the pair (αP, αN), where αP : X → [0, 1] and
αN : X → [−1, 0] represent mappings.

Definition 5. [33] A set 0S = (0P
S , 0N

S ) (resp., 1S = (1P
S , 1N

S )) is termed bipolar fuzzy empty set
(resp., the bipolar fuzzy whole set) on X and is described as

0P
S (x) = 0 = 0N

S (x) (resp., 1P
S (x) = 1 and 1N

S (x) = −1)

for each x ∈ X.

Definition 6. [34] For any two BPFs S = (αP
S , αN

S ) and T = (αP
T , αN

T ), we have

(S ∩ T)(x) = ((αP
S (x) ∧ αP

T(x)), (αN
S (x) ∨ αN

T (x)))

(S ∪ T)(x) = ((αP
S (x) ∨ αP

T(x)), (αN
S (x) ∧ αN

T (x)))

Definition 7. [33] A mapping S = (αP
S , αN

S ) : X × X → [−1, 0] × [0, 1] is a bipolar fuzzy
relation (BPFR) on X, where αP

S (x, y) ∈ [0, 1] and αN
S (x, y) ∈ [−1, 0].

Definition 8. [33] The empty BPFR (resp., the whole BPFR) on X may be described by

αP
S (x, y) = 0 = αN

S (x, y) (resp., αSP(x, y) = 1 and αN
S (x, y) = −1)

for each x, y ∈ X.

Definition 9. [8] An intuitionistic fuzzy set (IFS) S on X is the collection S = {(x, αS(x), βS(x)) :
x ∈ X}, where αS : X → [0, 1] is a membership degree while βS : X → [0, 1] represents a non-
membership degree of x ∈ X, also for each x ∈ X, 0 ≤ αS(x) + βS(x) ≤ 1.

Definition 10. [35] A bipolar intuitionistic fuzzy set (BPIFS) can be described as
S = {x, αP(x), αN(x), βP(x), βN(x) : x ∈ X}, where αP : X → [0, 1], αN : X → [−1, 0],
βP : X → [0, 1] and βN : X → [−1, 0] are the mappings satisfying

0 ≤ αP(x) + βP(x) ≤ 1

−1 ≤ αN(x) + βN(x) ≤ 0

Definition 11. [9] A picture fuzzy set (PFS) S on X is the collection S = {(x, αS(x), γS(x), βS(x)) :
x ∈ X}, where αS(x) ∈ [0, 1] is the positive membership degree of x in S, γS(x) ∈ [0, 1] represents
the neutral membership degree of x in S and βS(x) ∈ [0, 1] the negative membership degree of x in
S, with αS, γS and βS satisfying αS(x) + γS(x) + βS(x) ≤ 1, for all x ∈ X.

Definition 12. [20] A BPFG S = {u, αP(u), αN(u), βP(u), βN(u) : u ∈ U}, where αP : U →
[0, 1], αN : U → [−1, 0], βP : U → [0, 1] and βN : U → [−1, 0] is said to be a bipolar fuzzy
graph on underlying set U if, βP(u, v) ≤ min(αP(u), αP(v)) and βN(u, v) ≥ min(αN(u), αN(v)),
for all u, v ∈ E = V ×V.
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Definition 13. [35] A bipolar intuitionistic fuzzy graph (BPIFG) on V is the pair G = (A, B),
where A = (αP

A(u), αN
A (u), βP

A(u), βN
A(u)) is a BPIFS on V and B = (αP

B(u), αN
B (u), βP

B(u),
βN

B (u)) is a BPIFS on E ⊆ V ×V satisfying

αP
B(u, v) ≤ min(αP

A(u), αP
A(v))

αN
B (u, v) ≥ max(αN

A (u), αN
A (v))

βP
B(u, v) ≤ min(βP

A(u), βP
A(u))

βN
B (u, v) ≥ max(βN

A(u), βN
A(v))

for all u, v ∈ E.

Definition 14. [35] A mapping S = (αP
S , αN

S , βP
S , βN

S ) : X × X → [−1, 0]× [0, 1]× [−1, 0]×
[0, 1] is a bipolar intuitionistic fuzzy relation (BPIFR) on X, where αP

S (x, y) ∈ [0, 1], αN
S (x, y) ∈

[−1, 0], βP
S(x, y) ∈ [0, 1] and βN

S (x, y) ∈ [−1, 0].

Definition 15. [9] A pair G = (A, B) is said to be a picture fuzzy graph (PFG) on G∗ = (V, E),
where A = (αA, γA ,βA) is a PFS on V and B = (αB, γB ,βB) is a PFS on E ⊆ V ∈ V with

αB(u, v) ≤ min(αA(u), αA(v))

γB(u, v) ≤ min(γA(u), γA(v))

βB(u, v) ≥ max(βA(u), βA(v))

3. Bipolar Picture Fuzzy Graphs (BPPFGs)

We begin this section with the definition of a bipolar picture fuzzy set (BPPFS) which
is introduced by the first author (with Faiz and Taouti) in [36].

Definition 16. [36] Let X be a nonempty set. A bipolar picture fuzzy set (BPPFS) on X is the
collection S = {x, αP(x), αN(x), γP(x), γN(x), βP(x), βN(x) : x ∈ X}, where αP : X → [0, 1],
αN : X → [−1, 0], γP : X → [0, 1], γN : X → [−1, 0], βP : X → [0, 1] and βN : X → [−1, 0]
are the mappings with 0 ≤ αP(x) + γP(x) + βP(x) ≤ 1, −1 ≤ αN(x) + γN(x) + βN(x) ≤ 0.

Following [36], for each x in X, αP(x) stands for the positive membership degree,
βP(x) for the positive non-membership degree and γP(x) for the positive neutral degree.
Alternatively, αN(x) represents the negative membership degree, βN(x) is the negative
non-membership degree and γN(x) is a negative neutral degree. On the other hand, if
αP(x) 6= 0 while all other mappings are mapped to zero then it means that x has only a
positive membership property of the bipolar picture fuzzy set. Similarly, if αN(x) 6= 0
while all other mappings matched to zero (or equal to zero) then it reflects that x has only
the negative membership property of a BPPFS. Additionally, if γP(x) 6= 0 and remaining
mappings are mapped to zero then it reflects that x has only the positive neutral property
of a BPPFS. By γN(x) 6= 0 and the other mapping goes to zero then we mean that x has only
the negative neutral property of a BPPFS. However, if βP(x) 6= 0 while all other mapping
matched to zero then it implies that x has only the positive nonmembership property of a
BPPFS. Finally, if βN(x) 6= 0 while remaining are zero then it implies that x has only the
negative nonmembership property in a BPPFS.

Definition 17. Let G∗ = (V, E) be a graph. A pair G = (C, D) is said to be a bipolar picture
fuzzy graph (BPPFG) on G∗, where C = {αP

C(u), αN
C (u), γP

C(u), γN
C (u), βP

C(u), βN
C (u)} is

a bipolar picture fuzzy set on V and D = {αP
D(u, v), αN

D(u, v), γP
D(u, v), γN

D (u, v), βP
D(u, v),

βN
D(u, v)} is a bipolar picture fuzzy set on E ⊆ V ×V such that for every edge uv ∈ E,
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αP
D(uv) ≤ min(αP

C(u), αP
C(v)), αN

D(uv) ≥ max(αN
C (u), αN

C (v))

γP
D(uv) ≤ min(γP

C(u), γP
C(u)), γN

D (uv) ≥ max(γN
C (u), γN

C (v))

βP
D(uv) ≥ max(βP

C(u), βP
C(v)), βN

D(uv) ≤ min(βN
C (u), βN

C (v))

satisfying
0 ≤ αP

D(uv) + γP
D(uv) + βP

D(uv) ≤ 1

−1 ≤ αP
D(uv) + γP

D(uv) + βP
D(uv) ≤ 0

Example 1. One can easily verify that the graphs shown in Figure 1a,b are BPPFGs.

Figure 1. Bipolar picture fuzzy graph.

Definition 18. The order O(G) of a BPPFG G = (C, D) is defined by O(G) = (Oα(G), Oγ(G),
Oβ(G)), where

Oα(G) = ( ∑
ui∈V

OαP(G), ∑
ui∈V

OαN (G))

Oγ(G) = ( ∑
ui∈V

OγP(G), ∑
ui∈V

OγN (G)) and

Oβ(G) = ( ∑
ui∈V

OβP(G), ∑
ui∈V

OβN (G))

Definition 19. The size S(G) of a BPPFG G = (C, D) is denoted and defined by S(G) =
(Sα(G), Sγ(G), Sβ(G)), where

Sα(G) = ( ∑
ui∈V

SαP(G), ∑
ui∈V

SαN (G))

Sγ(G) = ( ∑
ui∈V

SγP(G), ∑
ui∈V

SγN (G)) and

Sβ(G) = ( ∑
ui∈V

SβP(G), ∑
ui∈V

SβN (G))

Definition 20. Let J∗ = (V1, E1) and K∗ = (V2, E2) be two graphs. Let J = (C1, D1) be a
BPPFG on J∗ = (V1, E1), where C1 = {αP

C1
(u), αN

C1
(u), γP

C1
(u), γN

C1
(u), βP

C1
(u), βN

C1
(u)} is a

BPPFS on V1 and D1 = {αP
D1
(u), αN

D1
(u), γP

D1
(u), γN

D1
(u), βP

D1
(u), βN

D1
(u)} is a BPPFS on E1,

respectively. Let K = (C2, D2) be a BPPFG on K∗ = (V2, E2), where C2 = {αP
C2
(u), αN

C2
(u),

γP
C2
(u), γN

C2
(u), βP

C2
(u), βN

C2
(u)} is a BPPFS on V2 and D2 = {αP

D2
(u), αN

D2
(u), γP

D2
(u), γN

D2
(u),
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βP
D2
(u), βN

D2
(u)} is a BPPFS on E2 be the two BPPFGs. Then the operations union and intersection

between J and K can be defined as

J ∪ K = (C1 ∪ C2, D1 ∪ D2) (1)

For any vertex u:
Case (i):
C1 ∪ C2 = {u, max(αP

C1
(u), αP

C2
(u)), max(γP

C1
(u), γP

C2
(u)), min(βP

C1
(u), βP

C2
(u)), max(αN

C1
(u),

αN
C2
(u)), min(γN

C1
(u), γN

C2
(u)), max(βN

C1
(u), βN

C2
(u)) : u ∈ V1 −V2}

Case (ii):
C1 ∪ C2 = {u, max(αP

C1
(u), αP

C2
(u)), max(γP

C1
(u), γP

C2
(u)), min(βP

C1
(u), βP

C2
(u)), max(αN

C1
(u),

αN
C2
(u)), min(γN

C1
(u), γN

C2
(u)), max(βN

C1
(u), βN

C2
(u)) : u ∈ V2 −V1}

Case (iii):
C1 ∪ C2 = {u, max(αP

C1
(u), αP

C2
(u)), max(γP

C1
(u), γP

C2
(u)), min(βP

C1
(u), βP

C2
(u)), max(αN

C1
(u),

αN
C2
(u)), min(γN

C1
(u), γN

C2
(u)), max(βN

C1
(u), βN

C2
(u)) : u ∈ V1 ∩V2}

Similarly, for any edge uv:
Case (i):
D1 ∪ D2 = {uv, max(αP

D1
(uv), αP

D2
(uv)), max(γP

D1
(uv), γP

D2
(uv)), min(βP

D1
(uv), βP

D2
(uv)),

max(αN
D1
(uv), αN

D2
(uv)), min(γN

D1
(uv), γN

D2
(uv)), max(βN

D1
(uv), βN

D2
(uv)) : uv ∈ E1 − E2}

Case (ii):
D1 ∪ D2 = {uv, max(αP

D1
(uv), αP

D2
(uv)), max(γP

D1
(uv), γP

D2
(uv)), min(βP

D1
(uv), βP

D2
(uv)),

max(αN
D1
(uv), αN

D2
(uv)), min(γN

D1
(uv), γN

D2
(uv)), max(βN

D1
(uv), βN

D2
(uv)) : uv ∈ E2 − E1}

Case (iii):
D1 ∪ D2 = {uv, max(αP

D1
(uv), αP

D2
(uv)), max(γP

D1
(uv), γP

D2
(uv)), min(βP

D1
(uv), βP

D2
(uv)),

max(αN
D1
(uv), αN

D2
(uv)), min(γN

D1
(uv), γN

D2
(uv)), max(βN

D1
(uv), βN

D2
(uv)) : uv ∈ E1 ∩ E2}

J ∩ K = (C1 ∩ C2, D1 ∩ D2) (2)

For any vertex u:
Case (i):
C1 ∩ C2 = {u, min(αP

C1
(u), αP

C2
(u)), min(γP

C1
(u), γP

C2
(u)), max(βP

C1
(u), βP

C2
(u)), min(αN

C1
(u),

αN
C2
(u)), max(γN

C1
(u), γN

C2
(u)), min(βN

C1
(u), βN

C2
(u)) : u ∈ V1 −V2}

Case (ii):
C1 ∩ C2 = {u, min(αP

C1
(u), αP

C2
(u)), min(γP

C1
(u), γP

C2
(u)), max(βP

C1
(u), βP

C2
(u)), min(αN

C1
(u),

αN
C2
(u)), max(γN

C1
(u), γN

C2
(u)), min(βN

C1
(u), βN

C2
(u)) : u ∈ V2 −V1}

Case (iii):
C1 ∩ C2 = {u, min(αP

C1
(u), αP

C2
(u)), min(γP

C1
(u), γP

C2
(u)), max(βP

C1
(u), βP

C2
(u)), min(αN

C1
(u),

αN
C2
(u)), max(γN

C1
(u), γN

C2
(u)), min(βN

C1
(u), βN

C2
(u)) : u ∈ V1 ∩V2}

Similarly, for any edge uv:
Case (i):
D1 ∩ D2 = {uv, min(αP

D1
(uv), αP

D2
(uv)), min(γP

D1
(uv), γP

D2
(uv)), max(βP

D1
(uv), βP

D2
(uv)),

min(αN
D1
(uv), αN

D2
(uv)), max(γN

D1
(uv), γN

D2
(uv)), min(βN

D1
(uv), βN

D2
(uv)) : uv ∈ E1 − E2}.

Case (ii):
D1 ∩ D2 = {uv, min(αP

D1
(uv), αP

D2
(uv)), min(γP

D1
(uv), γP

D2
(uv)), max(βP

D1
(uv), βP

D2
(uv)),

min(αN
D1
(uv), αN

D2
(uv)), max(γN

D1
(uv), γN

D2
(uv)), min(βN

D1
(uv), βN

D2
(uv)) : uv ∈ E2 − E1}.

Case (iii):
D1 ∩ D2 = {uv, min(αP

D1
(uv), αP

D2
(uv)), min(γP

D1
(uv), γP

D2
(uv)), max(βP

D1
(uv), βP

D2
(uv)),

min(αN
D1
(uv), αN

D2
(uv)), max(γN

D1
(uv), γN

D2
(uv)), min(βN

D1
(uv), βN

D2
(uv)) : uv ∈ E1 ∩ E2}.

Definition 21. Let G1 = (C1, D1) and G2 = (C2, D2) be the two BPPFGs on G∗ = (V1, E1) and
G∗∗ = (V2, E2), respectively. Then the ring sum G1

⊕
G2 = (V1 ∪V2 ,(E1 ∪ E2) − (E1 ∩ E2)) of

BPPFGs of G1 and G2 is the graph G = (C, D), where C = (αP
C, αN

C , γP
C, γN

C , βP
C, βN

C ) is bipolar
picture fuzzy set on V = V1 ∪V2 and D = (αP

D, αN
D , γP

D, γN
D , βP

D, βN
D) is a bipolar picture fuzzy
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set on E = E1 ∪ E2 − (E1 ∩ E2) satisfying the following conditions.
(A)

αP
C(u) =


αP

C1
(u) i f u ∈ V1

αP
C2
(u) i f u ∈ V2

αP
C1
(u) ∧ αP

C2
(u) i f u ∈ V1 ∩V2

(B)

αP
C(u, v) =


αP

C1
(u, v) i f u, v ∈ E1 − E2

αP
C2
(u, v) i f u, v ∈ E2 − E1

αP
C1
(u, v) ∧ αP

C2
(u, v) i f u, v ∈ E1 ∩ E2

(C)

αN
C (u) =


αN

C1
(u) i f u ∈ V1

αN
C2
(u) i f u ∈ V2

αN
C1
(u) ∨ αP

C2
(u) i f u ∈ V1 ∩V2

(D)

αN
C (u, v) =


αN

C1
(u, v) i f u, v ∈ E1 − E2

αN
C2
(u, v) i f u, v ∈ E2 − E1

αN
C1
(u, v) ∨ αP

C2
(u, v) i f u, v ∈ E1 ∩ E2

(E)

γP
C(u) =


γP

C1
(u) i f u ∈ V1

γP
C2
(u) i f u ∈ V2

γP
C1
(u) ∧ γP

C2
(u) i f u ∈ V1 ∩V2

(F)

γP
C(u, v) =


γP

C1
(u, v) i f u, v ∈ E1 − E2

γP
C2
(u, v) i f u, v ∈ E2 − E1

γP
C1
(u, v) ∧ γP

C2
(u, v) i f u, v ∈ E1 ∩ E2

(G)

γN
C (u) =


γN

C1
(u) i f u ∈ V1

γN
C2
(u) i f u ∈ V2

γN
C1
(u) ∨ γN

C2
(u) i f u ∈ V1 ∩V2

(H)

γN
C (u, v) =


γN

C1
(u, v) i f u, v ∈ E1 − E2

γN
C2
(u, v) i f u, v ∈ E2 − E1

γN
C1
(u, v) ∨ γN

C2
(u, v) i f u, v ∈ E1 ∩ E2

(I)

βP
C(u) =


βP

C1
(u) i f u ∈ V1

βP
C2
(u) i f u ∈ V2

βP
C1
(u) ∨ βP

C2
(u) i f u ∈ V1 ∩V2

(J)

βP
C(u, v) =


βP

C1
(u, v) i f u, v ∈ E1 − E2

βP
C2
(u, v) i f u, v ∈ E2 − E1

βP
C1
(u, v) ∨ βP

C2
(u, v) i f u, v ∈ E1 ∩ E2
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(K)

βN
C (u) =


βN

C1
(u) i f u ∈ V1

βN
C2
(u) i f u ∈ V2

βN
C1
(u) ∧ βN

C2
(u) i f u ∈ V1 ∩V2

(L)

γN
C (u, v) =


βN

C1
(u, v) i f u, v ∈ E1 − E2

βN
C2
(u, v) i f u, v ∈ E2 − E1

βN
C1
(u, v) ∧ βN

C2
(u, v) i f u, v ∈ E1 ∩ E2

where uv represents an edge between the two vertices u, v while E1, E2 represent edges sets in G1
and G2, respectively.

Theorem 1. Ring sum of two BPPFGs is a BPPFG.

Proof. Let us consider two BPPFGs G1 = (C1, D1) and G2 = (C2, D2) defined on crisp
graphs G∗1 = (V1, E1) and G∗2 = (V2, E2). Then, their ring sum G1 ⊕ G2 = G = (C, D)
is BPPFG. Where C = (αP

C(u), αN
C (u), γP

C(u), γN
C (u), βP

C(u), βN
C (u)) and D = (αP

D(u, v),
αN

D(u, v), γP
D(u, v), γN

D (u, v), βP
D(u, v), βN

D(u, v)). Then we have the following cases.
Case 1:
If u ∈ V1, then αP

C(u) = αP
C1
(u) ∈ V1, which is a BPPFS on V1. Additionally, if u, v ∈ V1, then

αP
C(u, v) = αP

C1
(u, v) ∈ E1, which is a BPPFS on E1.

Case 2:
If u ∈ V2, then αP

C(u) = αP
C2
(u) ∈ V2, which is a BPPFS on V2. Additionally, if u, v ∈ V2, then

αP
C(u, v) = αP

C2
(u, v) ∈ E2, which is a BPPFS on E2.

Case 3:
If u ∈ V1 ∩V2, then αP

C(u) = αP
C1
(u) ∧ αP

C2
(u) ∈ V1 ∩V2, which is a BPPFS. Additionally, if

u, v ∈ V1 ∩V2, then αP
C(u, v) = αP

C1
(u, v)∧ αP

C2
(u, v) ∈ E1 ∩ E2, which is BPPFR on V1 ∩V2×

V1 ∩V2.
Similarly, we can show for all αN

C (u), γP
C(u), γN

C (u), βP
C(u), βN

C (u) ∈ C and αN
D(u, v),

γP
D(u, v), γN

D (u, v), βP
D(u, v), βN

D(u, v) ∈ D. Since, V1, E1 ∈ G1, V2, E2 ∈ G2 and G1, G2 are
BPPFGs. Hence G1 ⊕ G2 = G is a BPPFG.

Proposition 1. Let H = (C, D) be a BPPFG on G = (V, E). Then H ∪ H = H ∩ H = H and
H ⊕ H = ∅ are BPPFGs.

Proof. Let H = (C, D) be a BPPFG on H∗ = (V, E), where C = {αP
C(u), αN

C (u), γP
C(u),

γN
C (u), βP

C(u), βN
C (u)} is a BPPFS on V and D = {αP

D(u), αN
D(u), γP

D(u), γN
D (u), βP

D(u),
βN

D(u)} is a BPPFS on E, respectively. For H ∪ H = (C ∪ C, D ∪ D), by Definition 20(1), we
have
C∪C = {u, max(αP

C(u), αP
C(u)), max(γP

C(u), γP
C(u)), min(βP

C(u), βP
C(u)), max(αN

C (u), αN
C (u)),

min(γN
C (u), γN

C (u)), max(βN
C (u), βN

C (u)) : u ∈ V} and
D ∪ D = {uv, max(αP

D(uv), αP
D(uv)), max(γP

D(uv), γP
D(uv)), min(βP

D(uv), βP
D(uv)),

max(αN
D(uv), αN

D(uv)), min(γN
D (uv), γN

D (uv)), max(βN
D(uv), βN

D(uv)) : u, v ∈ E}.
Thus, we have C ∪ C = C and D ∪ D = D. Hence H ∪ H = H.
Similarly, for H ∩ H = (C ∩ C, D ∩ D), by Definition 20(2), we have
C∩C = {u, min(αP

C(u), αP
C(u)), min(γP

C(u), γP
C(u)), max(βP

C(u), βP
C(u)), min(αN

C (u), αN
C (u)),

max(γN
C (u), γN

C (u)), min(βN
C (u), βN

C (u)) : u ∈ V} and
D ∩ D = {uv, min(αP

D(uv), αP
D(uv)), min(γP

D(uv), γP
D(uv)), max(βP

D(uv), βP
D(uv)),

min(αN
D(uv), αN

D(uv)), max(γN
D (uv), γN

D (uv)), min(βN
D(uv), βN

D(uv)) : uv ∈ E}.
Thus, C ∩ C = C and D ∩ D = D implies H ∩ H = H.
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Finally, to prove H ⊕ H = ∅. Let u ∈ V be any vertex, then by Definition (21) we have

αP
C(u) =


αP

C(u) i f u ∈ V
αP

C(u) i f u ∈ V
αP

C(u) ∧ αP
C(u) i f u ∈ V ∩V

Hence, αP
C(u) = αP

C(u), ∀ u ∈ V. Similarly, for any edge (u, v) ∈ E. Following Definition 21,
we have

αP
C(u, v) =


αP

C(u, v) i f u, v ∈ E− E
αP

C(u, v) i f u, v ∈ E− E
αP

C(u, v) ∧ αP
C(u, v) i f u, v ∈ E ∩ E

It implies αP
C(u, v) = ∅, ∀ uv ∈ E− E. Thus, H ⊕ H = ∅, which completes the proof.

Definition 22. The open neighbourhood degree of a vertex m of a BPPFG H = (C, D) is deg(m)
= (d(αP

C(u)), d(αN
C (u)), d(γP

C(u)), d(γN
C (u)), d(βP

C(u)), d(βN
C (u))), where

d(αP
C(m)) = ∑

n∈N(x)
αP

C(n), d(αN
C (m)) = ∑

n∈N(x)
αN

C (n)

d(γP
C(m)) = ∑

n∈N(x)
γP

C(n), d(γN
C (m)) = ∑

n∈N(x)
γN

C (n)

d(βP
C(m)) = ∑

n∈N(x)
βP

C(n), d(βN
C (m)) = ∑

n∈N(x)
βN

C (n)

Definition 23. A vertex u in a BPPFG H = (C, D) is said to be a busy vertex, if

αP
C(u) ≤ d(αP

C(u)), αN
C (u) ≥ d(αN

C (u))

γP
C(u) ≤ d(γP

C(u)), γN
C (u) ≥ d(γN

C (u)) and

βP
C(u) ≥ d(βP

C(u)), βN
C (u) ≤ d(βN

C (u))

Otherwise, it is a free vertex.

Definition 24. The busy value of a vertex u of a BPPFG H = (C, D) is defined by J(u) =
(J(αP

C)(u), J(αN
C )(u), J(γP

C)(u), J(γN
C )(u), J(βP

C)(u), J(βN
C )(u)), where

J(αP
C)(u) = ∑ αP

C(u) ∧ αP
C(ui), J(αN

C )(u) = ∑ αN
C (u) ∨ αN

C (ui)

J(γP
C)(u) = ∑ γP

C(u) ∧ γP
C(ui), J(γN

C )(u) = ∑ γN
C (u) ∨ γN

C (ui)

J(βP
C)(u) = ∑ βP

C(u) ∨ βP
C(ui), J(βN

C )(u) = ∑ βN
C (u) ∧ βN

C (ui)

ui,s represent the neighbors of u, the sum of the busy values of all vertices of H i.e., J(H) = ∑ J(ui)
is said to be a busy value of a BPPFG H.

Definition 25. The busy value of an edge uv of a BPPFG H = (C, D) is defined by J(uv) =
(J(αP

D)(uv), J(αN
D)(uv), J(γP

D)(uv), J(γN
D )(uv), J(βP

D)(uv), J(βN
D)(uv)) such that

J(αP
D(uv)) ≤ min(J(αP

C(u)), J(αP
C(v))), J(αN

D(uv)) ≥ max(J(αN
C (u)), J(αN

C (v)))

J(γP
D(uv)) ≤ min(J(γP

C(u), γP
C(u))), J(γN

D (uv)) ≥ max(J(γN
C (u)), J(γN

C (v)))

J(βP
D(uv)) ≥ max(J(βP

C(u)), J(βP
C(v))), J(βN

D(uv)) ≤ min(J(βN
C (u)), J(βN

C (v)))

Definition 26. The set of sequence of different vertices v0, v1, v2, . . ., vk is the path p in a
BPPFG H = (C, D) such that (αP(vi−1, vi), γP(vi−1, vi), βP(vi−1, vi)) ≥ 0 and (αN(vi−1, vi),
γN(vi−1, vi), βN(vi−1, vi)) ≤ 0 ; i = 1, 2, 3, . . ., k.
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Definition 27. Two vertices u and v are connected by a path p i.e., p : u0, u1, u2, ...uk−1, uk of
length l in a BPPFG H = (C, D). Then, αP(u, v), γP(u, v), βP(u, v), αN(u, v), γN(u, v) and
βN(u, v) are illustrated as follows.

αP(u, v) =αP(u, u1) ∧ αP(u1, u2) ∧ αP(u2, u3) ∧ ...∧ αP(uk−1, v)

γP(u, v) =γP(u, u1) ∧ γP(u1, u2) ∧ γP(u2, u3) ∧ ...∧ γP(uk−1, v)

βP(u, v) =βP(u, u1) ∨ βP(u1, u2) ∨ βP(u2, u3) ∨ ...∨ βP(uk−1, v)

αN(u, v) =αN(u, u1) ∨ αN(u1, u2) ∨ αN(u2, u3) ∨ ...∨ αN(uk−1, v)

γN(u, v) =γN(u, u1) ∨ γN(u1, u2) ∨ γN(u2, u3) ∨ ...∨ γN(uk−1, v) and

βN(u, v) =βN(u, u1) ∧ βN(u1, u2) ∧ βN(u2, u3) ∧ ...∧ βN(uk−1, v)

Theorem 2. Let H = (C, D) be a BPPFG. If H contains a ”x − y” walk of length k, then H
contains a ”x− y” path of length k.

3.1. Different Types of Products of Bipolar Picture Fuzzy Graphs

Definition 28. The strong product of two BPPFGs H1 = (C1, D1), where C1 = (αP
C1

, αN
C1

, γP
C1

,
γN

C1
, βP

C1
, βN

C1
), D1 = (αP

D1
, αN

D1
, γP

D1
, γN

D1
, βP

D1
, βN

D1
) and H2 = (C2, D2), where C2 = (αP

C2
,

αN
C2

, γP
C2

, γN
C2

, βP
C2

, βN
C2
), D2 = (αP

D2
, αN

D2
, γP

D2
, γN

D2
, βP

D2
, βN

D2
), where we take V1 ∩V2 = ∅, is

defined as
H1 ⊗ H2 = (αP

C1
⊗ αP

C2
, γP

C1
⊗ γP

C2
, βP

C1
⊗ βP

C2
, αN

C1
⊗ αN

C2
, γN

C1
⊗ γN

C2
, βN

C1
⊗ βN

C2
, αP

D1
⊗ αP

D2
,

γP
D1
⊗ γP

D2
, βP

D1
⊗ βP

D2
, αN

D1
⊗ αN

D2
, γN

D1
⊗ γN

D2
, βN

D1
⊗ βN

D2
) of H∗ = (V1 × V2, E). Where E

= {(m, x1)(m, x2) : m ∈ V1, (x1, x2) ∈ E2} ∪{(m1, z)(m2, z) : z ∈ V2, (m1, m2) ∈ E1} ∪
{(m1, y1)(m2, y2) : (m1, m2) ∈ E1, (y1, y2) ∈ E2}
and
αP

C1
⊗ αP

C2
(m, n) = αP

C1
(m) ∨ αP

C2
(n), γP

C1
⊗ γP

C2
(m, n) = γP

C1
(m) ∨ γP

C2
(n), βP

C1
⊗ βP

C2
(m, n) =

βP
C1
(m) ∧ βP

C2
(n),

αN
C1
⊗ αN

C2
(m, n) = αN

C1
(m) ∨ αN

C2
(n), γN

C1
⊗ γN

C2
(m, n) = γN

C1
(m) ∨ γN

C2
(n), βN

C1
⊗ βN

C2
(m, n) =

βN
C1
(m) ∧ βN

C2
(n),

for all (m, m1, m2, x1, x2, y1, y2) ∈ V1 ×V2. Similarly,
αP

D1
⊗ αP

D2
(m, n) = αP

D1
(m) ∨ αP

D2
(n), γP

D1
⊗ γP

D2
(m, n) = γP

D1
(m) ∨ γP

D2
(n), βP

D1
⊗ βP

D2
(m, n)

= βP
D1
(m) ∧ βP

D2
(n),

αP
D1
⊗ αP

D2
(m1, x1)(m2, x2) = αP

D1
(m1, m2) ∨ αP

D2
(x1, x2), γP

D1
⊗ γP

D2
(m1, x1)(m2, x2) =

γP
D1
(m1, m2) ∨ γP

D2
(x1, x2),

βP
D1
⊗ βP

D2
(m1, x1)(m2, x2) = βP

D1
(m1, m2) ∧ βP

D2
(x1, x2), αN

D1
⊗ αN

D2
(m1, x1)(m2, x2) =

αN
D1
(m1, m2) ∨ αN

D2
(x1, x2),

γN
D1
⊗ γN

D2
(m1, x1)(m2, x2) = γN

D1
(m1, m2) ∨ γN

D2
(x1, x2), βN

D1
⊗ βN

D2
(m1, x1)(m2, x2) =

βN
D1
(m1, m2) ∧ βN

D2
(x1, x2).

Remark 1. The strong product of two BPPFGs is always a BPPFG.

Definition 29. The semi-strong product of two BPPFGs G1 = (C1, D1), where C1 = (αP
C1

, αN
C1

,
γP

C1
, γN

C1
, βP

C1
, βN

C1
), D1 = (αP

D1
, αN

D1
, γP

D1
, γN

D1
, βP

D1
, βN

D1
) with crisp graphs G∗1 = (V1, E1)

and G2 = (C2, D2), where C2 = (αP
C2

, αN
C2

, γP
C2

, γN
C2

, βP
C2

, βN
C2
), D2 = (αP

D2
, αN

D2
, γP

D2
, γN

D2
,

βP
D2

, βN
D2
) with crisp graph G∗2 = (V2, E2), where we assume that V1 ∪ V2 = ∅, is defined to be

the BPPFG G1 ◦ G2 = (α1 ◦ α2, β1 ◦ β2, γ1 ◦ γ2) with crisp graph G∗ = (V1 ×V2, E) such that
E = {(x, y1)(x, y2) : x ∈ V1, (y1, y2) ∈ E2} ∪ {(x1, y1)(x2, y2) : (x1, x2) ∈ E1, (y1, y2) ∈ E2}.
Then
(i)
(α

p
C1
◦ αP

C2
)(x, y) = min(αP

C1
(x), αP

C2
(y)), (αN

C1
◦ αN

C2
)(x, y) = max(αN

C1
(x), αN

C2
(y)) for all (x, y) ∈

V1 ×V2



Symmetry 2021, 13, 1427 11 of 22

(ii)
(γ

p
C1
◦ γP

C2
)(x, y) = min(γP

C1
(x), γP

C2
(y)), (γN

C1
◦ γN

C2
)(x, y) = max(γN

C1
(x), γN

C2
(y)) for all (x, y)

∈ V1 ×V2
(iii)
(β

p
C1
◦ βP

C2
)(x, y) = max(βP

C1
(x), βP

C2
(y)), (βN

C1
◦ βN

C2
)(x, y) = min(βN

C1
(x), βN

C2
(y)) for all (x, y)

∈ V1 ×V2
(iv)
(αP

D1
◦ αP

D2
)((x, y1)(x, y2)) = min(αP

C1
(x), αP

D2
(y1, y2)) and (αP

D1
◦ αP

D2
)((x1, y1)(x2, y2)) =

min(αP
D1
(x1, x2), αP

D2
(y1, y2))

(αN
D1
◦ αN

D2
)((x, y1)(x, y2)) = max(αN

C1
(x), αN

D2
(y1, y2)) and (αN

D1
◦ αN

D2
)((x1, y1)(x2, y2)) =

max(αN
D1
(x1, x2), αN

D2
(y1, y2))

(v)
(γP

D1
◦ γP

D2
)((x, y1)(x, y2)) = min(γP

C1
(x), γP

D2
(y1, y2)) and (γP

D1
◦ γP

D2
)((x1, y1)(x2, y2)) =

min(γP
D1
(x1, x2), γP

D2
(y1, y2))

(γN
D1
◦ γN

D2
)((x, y1)(x, y2)) = max(γN

C1
(x), γN

D2
(y1, y2)) and (γN

D1
◦ γN

D2
)((x1, y1)(x2, y2)) =

max(γN
D1
(x1, x2), γN

D2
(y1, y2))

(vi)
(βP

D1
◦ βP

D2
)((x, y1)(x, y2)) = max(βP

C1
(x), βP

D2
(y1, y2)) and (βP

D1
◦ βP

D2
)((x1, y1)(x2, y2)) =

max(βP
D1
(x1, x2), βP

D2
(y1, y2))

(βN
D1
◦ βN

D2
)((x, y1)(x, y2)) = min(βN

C1
(x), βN

D2
(y1, y2)) and (βN

D1
◦ βN

D2
)((x1, y1)(x2, y2)) =

min(βN
D1
(x1, x2), βN

D2
(y1, y2)).

Example 2. Let us consider two BPPFGs graphs given in Figure 1a,b. Then their semi-strong
product is as follows.
(i) (α

p
C1
◦ αP

C2
)(x, y) = min(αP

C1
(x), αP

C2
(y)), (αN

C1
◦ αN

C2
)(x, y) = max(αN

C1
(x), αN

C2
(y)) for all

(x, y) ∈ V1 ×V2
(ii) (γp

C1
◦ γP

C2
)(x, y) = min(γP

C1
(x), γP

C2
(y)), (γN

C1
◦ γN

C2
)(x, y) = max(γN

C1
(x), γN

C2
(y)) for all

(x, y) ∈ V1 ×V2
(iii) (β

p
C1
◦ βP

C2
)(x, y) = max(βP

C1
(x), βP

C2
(y)), (βN

C1
◦ βN

C2
)(x, y) = min(βN

C1
(x), βN

C2
(y)) for all

(x, y) ∈ V1 ×V2.
Consequently, for vertex u:
(α

p
C1
◦ αP

C2
)(x1, y2) = min(0.6, 0.3) = 0.3, (αN

C1
◦ αN

C2
)(x1, y2) = max(−0.4, −0.5) = −0.4

(γ
p
C1
◦ γP

C2
)(x1, y2) = min(0.1, 0.5) = 0.1, (γN

C1
◦ γN

C2
)(x1, y2) = max(−0.3, −0.2) = −0.2

(β
p
C1
◦ βP

C2
)(x1, y2) = max(0.2, 0.2) = 0.2, (βN

C1
◦ βN

C2
)(x1, y2) = min(−0.2, −0.3) = −0.3

(u, 0.3, −0.4, 0.1, −0.2, 0.2, −0.3)
Similarly, for vertex v, w and x:
(v, 0.3, −0.2, 0.2, −0.3, 0.3, −0.3), (w, 0.2, −0.1, 0.2, −0.3, 0.3, −0.2), (x, 0.2, −0.4, 0.4,
−0.1, 0.3, −0.3)
Now edges of the semi−strong product of two graphs can be obtained by using (iv), (v) and (vi) of
Definition 28
For an edge uv: (0.2, −0.1, 0.1, −0.1, 0.4, −0.2) For an edge wx: (0.1, −0.01, 0.15,
−0.05, 0.5, −0.3)
For an edge vw: (0.3, −0.01, 0.1, −0.3, 0.4, −0.3) For an edge vx: (0.1, −0.2, 0.15,
−0.3, 0.4, −0.3).
Graph shown in Figure 2 is the semi-strong product of the graphs of Figure 1a,b.
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Figure 2. Semi-strong product of bipolar picture fuzzy graphs shown in Figure 1a,b.

Definition 30. The normal product of two BPPFGs H1 = (V1, C1, D1) and H2 = (V2, C2, D2)
with underlying crisp graphs H∗1 = (V1, E1) and H∗2 = (V2, E2), respectively, is defined as a BPPFG
G = G1 • G2 = (A1 • A2, B1 • B2) with underline crisp graph H∗ = (V, E), where V = V1 ×V2
and E = {(u, v)(w, x) : u = w, vx ∈ E2 or v = x, uw ∈ E1} ∪ E = {(u, w)(v, x) : uw ∈ E1, vx
∈ E2} with
(i)
αP

C1•C2
(u, v) = (αP

C1
(u) ∧ αP

C2
(v)), αN

C1•C2
(u, v) = (αN

C1
(u) ∨ αN

C2
(v))

γP
C1•C2

(u, v) = (γP
C1
(u) ∧ γP

C2
(v)), γN

C1•C2
(u, v) = (γN

C1
(u) ∨ γN

C2
(v))

βP
C1•C2

(u, v) = (βP
C1
(u) ∨ βP

C2
(v)), βN

C1•C2
(u, v) = (βN

C1
(u) ∧ βN

C2
(v))

for all u, v ∈ V
(ii)
αP

D1•D2
((u, v)(u, w)) = (αP

C1
(u) ∧ αP

D2
(u, w)), αN

D1•D2
((u, v)(u, w)) = (αN

C1
(u) ∨ αN

D2
(u, w))

γP
D1•D2

((u, v)(u, w)) = (γP
C1
(u) ∧ γP

D2
(u, w)), γN

D1•D2
((u, v)(u, w)) = (γN

C1
(u) ∨ γN

D2
(u, w))

βP
D1•D2

((u, v)(u, w)) = (βP
C1
(u) ∨ βP

D2
(u, w)), βN

D1•D2
((u, v)(u, w)) = (βN

C1
(u) ∧ βN

D2
(u, w))

for all u ∈ V1 and vw ∈ E2
(iii)
αP

D1•D2
((u, w)(v, w)) = (αP

C1
(w) ∧ αP

D2
(u, v)), αN

D1•D2
((u, w)(v, w)) = (αN

C1
(w) ∨ αN

D2
(u, v))

γP
D1•D2

((u, w)(v, w)) = (γP
C1
(w) ∧ γP

D2
(u, v)), γN

D1•D2
((u, w)(v, w)) = (γN

C1
(w) ∨ γN

D2
(u, v))

βP
D1•D2

((u, w)(v, w)) = (βP
C1
(w) ∨ βP

D2
(u, v)), βN

D1•D2
((u, w)(v, w)) = (βN

C1
(w) ∧ βN

D2
(u, v))

for all w ∈ V1 and uv ∈ E1
(iv)
αP

D1•D2
((u, v)(w, x)) = (αP

C1
(u, w) ∧ αP

D2
(v, x)), αN

D1•D2
((u, v)(w, x)) = (αN

C1
(u, w) ∨

αN
D2

(v, x))
γP

D1•D2
((u, v)(w, x)) = (γP

C1
(u, w) ∧ γP

D2
(v, x)), γN

D1•D2
((u, v)(w, x)) = (γN

C1
(u, w) ∨

γN
D2

(v, x))
βP

D1•D2
((u, v)(w, x)) = (βP

C1
(u, w) ∨ βP

D2
(v, x)), βN

D1•D2
((u, v)(w, x)) = (βN

C1
(u, w) ∧

βN
D2

(v, x))
for all uw ∈ E1 and vx ∈ E2.

Definition 31. Let H = H1 • H2 with underlying crisp graph G∗ = (V, E), where V = V1 ×V2,
E = E1 × E2 be the normal product of two BPPFGs H1 = (C1, D1) and H2 = (C2, D2) with crisp
graphs G∗1 = (V1, E1) and G∗2 = (V2, E2), respectively. Then the degree of the vertex (u1, u2) in V
is denoted by d(H1 • H2(u, v)) = d(αP

H1
• αP

H2
)(u, v), d(αN

H1
• αN

H2
), d(γP

H1
• γP

H2
)(u, v), d(γN

H1

• γN
H2
)(u, v), d(βP

H1
• βP

H2
)(u, v), d(βN

H1
• βN

H2
)(u, v) and is defined by

(i)
d(αP

H1
• αP

H2
)(u, v) = ∑

v=x,(u,w)∈E2

(αP
C1
(v) ∧ αP

D2
(u, w)) + ∑

v=x,(u,w)∈E1

(αP
D1
(u, w) ∧ αP

C2
(v)) =
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∑
(u,w)∈E1

(αP
D1
(u, w) ∧ αP

D2
(v, x))

(ii)
d(αN

H1
• αN

H2
)(u, v) = ∑

v=x,(u,w)∈E2

(αN
C1
(v) ∨ αN

D2
(u, w)) + ∑

v=x,(u,w)∈E1

(αN
D1
(u, w) ∨ αN

C2
(v)) =

∑
(u,w)∈E1

(αN
D1
(u, w) ∨ αN

D2
(v, x))

(iii)
d(γP

H1
• γP

H2
)(u, v) = ∑

v=x,(u,w)∈E2

(γP
C1
(v) ∧ γP

D2
(u, w)) + ∑

v=x,(u,w)∈E1

(γP
D1
(u, w) ∧ γP

C2
(v))

= ∑
(u,w)∈E1

(γP
D1
(u, w) ∧ γP

D2
(v, x))

(iv)
d(γN

H1
• γN

H2
)(u, v) = ∑

v=x,(u,w)∈E2

(γN
C1
(v) ∨ γN

D2
(u, w)) + ∑

v=x,(u,w)∈E1

(γN
D1
(u, w) ∨ γN

C2
(v))

= ∑
(u,w)∈E1

(γN
D1
(u, w) ∨ γN

D2
(v, x))

(v)
d(βP

H1
• βP

H2
)(u, v) = ∑

v=x,(u,w)∈E2

(βP
C1
(v) ∨ βP

D2
(u, w)) + ∑

v=x,(u,w)∈E1

(βP
D1
(u, w) ∨ βP

C2
(v))

= ∑
(u,w)∈E1

(βP
D1
(u, w) ∨ βP

D2
(v, x))

(vi)
d(βN

H1
• βN

H2
)(u, v) = ∑

v=x,(u,w)∈E2

(βN
C1
(v) ∧ βN

D2
(u, w)) + ∑

v=x,(u,w)∈E1

(βN
D1
(u, w) ∧ βN

C2
(v))

= ∑
(u,w)∈E1

(βN
D1
(u, w) ∧ βN

D2
(v, x)).

Theorem 3. Let H1 = (V1, C1, D1) and H2 = (V2, C2, D2) be two BPPFGs. If αP
C1
≥ αP

D2
, αN

C1
≤

αN
D2

, γP
C1
≥ γP

D2
, γN

C1
≤ γN

D2
, βP

C1
≤ βP

D2
, βN

C1
≥ βN

D2
αP

C2
≥ αP

D1
, αN

C2
≤ αN

D1
, γP

C2
≥ γP

D1
, γN

C2
≤

γN
D1

, βP
C2
≤ βP

D1
, βN

C2
≥ βN

D1
and αP

D2
≥ αP

D1
, αN

D2
≤ αN

D1
, γP

D2
≥ γP

D1
, γN

D2
≤ γN

D1
, βP

D2
≤ βP

D1
,

βN
D2
≥ βN

D1
, then dH1•H2 (u1, u2) = |V2| dH1(u1) + dH2(u2).

3.2. Homomorphism of Bipolar Picture Fuzzy Graphs

Definition 32. Let H1 and H2 be the two BPPFGs. A homomorphism f : H1→ H2 is the map f :
V1 → V2 satisfying
(a) αP

C1
(u) ≤ αP

C2
( f (u)), αN

C1
(u) ≥ αN

C2
( f (u))

(b) γP
C1
(u) ≤ γP

C2
( f (u)), γN

C1
(u) ≥ γN

C2
( f (u))

(c) βP
C1
(u) ≥ βP

C2
( f (u)), βN

C1
(u) ≤ βN

C2
( f (u))

(d) αP
D1
(uv) ≤ αP

D2
( f (u) f (v)), αN

D1
(uv) ≥ αN

D2
( f (u) f (v))

(e) γP
D1
(uv) ≤ γP

D2
( f (u) f (v)), γN

D1
(uv) ≥ γN

D2
( f (u) f (v))

(f) βP
D1
(uv) ≥ βP

D2
( f (u) f (v)), βN

D1
(uv) ≤ βN

D2
( f (u) f (v))

for all u ∈ V1, uv ∈ E1.

Definition 33. Let H1 and H2 be the two BPPFGs. An isomorphism f : H1 → H2 is a bijective
mapping f : V1 → V2 which satisfies
(a) αP

C1
(u) = αP

C2
f (u), αN

C1
(u) = αN

C2
f (u)

(b) γP
C1
(u) = γP

C2
f (u), γN

C1
(u) = γN

C2
f (u)

(c) βP
C1
(u) = βP

C2
f (u), βN

C1
(u) = βN

C2
f (u)

(d) αP
D1
(u, v) = αP

D2
( f (u) f (v)), αN

D1
(u, v) = αN

D2
( f (u) f (v))

(e) γP
D1
(u, v) = γP

D2
( f (u) f (v)), γN

D1
(u, v) = γN

D2
( f (u) f (v))

(f) βP
D1
(u, v) = βP

D2
( f (u) f (v)), βN

D1
(u, v) = βN

D2
( f (u) f (v))

for all x1 ∈ V1, x1y1 ∈ E1.
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Proposition 2. The isomorphism between BPPFGs is an equivalence relation.

Definition 34. Let H1 and H2 be the two BPPFGs. Then a weak isomorphism h : G1 → G2 is a
bijective map h : V1 → V2 satifying
(a) h is a homomorphism.
(b) αP

C1
(u) = αP

C2
f (u), αN

C1
(u) = αN

C2
f (u)

(c) γP
C1
(u) = γP

C2
f (u), γN

C1
(u) = γN

C2
f (u)

(d) βP
C1
(u) = βP

C2
f (u), βN

C1
(u) = βN

C2
f (u)

for all u ∈ V. Evidently, the co-weak isomorphism fixes only the weights of the vertices.

Definition 35. Let G1, G2 be the two BPPFGs. The co-weak isomorphism h : G1 → G2 is the
bijective map h : V1 → V2 which satisfies
(a) h is a homomorphism
(b) αP

D1
(u, v) = αP

D2
( f (u) f (v)), αN

D1
(u, v) = αN

D2
( f (u) f (v))

(c) γP
D1
(u, v) = γP

D2
( f (u) f (v)), γN

D1
(u, v) = γN

D2
( f (u) f (v))

(d) βP
D1
(u, v) = βP

D2
( f (u) f (v)), βN

D1
(u, v) = βN

D2
( f (u) f (v))

for all uv ∈ E1. Evidently, the co-weak isomorphism fixes only the weights of the edges.

Proposition 3. Weak isomorphism between BPPFGs always induces a partial order relation.

Theorem 4. Let G = (A, B) be a BPPFG and Aut(G) be the set of all automorphisms of G. Then
(Aut(G), ◦) forms a group.

Proof. Let ρ, τ, $ ∈ Aut(G) and let u, v ∈ V. Then

αP
C((ρ ◦ τ)(u)) = αP

C(ρ(τ(u))) ≥ αP
C(ρ(u)) ≥ αP

C(u)

αN
C ((ρ ◦ τ)(u)) = αN

C (ρ(τ(u))) ≤ αN
C (ρ(u)) ≤ αN

C (u)

γP
C((ρ ◦ τ)(u)) = γP

C(ρ(τ(u))) ≥ γP
C(ρ(u)) ≥ γP

C(u)

γN
C ((ρ ◦ τ)(u)) = γN

C (ρ(τ(u))) ≤ γN
C (ρ(u)) ≤ γN

C (u)

βP
C((ρ ◦ τ)(u)) = βP

C(ρ(τ(u))) ≤ βP
C(ρ(u)) ≤ βP

C(u)

βN
C ((ρ ◦ τ)(u)) = βN

C (ρ(τ(u))) ≥ βN
C (ρ(u)) ≥ βN

C (u)

αP
D((ρ ◦ τ)(u)(ρ ◦ τ)(v)) = αP

D(ρ(τ(u)))(ρ(τ(v))) ≥ αP
D((ρ(u))(ρ(v))) ≥ αP

D(uv)

γP
D((ρ ◦ τ)(u)(ρ ◦ τ)(v)) = γP

D((ρ(τ(u)))(ρ(τ(v)))) ≥ γP
D((ρ(u))(ρ(v))) ≥ γP

D(uv)

βP
D((ρ ◦ τ)(u)(ρ ◦ τ)(v)) = βP

D((ρ(τ(u)))(ρ(τ(v)))) ≤ βP
D((ρ(u))(ρ(v))) ≤ βP

D(uv)

αN
D((ρ ◦ τ)(u)(ρ ◦ τ)(v)) = αN

D((ρ(τ(u)))(ρ(τ(v)))) ≤ αN
D((ρ(u))(ρ(v))) ≤ αN

D(uv)

γN
D ((ρ ◦ τ)(u)(ρ ◦ τ)(v)) = γN

D ((ρ(τ(u)))(ρ(τ(v)))) ≤ γN
D ((ρ(u))(ρ(v))) ≤ γN

D (uv)

βN
D((ρ ◦ τ)(u)(ρ ◦ τ)(v)) = βN

D((ρ(τ(u)))(ρ(τ(v)))) ≥ βN
D((ρ(u))(ρ(v))) ≥ βN

D(uv)

Thus, ρ ◦ τ ∈ Aut(G). Similarly, one can easily prove that (ρ ◦ τ)◦ $ = ρ ◦ (τ ◦ $), where ρ,
τ, $ ∈ Aut(G). Additionally, we have the inverses for each ρ ∈ Aut(G) defined as αP

C(ρ
−1)

= αP
C(ρ), αN

C (ρ−1) = αN
C (ρ), γP

C(ρ
−1) = γP

C(ρ), γN
C (ρ−1) = γN

C (ρ), βP
C(ρ
−1) = βP

C(ρ), βN
C (ρ

−1)
= βN

C (ρ). Similarly, there exists e ∈ Aut(G). Let ρ ◦ e = ρ = e ◦ ρ. αP
C((ρ ◦ e)(u)) = αP

C(ρ(u))
∀e, ρ ∈ Aut(G) is the identity element. Hence (Aut(G), ◦) forms a group.
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Proposition 4. Let H = (C, D) be a BPPFG and Aut(H) be the set of all automorphisms of H.
Let h = (αP

h , γP
h , βP

h , αN
h , γN

h , βN
h ) be a BPPFS in Aut(H) defined by

αP
h (ρ) = sup{αP

D(ρ(u), ρ(v))}, αN
h (ρ) = in f {αN

D(ρ(u), ρ(v))}
γP

h (ρ) = sup{γP
D(ρ(u), ρ(v))}, γN

h (ρ) = in f {γN
D (ρ(u), ρ(v))}

βP
h (ρ) = in f {βP

D(ρ(u), ρ(v))}, βN
h (ρ) = sup{βN

D(ρ(u), ρ(v))}

for all (u, v) ∈ V × V, ρ ∈ Aut(H). Then, h = (αP
h , γP

h , βP
h , αN

h , γN
h , βN

h ) is a bipolar picture
fuzzy group on Aut(H).

Proof. Follows from Theorem 3.

3.3. Complete and Strong Bipolar Picture Fuzzy Graphs

Definition 36. A BPPFG G = (C, D) of a graph G∗ = (V, E), where C = {αP
C(u), αN

C (u),
γP

C(u), γN
C (u), βP

C(u), βN
C (u)} and D = {αP

D(u), αN
D(u), γP

D(u), γN
D (u), βP

D(u), βN
D(u)} is

called a complete bipolar picture fuzzy graph (complete BPPFG) if

αP
D(uv) = min(αP

C(u), αP
C(v)), αN

D(uv) = max(αN
C (u), αN

C (v))

γP
D(uv) = min(γP

C(u), γP
C(v)), γN

D (uv) = max(γN
c (u), γN

c (v))

βP
D(uv) = max(βP

C(u), βP
C(v)), βN

D(uv) = min(βN
C (u), βN

C (v))

for all u, v ∈ V.

Example 3. One can easily verify that the graph shown in Figure 1a is a complete BPPFG.

Theorem 5. Let H1 = (C1, D1) and H2 = (C2, D2) be two complete BPPFGs. Then their direct
product H1 ⊗ H2 is also a complete BPPFG.

Proof. As we know that the strong product of BPPFGs is a BPPFG and each pair of vertices
are adjacent, E ⊆ V1 ×V2. Now, for all (u, v1)(u, v2) ∈ E, since H2 is complete
(αP

D1
⊗ αP

D2
)((u, v1), (u, v2)) = αP

C1
(u) ∧ αP

D2
(v1v2) = αP

C1
(u) ∧ αP

C2
(v1) ∧ αP

C2
(v2) = (αP

C1
⊗

αP
C2
)((u)) ∧ (αP

C1
⊗ αP

C2
)((v1, v2))

(αN
D1
⊗ αN

D2
)((u, v1), (u, v2)) = αN

C1
(u) ∨ αN

D2
(v1v2) = αN

C1
(u) ∨ αN

C2
(v1) ∨ αN

C2
(v2) = (αN

C1
⊗

αN
C2
)((u)) ∨ (αN

C1
⊗ αN

C2
)((v1, v2))

(γP
D1
⊗ γP

D2
)((u, v1), (u, v2)) = γP

C1
(u) ∧ γP

D2
(v1v2) = γP

C1
(u) ∧ γP

C2
(v1) ∧ γP

C2
(v2) = (γP

C1
⊗

γP
C2
)((u)) ∧ (γP

C1
⊗ γP

C2
)((v1, v2))

(γN
D1
⊗ γN

D2
)((u, v1), (u, v2)) = γN

C1
(u) ∨ γN

D2
(v1v2) = γN

C1
(u) ∨ γN

C2
(v1) ∨ γN

C2
(v2) = (γN

C1
⊗

γN
C2
)((u)) ∨ (γN

C1
⊗ γN

C2
)((v1, v2))

(βP
D1
⊗ βP

D2
)((u, v1), (u, v2)) = βP

C1
(u) ∨ βP

D2
(v1v2) = βP

C1
(u) ∨ βP

C2
(v1) ∨ βP

C2
(v2) = (βP

C1
⊗

βP
C2
)((u)) ∨ (βP

C1
⊗ βP

C2
)((v1, v2))

(βN
D1
⊗ βN

D2
)((u, v1), (u, v2)) = βN

C1
(u) ∧ βN

D2
(v1v2) = βN

C1
(u) ∧ βN

C2
(v1) ∧ βN

C2
(v2) = (βN

C1
⊗

βN
C2
)((u)) ∧ (βN

C1
⊗ βN

C2
)((v1, v2))

If ((u1, w)(u2, w)) ∈ E, then
(αP

D1
⊗ αP

D2
)((u1, w), (u2, w)) = αP

D1
(u1u2) ∧ αP

C2
(w) = αP

C1
(u1) ∧ αP

C1
(u2) ∧ αP

C2
(w) = (αP

C1
⊗
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αP
C2
)((u1u2)) ∧ (αP

C1
⊗ αP

C2
)(w).

Similarly, one can easily verify that

(αN
D1
⊗ αN

D2
)((u1, w)(u2, w)) = (αN

C1
⊗ αN

C2
)(u1, w) ∨ (αN

C1
⊗ αN

C2
)(u2, w)

(γP
D1
⊗ γP

D2
)((u1, w)(u2, w)) = (γP

C1
⊗ γP

C2
)(u1, w) ∧ (γP

C1
⊗ γP

C2
)(u2, w)

(γN
D1
⊗ γN

D2
)((u1, w)(u2, w)) = (γN

C1
⊗ γN

C2
)(u1, w) ∨ (γN

C1
⊗ γN

C2
)(u2, w)

(βP
D1
⊗ βP

D2
)((u1, w)(u2, w)) = (βP

C1
⊗ βP

C2
)(u1, w) ∨ (βP

C1
⊗ βP

C2
)(u2, w)

(βN
D1
⊗ βN

D2
)((u1, w)(u2, w)) = (βN

C1
⊗ βN

C2
)(u1, w) ∧ (βN

C1
⊗ βN

C2
)(u2, w)

If (u1, v1)(u2, v2) ∈ E, then as H1 and H2 are complete
(αP

D1
⊗ αP

D2
)((u1, v1)(u2, v2)) = αP

D1
(u1u2) ∧ αP

D2
(v1, v2) = αP

C1
(u1) ∧ αP

C1
(v1) ∧ αP

C2
(u1) ∧

αP
C2
(v2).

Similarly, we can show that

(αN
D1
⊗ αN

D2
)((u1, v1)(u2, v2)) = αN

C1
(u1) ∨ αN

C1
(v1) ∨ αN

C2
(u1) ∨ αN

C2
(v2)

(γP
D1
⊗ γP

D2
)((u1, v1)(u2, v2)) = γP

C1
(u1) ∧ γP

C1
(v1) ∧ γP

C2
(u1) ∧ γP

C2
(v2)

(γN
D1
⊗ γN

D2
)((u1, v1)(u2, v2)) = γN

C1
(u1) ∨ γN

C1
(v1) ∨ γN

C2
(u1) ∨ γN

C2
(v2)

(βP
D1
⊗ βP

D2
)((u1, v1)(u2, v2)) = βP

C1
(u1) ∨ βP

C1
(v1) ∨ βP

C2
(u1) ∨ βP

C2
(v2)

(βP
D1
⊗ βP

D2
)((u1, v1)(u2, v2)) = βP

C1
(u1) ∧ βP

C1
(v1) ∧ βP

C2
(u1) ∧ βP

C2
(v2).

Hence, H1 ⊗ H2 is a complete BPPFG.

Definition 37. A BPPFG G = (C, D) on a graph G∗ = (V, E), where C = {αP
C(u), αN

C (u),
γP

C(u), γN
C (u), βP

C(u), βN
C (u)} and D = {αP

D(u), αN
D(u), γP

D(u), γN
D (u), βP

D(u), βN
D(u)} is

said to be a strong bipolar picture fuzzy graph (in short, BPPFG) if

αP
D(uv) = min(αP

C(u), αP
C(v)), αN

D(uv) = max(αN
C (u), αN

C (v))

γP
D(uv) = min(γP

C(u), γP
C(v)), γN

D (uv) = max(γN
c (u), γN

c (v))

βP
D(uv) = max(βP

C(u), βP
C(v)), βN

D(uv) = min(βN
C (u), βN

C (v))

for all u, v ∈ E.

Example 4. The graph shown in Figure 3 is a strong BPPFG.

Figure 3. Strong bipolar picture fuzzy graph.

Remark 2. Every complete BPPFG implies a strong BPPFG but the converse does not exist.
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Definition 38. The complement of a strong BPPFG G = (C, D) of a graph G∗ = (V, E), where
C = {αP

C(u), αN
C (u), γP

C(u), γN
C (u), βP

C(u), βN
C (u)} and D = {αP

D(u), αN
D(u), γP

D(u), γN
D (u),

βP
D(u), βN

D(u)} is a BPPFG G = (C, D) of G∗ = (V, V × V), where C = C = {αP
C(u), αN

C (u),
γP

C(u), γN
C (u), βP

C(u), βN
C (u)} and D = D = {αP

D(uv), αN
D(uv), γP

D(uv), γN
D (uv), βP

D(uv),
βN

D(uv)} is defined by

αP
D(uv) = min(αP

C(u), αP
C(v))− αP

D(uv), αN
D(uv) = max(αN

C (u), αN
C (v))− αN

D(uv)

γP
D(uv) = min(γP

C(u), γP
C(v))− γP

D(uv), γN
D (uv) = max(γN

c (u), γN
c (v))− γN

D (uv)

βP
D(uv) = max(βP

C(u), βP
C(v))− βP

D(uv), βN
D(uv) = min(βN

C (u), βN
C (v))− βN

D(uv)

for all u, v ∈ V, uv ∈ V2.

Example 5. Graph in Figure 4 is the complement of a strong BPPFG shown in Figure 3.

Figure 4. Complement of a strong bipolar picture fuzzy graph given in Figure 3.

Theorem 6. Let G1 = (C1, D1) and G2 = (C2, D2) be the two strong BPPFGs. Then G1 u G2 is
strong BPPFG.

Proof. Let (u1, v1)(u2, v2) ∈ E. Since G1 and G2 are strong BPPFGs, we have
(αP

D1
u αP

D2
)((u1, v1)(u2, v2)) = αP

D1
(u1, v1) ∧ αP

D2
(u2, v2) = αP

C1
(u1) ∧ αP

C2
(u2) ∧ αP

C1
(v1) ∧

αP
C2
(v2) = (αP

C1
u αP

C2
)(u1, v1) ∧ (αP

C1
u αP

C2
)(u2, v2)

(αN
D1
u αN

D2
)((u1, v1)(u2, v2)) = αN

D1
(u1, v1) ∨ αN

D2
(u2, v2) = αN

C1
(u1) ∨ αN

C2
(u2) ∨ αN

C1
(v1) ∨

αN
C2
(v2) = (αN

C1
u αN

C2
)(u1, v1) ∧ (αN

C1
u αN

C2
)(u2, v2)

(γP
D1
u γP

D2
)((u1, v1)(u2, v2)) = γP

D1
(u1, v1) ∧ γP

D2
(u2, v2) = γP

C1
(u1) ∧ γP

C2
(u2) ∧ γP

C1
(v1) ∧

γP
C2
(v2) = (γP

C1
u γP

C2
)(u1, v1) ∧ (γP

C1
u γP

C2
)(u2, v2)

(γN
D1
u γN

D2
)((u1, v1)(u2, v2)) = γN

D1
(u1, v1) ∨ γN

D2
(u2, v2) = γN

C1
(u1) ∨ γN

C2
(u2) ∨ γN

C1
(v1) ∨

γN
C2
(v2) = (γN

C1
u γN

C2
)(u1, v1) ∧ (γN

C1
u γN

C2
)(u2, v2)

(βP
D1
u βP

D2
)((u1, v1)(u2, v2)) = βP

D1
(u1, v1) ∨ βP

D2
(u2, v2) = βP

C1
(u1) ∧ βP

C2
(u2) ∧ βP

C1
(v1) ∧

βP
C2
(v2) = (βP

C1
u βP

C2
)(u1, v1) ∨ (βP

C1
u βP

C2
)(u2, v2)

(βN
D1
u βN

D2
)((u1, v1)(u2, v2)) = βN

D1
(u1, v1) ∧ βN

D2
(u2, v2) = βN

C1
(u1) ∧ βN

C2
(u2) ∧ βN

C1
(v1) ∧

βN
C2
(v2) = (βN

C1
u βN

C2
)(u1, v1) ∧ (βN

C1
u βN

C2
)(u2, v2).

4. Application

Modelling by using graphs has vast applications in various fields of computer science,
mathematics, chemistry, physics, social sciences etc. Usually such types of models require
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more arrangements than merely the adjacencies among the vertices. In the study of social
circuits, it is found that two people know each other i.e., if they are familiar (acquainted),
or whether they are friends of each others (in the real world or in the virtual world such as
Instagram) and so on. We can label each person in a particular group of people by a vertex
u. There is an undirected edge between a vertex u and v if two people has a relationship
with each other. In such type of graphs no multiple edges and usually no loops are
needed. There is an edge between the vertices u and v when there is any acquaintanceship
exists between them. In such graphs there does not exist any loop or multiple edges. In
acquaintanceship graphs, the vertex (node) represents the level of acquaintanceship (how
much a person is socialized or familiar/friendly) of a person while the the edge is the
acquaintanceship between two persons in the social network. Since each vertex has equal
importance in the classical graphs, it is not possible to graph the social networks model
properly through them. In addition, all social units (individual or organization) present
in social groups must be considered with equal importance in the classical graph theory.
However, in the real life, the situation is different. Similarly, every edge (relationship) has
an equal strength in the classical graphs. Moreover, in classical graphs it is assumed that
the relationship between two social units are of equal strength, however, in real life it is
not possible. Thus the acquaintance of the person has fuzzy boundary and hence can be
better represented through the fuzzy graphs. In fuzzy acquaintanceship graph, each vertex
represents the person and its membership value which reflects the strength of acquaintance
of the person within the social group. Hence we present a fuzzy acquaintanceship graph, a
bipolar fuzzy acquaintanceship and consequently a bipolar picture fuzzy acquaintanceship
graph models to find out that how much the person is acquainted (social) within a group.
Bipolar picture fuzzy acquaintanceship graph models would be more efficient to detect the
symmetry or asymmetry existing between entities through the levels of acquaintanceships
in social networks, computer networks etc.

4.1. Fuzzy Acquaintanceship Graph

We take a fuzzy acquaintanceship graph of a social network which is shown in Figure 5.
In which the nodes represent the degree of the level of acquaintance of a person within
the social group. The degree of the level of acquaintance is expressed in its membership
value. Degree of membership states that how much a person is acquainted e.g., X is 60%
acquainted within the group. The edges of a graph describe the acquaintanceship level of
one person with the other person. The membership degree of edges can be considered in
terms of positive percentage e.g., Y has 40% acquaintanceship level with X and so.

Figure 5. Fuzzy acquaintanceship graph.
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4.2. Bipolar Fuzzy Acquaintanceship Graph

The acquaintanceship of a person may be positive or negative. Suppose if a person A
and B belong to a social network but having not a good relationships between them then
the acquaintanceship between them is negative. We can depict such circumstances through
the bipolar fuzzy acquaintanceship graph. Consider a bipolar fuzzy acquaintanceship
graph of a social group shown in Figure 6. In which the nodes are reflecting the degree of
the level of acquaintanceship of a person belongs to a social group and the edges represent
the degree of acquaintanceship levels among the persons. Degree of positive membership
can be interpreted as how much a person acquainted and negative membership tells us that
how much a person losses the the level of acquaintance, X has 50% level of acquaintance
within the group but it loses 20% level in the same group. Edges of the graph reflect
the acquaintance of one person with the other persons in the group. The positive and
negative memberships degrees of edges describes the percentage of positive and negative
acquaintance,for instance e.g., X is acquainted 10% with W and W is not acquainted 10%
with X.

Figure 6. Bipolar fuzzy acquaintanceship graph.

4.3. Bipolar Picture Fuzzy Acquaintanceship Graph

The degree of the acquaintanceship of a person is defined in terms of its member-
ship (positive, negative), non-membership (positive, negative) and neutral membership
(positive, negative) values. The degree of the membership (positive, negative) can be
interpreted as a good acquaintanceship (gaining, losing). By a good acquaintanceship, we
mean the acquaintance with intimacy. The degree of non-membership (positive, negative)
can be interpreted as a bad acquaintanceship (gaining, losing). Bad acquaintanceship
means acquaintance with ill-famed. The degree of neutral membership (positive, negative)
represents that the person having a loose acquaintanceship (gaining, losing). By a loose
acquaintanceship, we mean someone we do not know well enough but we probably see
them around occasionally. In Figure 7, X gains (resp., loses) 30% (resp., 50%) good acquain-
tanceship, he gains 20% (resp., loses 10%) bad acquaintanceship but he gains (resp., loses)
30% (resp., loses 20%) loose acquaintanceship within the social group. On the other hands,
the edges of a graph (Figure 7) reflect the acquaintanceship of one person with another
person. The degree of a membership (positive and negative), non-membership (positive
and negative) and neutral membership(positive and negative) of the edges can be inter-
preted as the percentage of good acquaintanceship (gaining, losing), bad acquaintanceship
(gaining, losing) and non-acquaintanceships (gaining, losing). Furthermore, it is easy to
verify that the values of the edges of a graph in Figure 7 are satisfying the below conditions.

αP
D(uv) ≤ min(αP

C(u), αP
C(v)), αN

D(uv) ≥ max(αN
C (u), αN

C (v))

γP
D(uv) ≤ min(γP

C(u), γP
C(u)), γN

D (uv) ≥ max(γN
C (u), γN

C (v))

βP
D(uv) ≥ max(βP

C(u), βP
C(v)), βN

D(uv) ≤ min(βN
C (u), βN

C (v)).
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Refer to the graph shown in Figure 7, we have
αP

D(UV) ≤min (αP
C(U), αP

C(V)) ⇒ αP
D(UV) ≤min (0.4, 0.2) ⇒ 0.1 ≤ 0.2

αN
D(UV) ≥max (αN

C (U), αN
C (V)) ⇒ αN

D(UV) ≥max (-0.2, -0.1) ⇒ −0.05 ≥ −0.1
γP

D(UV) ≤min (γP
C(U), γP

C(V)) ⇒ γP
D(UV) ≤min (0.1, 0.3) ⇒ 0.1 ≤ 0.1

γN
D (UV) ≥max (γN

C (U), γN
C (V)) ⇒ γN

D (UV) ≥max (-0.3, -0.3) ⇒ −0.2 ≥ −0.3
βP

D(UV) ≥max (βP
C(U), βP

C(V))⇒ βP
D(UV) ≥max (0.2, 0.5) ⇒ 0.6 ≥ 0.5

βN
D(UV) ≤min (βN

C (U), βN
C (V))⇒ βN

D(UV) ≤min (−0.4, −0.4) ⇒ −0.5 ≤ −0.4.

Hence by doing same calculations for the other vertices and edges of the graph shown
in Figure 7, it is easy to verify that the graph given in Figure 7 is a bipolar picture fuzzy
acquaintanceship graph. Similarly, by the values of vertices and edges, one can easily
deduce that the graph in Figure 7 is asymmetric.

Figure 7. Bipolar picture fuzzy acquaintanceship graph.

5. Conclusions

Fuzzy graphs theory plays a significant role in modeling many real world problems
containing uncertainties in different fields such as decision making theory, computer sci-
ence, optimization problems, data analysis, networking etc. In this perspective, a number
of generalizations of fuzzy graph have been introduced to deal with the difficult and
complex real life problems. The picture fuzzy set is a direct extension of both the fuzzy
sets and intuitonistic fuzzy sets. Bipolar fuzzy set is another generalized form of fuzzy
set which is also an effective tool for the multiagent decision analysis. The main goal of
this manuscript is to initiate the concepts of bipolar picture fuzzy graph and its different
characterizations. In this article, first we propose the definition of bipolar picture fuzzy
graphs based on the bipolar picture fuzzy relation. In this article, we have introduced
the terms bipolar picture fuzzy graphs, complete bipolar picture fuzzy graphs and strong
bipolar picture fuzzy graphs along with their several fundamental properties. For the
sake of investigations, we have introduced and applied numerous operations like union,
intersection, complement, ring sum etc. on bipolar picture fuzzy graphs. We also introduce
different types of products of bipolar picture fuzzy graphs like semi-strong product, direct
product, normal products etc. Several other terms such as order and size, path neighbor-
hood degrees, busy values of vertices and edges of bipolar picture fuzzy graphs are also
studied. These terminologies also laid the foundation for the discussion of regular bipolar
picture fuzzy graphs. Furthermore, we also discuss isomorphisms, weak and co-weak
isomorphisms and automorphisms of bipolar picture fuzzy graphs. During this, we have
proved that the set of all automorphisms of a bipolar picture fuzzy graph forms a group.
Finally, we construct a bipolar picture fuzzy acquaintanceship graph which reflects the
importance of our theoretical results produced in this article. Evidently, the network mod-
elled through a bipolar picture fuzzy acquaintanceship graph shown in Figure 7 has no any
symmetry. However, we can also model a symmetric relation through the bipolar picture
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fuzzy acquaintanceship graph. On the same patterns, one could express collaboration
graph, computer networking, social networking, web graphs in the frame of bipolar picture
fuzzy graphs. In general, numbers of applications of bipolar fuzzy graphs and picture
fuzzy graphs have been explored in different fields of social, natural and computer sciences.
Evidently, bipolar picture fuzzy graphs would be an important tool to deal with real world
problems containing uncertainties. Finally, one can extend this work by introducing bipolar
interval-valued picture fuzzy graphs.
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