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Abstract: The interactions between topological covering spaces, homotopy and group structures
in a fibered space exhibit an array of interesting properties. This paper proposes the formulation
of finite covering space components of compact Lindelof variety in topological (C, R) spaces. The
covering spaces form a Noetherian structure under topological injective embeddings. The locally
path-connected components of covering spaces establish a set of finite topological groups, maintaining
group homomorphism. The homeomorphic topological embedding of covering spaces and base
space into a fibered non-compact topological (C, R) space generates two classes of fibers based on
the location of identity elements of homomorphic groups. A compact general fiber gives rise to the
discrete variety of fundamental groups in the embedded covering subspace. The path-homotopy
equivalence is admitted by multiple identity fibers if, and only if, the group homomorphism is
preserved in homeomorphic topological embeddings. A single identity fiber maintains the path-
homotopy equivalence in the discrete fundamental group. If the fiber is an identity-rigid variety,
then the fiber-restricted finite and symmetric translations within the embedded covering space
successfully admits path-homotopy equivalence involving kernel. The topological projections on a
component and formation of 2-simplex in fibered compact covering space embeddings generate a
prime order cyclic group. Interestingly, the finite translations of the 2-simplexes in a dense covering
subspace assist in determining the simple connectedness of the covering space components, and
preserves cyclic group structure.
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1. Introduction

The structures and properties of topological covering space Co of any arbitrary base
space X have been studied in detail by Lubkin [1]. The construction of covering space of
an arbitrary base space is formulated without any requirement of additional local as well
as global topological properties, such as path connectedness. In general, if a continuous
surjection between two spaces is given by p : Co → X then (Co, p) is a locally trivial sheaf [1].
If the local connectedness of the topological space is further relaxed then ∀B ⊂ X such that
the covering space p−1(B) may not be uniquely determined, and as a result the suitable
decomposition is necessary where p−1(B) = ∪

i∈Λ
Ui condition is preserved (Note that Λ

denotes an index set and each Ui is open). In another extreme let us consider the compact-
open topology in the spaces of continuous functions represented by C f (X, Y) between
the topological spaces X, Y. Suppose we consider the open subbases given by OB ={

f ∈ C f (X, Y) : f (A) ⊆ U
}

where A is compact and U = Uo. In this case the topological
properties of Y are preserved by C f (X, Y). Interestingly, if the continuous surjection
p : (Y ∼)→ Y is a covering projection and the function p f : C f (X, (Y ∼))→ C f (X, Y)

is defined as p f (( f ∼ )) = p ◦ ( f ∼), then the function p f (.) is also a covering map if,
and only if, X is Hausdorff and contractible (i.e., compact CW-complex with finitely many
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components) [2]. The characterizations of Hausdorff topological spaces can be made by
employing the concept of compact-covering maps, which is analogous to the definition of
sequence-covering maps [3]. Note that such covering projective spaces can successfully
admit fibrations and injective embeddings. The preservation of fibrations in a covering
space and projection requires specific topological properties. For example, if a topological
space is locally compact then the preservation of covering fibration is maintained by the
local homotopy of the respective topological space [4]. A topological space can admit a class
of coverable topological groups by generalizing the concept of cover if the corresponding
topological space is of a metrizable and connected variety [5].

This paper investigates the nature of interactions between homeomorphically embed-
ded covering (C, R) spaces of Lindelof as well as Noetherian variety (under topological
injective embeddings) and the finite topological groups within the covering spaces under
fibration. The topological properties of corresponding structures and interactions are
presented in detail, in view of algebraic as well as geometric topology. First we present the
associated concepts and the resulting motivation as well as the summary of contributions
made in this paper to address the wider audience. Note that in this paper Λ denotes an
index set and hom(A, B) represents that the structures A and B are homeomorphic to each
other. Moreover, the sets of extended real numbers, complex numbers and positive integers
are denoted as R, C and Z+ respectively. The topological spaces under consideration in this
paper are second-countable Hausdorff spaces. Furthermore, the topological space under a
closed 2-simplex σ2 is denoted by

∣∣σ2
∣∣ whereas

〈
σ2〉 denotes an open 2-simplex, and if p, q

are two continuous paths, then [p] ∗ [q] represents homotopy class path products, where
p 6= q and the relation ∼=H represents a path-homotopy equivalence.

Motivation and Contributions

It is known that the Poincare group displays a set of interactive properties in the
topological covering spaces. It is noted that every filtered Galois group is isomorphic to
the corresponding Poincare filtered group of regular covering space where the topolog-
ical space is a connected variety [1]. Moreover in a covering projection u : Y → X if a
connected topological group G exists in the simply connected base space then there is a
connected covering space group Gc such that u : Gc → G preserves respective covering
projection properties while incorporating group homomorphism [6]. Interestingly, the
varieties of Hausdorff and contractible topological spaces of continuous functions admit
fibrations and topological embeddings under injective inclusions [2]. Recall that the cov-
ering spaces are generally considered to be path-connected topological spaces. There is a
natural way to establish fibrations in a path-connected space X. If X[0,1] denotes the space
of every path in a path-connected topological space X then there is a natural fibration
given by π : X[0,1] → X2 such that π( f ∈ X[0,1]) = ( f (0), f (1)) where f : [0, 1]→ X is
continuous [7]. However a discretely fibered covering space can also be formulated in a
covering projection [8]. These observations suggest the importance of investigating the
properties of interactions of topological groups and covering spaces under embeddings in
a fibered topological (C, R) space which admits Noetherian convex P-separations [9,10].
Hence, the motivating questions can be summarized as: (1) what are the properties of
interactions between the topological groups in homeomorphically embedded compact
Lindelof–Noetherian planar covering spaces and the fibers in a path connected (C, R)
subspace, (2) is it possible to categorize the fibers in such covering spaces to establish a
topological structure in path-connected embeddings in a (C, R) space, and (3) what are
the properties of generated planar simplicial complexes in view of geometric topology
within the respective embedded covering (C, R) spaces under fibration? These questions
are addressed in this paper in relative detail.

The main contributions made in this paper can be summarized as follows. The con-
cepts related to compact Lindelof as well as finite Noetherian (under topological injective
embeddings) covering space components are introduced and the formulation of homomor-
phic topological groups within such covering spaces is presented. Next, the topological
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properties of embeddings of such covering spaces in a fibered topological (C, R) space are
investigated in detail, involving finite as well as symmetric translations restricted on the
identity-rigid fibers. It is shown that the embeddings give rise to two varieties of fibers and
the path-homotopy equivalence is preserved by different topological structures within the
embedded subspace. Moreover a discrete-loop variety of fundamental groups is generated
within the embedded subspace under fibration.

The rest of the paper is organized as follows. The preliminary concepts are presented
in Section 2 as a set of existing definitions and theorems. The definitions related to proposed
topological structures are presented in Section 3. The main results are presented in Section 4.
Finally, Section 5 concludes the paper.

2. Preliminary Concepts

In algebraic topology, the structure and properties of topological spaces are investi-
gated by studying the behaviors of open as well as closed continuous functions within
the space along with their continuous deformations. In this section, a set of classical as
well as contemporary results are presented in relation to the covering spaces, fibrations,
covering homotopy varieties and associated isomorphism of fundamental groups. Let two
topological spaces be denoted as (X, τX) and (Y, τY) such that X = A ∪ B where A = A
and B = B. If we consider two continuous functions f1 : A→ Y and f2 : B→ Y then the
continuity of 〈 f1, f2〉 is preserved if, and only if, the following conditions are satisfied.

E = (A ∩ B) 6= φ,
g : X → Y,

∀x ∈ E, f1(x) = f2(x),
(x ∈ A)⇒ (g(x) = f1(x)),
(x ∈ B)⇒ (g(x) = f2(x)).

(1)

The concept of covering space is central to the algebraic topology. An elementary
neighborhood of a topological space (X, τX) is a subspace of X which can be surjectively
mapped under additional conditions leading to the concept of covering space. The defini-
tion of covering space and projection is presented as follows.

2.1. Definition: Covering Spaces

Let a continuous surjective function be given as u : Y → X where the topological
space X is called a base space. If it is true that ∀B ⊂ X, the function u−1(B) generates
covers which are homeomorphically mapped onto B, then the function u : Y → X is called
a covering projection or covering map.

It is important to note that base subspace B is considered to be path-connected topolog-
ical subspace. If we consider S1 ⊂ C on a complex plane then it results in the formulation
of covering path theorem which is presented as follows [11,12].

Theorem 1. If θ : [0, 1]→ S1 is a path such that θ(0) = 1 then there is a unique covering path
θ : [0, 1]→ S1 such that θ(0) = 0.

The above theorem can be further generalized for any r ∈ R. Suppose a contin-
uous function is defined as f : R→ S1 such that f (r) = e2πri. If it is considered that
∃r, f (r) = θ(0) then the corresponding unique covering path θ(.) can also be formulated.
The respective covering homotopy is a related concept which can be presented in the follow-
ing theorem [11,13,14].

Theorem 2. If the function H : [0, 1]2 → S1 is a homotopy such that H(0, 0) = 1 then the
function H : [0, 1]2 → R is a covering homotopy where H(0, 0) = 0.

Interestingly, the covering homotopy property needs a generalized reconstruction
in the covering spaces by considering the uniqueness of a covering path. If there is a
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continuous function q : [0, 1]→ B and in the corresponding covering space ∃y0 ∈ Y such
that u(y0) = q(0) then the covering homotopy in a covering space can be established as
presented in the following theorem [11].

Theorem 3. If Y is a covering space of topological base space X under surjection u : Y → X
and Hcov : [0, 1]2 → (B ⊂ X) is a homotopy with Hcov(0, 0) = q(0) then there is a covering
homotopy in the covering space given by Hcov : [0, 1]2 → Y such that Hcov(0, 0) = y0.

The fibration in a path-connected topological space can be defined in the respective
covering spaces and in terms of homotopy lifting. Moreover, there exists a special variety
of coverings called compact-covering in a metrizable space. Let us consider two continuous
functions between two topological spaces X, Y which are denoted as i ∈ {0, 1}, fi : Y → X .
The definitions of fibration in covering space, compact-covering and point-countable cover
are presented as follows.

2.2. Definitions: Fibration and Covering Varieties

Let ( f0 ∼) be a lifting of f0 and the function H is a homotopy from f0 to f1. There is
a homotopy H f such that p ◦ H f = H where p : (X ∼)→ X is a covering projection [2].
First, we present the definition of covering fibration and its discrete variety in a covering
space. The definitions of two different notions related to coverings are presented next.

Fibration [8,13]: A fibering of a topological covering space is a structure given by
(Y, X, u, Ω, ηU) where u : Y → X is a covering projection from fibered Y, Ω = {Ui : i ∈ Λ,
Ui ⊂ X} is a collection of open sets (i.e., the neighborhood components in base space),
and ηU : Ui × u−1(Ui)→ Y is continuous. A corresponding G-covering space contains
discrete fibers in the covering projection u : Y → X (i.e., the covering space is a discretely
fibered space).

Compact-covering [15]: A function s : X → Y is called compact-covering if ∀A ⊂
Y, ∃B ⊂ X such that A ⊂ s(B). It is important to note that the covering maps or covering
projections preserve complete metrizability under certain conditions.

Point-countable cover [16]: Suppose P is a cover of space X and F ⊂ P is a finite
subcover. The space X is defined as having a point-countable cover P if (x ∈ U ⊂ X)⇒
(x ∈ (∪

Λ
F)o ⊂ ∪

Λ
F ⊂ U) where U = Uo in X.

The equivalence between multiple covering spaces and the corresponding multiple
covering projections can be established in the presence of covering varieties. If two dif-
ferent covering projections are given as p : Y1 → X and q : Y2 → X then they are called
equivalent if, and only if, there is a homeomorphism h : Y1 → Y2 such that q ◦ h = p. This
leads to the conjugacy theorem of fundamental groups in the covering spaces, as presented
in the following theorem [11,13].

Theorem 4. If p(e0) = q(l0) = x0 ∈ X then H1 = p∗(π1(Y1, e0)) and H2 = q∗(π1(Y2, l0))
are conjugate to the fundamental group π1(X, x0).

Finally, if a covering projection u : Y → X is given then any two universal covering
spaces of a base space are isomorphic to each other. Furthermore the path connectedness
of a topological space (X, τX) preserves the isomorphisms of two fundamental groups
π1(X, x0) and π1(X, x1) in the space.

3. Topological Structures and Definitions

Let a second countable Hausdorff as well as compact normal topological (C, R) space
be represented as (X, τX) such that X ⊂ C× R and an open set Xp ⊂ X contains the point
xp = (zp, rp) where Xp ⊂ C×

{
rp
}

. Suppose Xcov ⊂ C× I where I ⊂ R, is also a (C, R)
space such that Xcov ∩ X = φ and Xcov is a second countably compact space (i.e., a variety
of compact Lindelof space). If B ⊂ Xp is a topological subspace such that B = B and
Np ⊂ B is an open neighborhood of the point xp ∈ Np ⊂ Xp then the surjective function
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given by fc : Xcov → B is a covering map of Np ⊂ B and f−1
c (Np) = {Ai ⊂ Xcov : i ∈ Λ}

represents the respective covering (C, R) spaces. It is considered in this paper that the
covering spaces are finite variety, and as a result Xcov is compact. Consequently, the
covering (C, R) spaces maintain the property that ∀Ai, Ak ∈ f−1

c (Np), Ai ∩ Ak = φ if i 6= k
where i, k < +∞ and each compact cover is a path-connected component. In this paper
the i-th path-connected component of the covering spaces is denoted as Ai ∈ f−1

c (Np)
such that Ai ⊂ C × {ri ∈ I}. Note that the compactness of spaces X and Xcov enables
the formulation of locally homeomorphic embeddings into a non-compact (C, R) space
Y. In this paper, the topological embeddings are employed to construct the embedded
subspaces, preserving local homeomorphism. It is important to note that the topological
injective embeddings forming a Noetherian structure in covering spaces do not consider
the group algebraic standpoints and such embeddings are completely topological in nature.
The reason is that the set of finite groups in covering components in a topological (C, R)
space are distinct. The definitions of groups in covering (C, R) spaces, the corresponding
homeomorphic embeddings of subspaces and the concept of identity fiber are presented in
Sections 3.1–3.4. First we present the concept of compact Lindelof and Noetherian (LN)
variety of covering (C, R) spaces through the topological embeddings and the construction
of a set of homeomorphic finite groups within such spaces. Note that in this paper all
topological spaces are considered to be second-countable Hausdorff spaces in nature and
the topological groups are compactible as well as connected.

3.1. Definition: LN Covering of (C, R) Space

Let (X, τX) be a compact topological (C, R) space and the corresponding embed-
ding within covering spaces generated by f−1

c (Np) be given by the injective function
∀Ai, Ak ∈ f−1

c (Np), gik : Ai → Ak such that hom(Ai, gik(Ai)) condition is preserved. The
covering (C, R) space f−1

c (Np) = {Ai ⊂ Xcov : i ∈ Z+} is defined to be an LN variety if
gik(Ai) ⊂ Ak whenever i < k.

Note that the LN covering path components are finite and countable maintaining the
property that ∪

∀m∈Λ
Am ⊆ Xcov. If we consider a topological (C, R) space (Y, τY) such that

X ∩Y = φ and the space Y is not compact then a set of suitable injective embeddings can
be formulated maintaining local homeomorphisms.

3.2. Definition: Covering (C, R) Space Embeddings

Let Y ⊆ C× R be a non-compact topological (C, R) space where icov : Xcov → Y and
iX : X → Y are homeomorphic topological embeddings. The corresponding embeddings
are called covering (C, R) space embeddings if it preserve icov(Xcov) ∩ iX(X) = φ while
maintaining hom(Xcov, icov(Xcov)) as well as hom(X, iX(X)) properties.

Remark 1. It is important to note that the locally hoemomorphic embeddings retain the covering
map as fcov : icov(Xcov)→ iX(B ⊂ X) such that ∀Ai ∈ f−1

c (Np ⊂ X) the injective and homeo-
morphic topological embedding maintains the property given by hom(Ai, icov(Ai)). Moreover it is
relatively straightforward to observe that ( fcov ◦ icov)(Ai) = (iX ◦ fc)(Ai) within the respective
topological space.

Suppose the surjection w : f−1
c (Np)→ f−1

c (Np) is given as w(Ak) = Ai where k > i.
The finite LN covering of (C, R) spaces can suitably admit a sequence of embeddings
forming a Noetherian topological structure in Y given by (icov ◦ w) : Xcov → Ycov where
icov(Xcov) ⊆ Ycov ⊂ Y. This property assists to establish a set of finite group algebraic
structures in Xcov which are embeddable, retaining the respective group homomorphism
in Y. First, we define the topological group structures and group homomorphism in the
covering spaces under topological embeddings.
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3.3. Definition: Finite Covering (C, R) Space Groups

Let Gcov = {Gi : i ∈ Z+} be a countable set of finite (locally compactible as well as
locally connected) topological groups such that ∀Gi ∈ Gcov, Gi = (Xi ⊂ Ai, ∗i) where
Ai ∈ f−1

c (Np) is a covering (C, R) path component and ∗i : X2
i → Xi is closed in Xi ⊂ Ai

where Xi = (Xi)
o and Ai = Ai. If the LN covering of (C, R) spaces admits the property

that ∃Ai, Ak ∈ f−1
c (Np) such that k = i + 1 and gik(Ai) ⊂ Ak then Gi, Gk ∈ Gcov are

homeomorphic groups if, and only if, hki : Gk → Gi is a group homomorphism.

Remark 2. Note that the structures of Noetherian covering spaces under topological embeddings
should be maintained by hki : Gk → Gi . Hence, we are not restricting to the strictly bijective variety
of hki : Gk → Gi and as result it is considered that ker(hki) ⊂ Xk such that ker(hki)\{ak} 6= φ
maintaining generality, where ak is the identity element. Note that ∀Gi ∈ Gcov the homeomorphic
embedding GY,i = (icov(Xi), ∗i) is also a group in Y. In addition, the locally homeomorphic embed-
dings maintain that ∃ei ∈ GY,i such that ai = i−1

cov(ei) ∈ Xi preserving identity of Gi ∈ Gcov.

3.4. Definition: Identity Fiber and Rigidity

Let the two path components in covering (C, R) spaces generated by f−1
c (Np) be given

as Ai, Ak respectively. A compact fiber µp×I ⊂ Y at iX(xp) ∈ Y is defined to be an identity
fiber if, and only if, µp×I ∩ icov(Xi) = {ei} such that i−1

cov(ei) ∈ Xi. An identity fiber is called
as an identity-rigid variety if µp×I ∩ icov(Xi) = {ei} and µp×I ∩ icov(Xk) = {ek} conditions
are maintained in GY,i and GY,k respectively.

Note that in general we consider that if µp×I and µs×I are two identity fibers then
µp×I ∩ µs×I = φ in (Y, τY). However, if the fiber µp×I in (Y, τY) is identity-rigid then

there exists a real projection πR : µp×I → R such that
∣∣∣Tm

µ,R(πR(ek))
∣∣∣−∣∣∣πR(ei)

∣∣∣= 0 and∣∣∣πR(ek)
∣∣∣−∣∣∣Tm

µ,R(πR(ei))
∣∣∣= 0 where m ∈ Z+, Tµ,R : R→ R is a finite linear projective trans-

lation with respect to the corresponding fiber with symmetry. Recall that the condition
hom(Xcov, icov(Xcov)) preserves the respective group structures due to local homeomor-
phisms in Ycov ⊂ Y. Moreover if µp×I is compact identity-rigid then a corresponding
compact identity-rigid fiber i−1

cov(µp×I) can be found in fibered Xcov maintaining the respec-
tive group homomorphism if, and only if, Xcov is path connected.

4. Main Results

A homeomorphic embedding of LN covering of (C, R) space into a fibered space
enables the formulation of the topological properties related to homotopy structures, where
Ai ⊂ Xcov is a locally path-connected variety. It is important to observe that although the
covering (C, R) space Xcov is a locally path-connected variety, the corresponding embedded
subspace in Ycov ⊂ Y is a locally dense and completely path-connected variety maintaining
local homeomorphisms of (C, R) LN covering components.

Let a non-compact fiber in the topological (C, R) space Y at iX(xp) ∈ Y be given
as µp×I ⊂ Y such that ∀Ai ∈ f−1

c (Np), µp×I ∩ icov(Ai) 6= φ. According to definitions,
the subspaces generated by ( f−1

cov ◦ iX)(Np) in Y are a finite variety. Suppose a set of
continuous functions are formulated as ∀Ai ∈ f−1

c (Np), ∃vi : [0, 1]→ icov(Ai) such that
vi(0) = vi(1) and µp×I ∩ icov(Ai) = {vi(t) : t ∈ {0, 1}}. This results in the formation of a
discrete variety of fundamental group in Y under homotopic path products, as presented
in the following theorem.

Theorem 5. If (icov ◦ f−1
c )(Np) ⊂ Y is an LN covering space in fibered topological (C, R) space Y

then π1(E, y0) is a discrete fundamental group where y0 ∼= iX(xp) and (iX(X) ∪Ycov) ⊂ E ⊂ Y.

Proof. Let (X, τX) be a compact topological (C, R) space and Xcov be a finite LN covering
space. According to the locally homeomorphic embeddings into a fibered (C, R) space
Y, it follows that ∃xp ∈ Xp ∈ τX, iX(xp) ∈ Y and (icov ◦ f−1

c )(Np) ⊂ Ycov is a covering
space of (iX ◦ fc)(Xcov) ⊂ Y such that Ycov ⊂ Y. Suppose µp×I ⊂ Y is a compact fiber such
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that µp×I ∩ iX(Xp) =
{

iX(xp)
}

and µp×I ∩ Ycov = {yk : yk ∈ Y} where yk ∈ icov(Ak ∈
f−1
c (Np)) and k ∈ Z+, k ∈ [1,+∞). Let a continuous function qpk : [0, 1]→ (H ⊂ µp×I) be

considered such that qpk(0) = iX(xp) and qpk(1) = yk in the subspace (iX(X)∪Ycov) ⊂ E ⊂
Y. If we consider a set of continuous functions given by Sv = {vk : [0, 1]→ icov(Ak)} such
that three conditions given by: (1) ∀k∀vk ∈ Sv, vk(0) = vk(1), (2) {vk(t ∈ {0, 1})} = {yk}
and (3) hom(vk([0, 1]), S1) are maintained, then the following path-homotopy equivalence
relation is attained.

∀t ∈ [0, 1], qpk = qpk(1− t),
αk
∼= vk([0, 1]), y0 ∼= iX(xp),

[qpk] ∗ [αk] ∗ [qpk] ∼=H [y0].
(2)

Thus the set Sv in Ycov ⊂ E preserves the path-homotopy equivalence relation in
E ⊂ Y as follows.

1 ≤ k ≤ m, {a, b} ⊂ Z+, a < b,
uab : [0, 1]→ (Hab ⊂ µp×I),

uab(0) = ya, uab(1) = yb,
[qp1] ∗ [α1] ∗ [u12] ∗ [α2] ∗ . . . . . . . ∗[qpm] ∼=H [y0].

(3)

Hence, the topological structure π1(E, y0) admits a discrete variety of fundamental
group at the base point y0 ∼= iX(xp) in the subspace E ⊂ Y. �

Remark 3. It is important to note that the projections on the corresponding real subspaces
denoted as πR : Ai → R of the LN covering path components icov(Aa), icov(Ab) in Y should
maintain the property that πR(Aa) < πR(Ab) and (πR ◦ icov)(Aa) < (πR ◦ icov)(Ab) retaining
homeomorphism. Moreover, the following algebraic identities of path-homotopy are maintained by
π1(E, y0) for m < n.

[αm] ∗ [umn] ∼=H [yn], [αn] ∗ [umn] ∼=H [ym],
[αm] ∗ [umn] ∗ [αn] ∼=H [αn],
[αn] ∗ [umn] ∗ [αm] ∼=H [αm],

[αn] ∗ [umn] ∗ [αm] ∗ [umn] ∼=H [yn].

(4)

If we consider the existence of topological groups in the path-connected LN covering
spaces (i.e., the covering (C, R) spaces are in a dense topological subspace under embed-
dings), then the fiber-connected distributed groups exhibit interesting homotopy properties
if two such topological groups maintain group homomorphism under the identity fiber.
The following theorem presents this interesting observation.

Theorem 6. If Gn = (Xn ⊂ An, ∗n), Gi = (Xi ⊂ Ai, ∗i) are two topological groups in the
respective LN covering of (C, R) spaces and hni : Gn → Gi is a homomorphism, then there exists a
path-homotopy equivalence with respect to an identity fiber in the topological space (Y, τY).

Proof. Let An, Ai ∈ f−1
c (Np ⊂ X) be two path-components of LN covering of (C, R) spaces

in Xcov such that n > i. Suppose we consider an identity fiber µp×I ⊂ Y in the respective
topological (C, R) space such that µp×I ∩ icov(Ai) = {ai} and µp×I ∩ icov(An) = {an}.
If Gn = (Xn ⊂ An, ∗n), Gi = (Xi ⊂ Ai, ∗i) are two topological groups in Xcov main-
taining the corresponding group homomorphism hni : Gn → Gi then ∃Kn ⊂ Gn such that
ker(hni) = Kn. As the fiber µp×I ⊂ Y is an identity fiber so it can be concluded that
(icov ◦ hni)(Kn) = (ai ≡ ei) and en ∈ icov(An)\{an}maintaining generality. Suppose we
consider a continuous function fn : [0, 1]→ (Kn C Gn) such that (icov ◦ fn)(0) = (icov ◦
fn)(1) = an. Note that the covering space Ycov ⊂ Y is a path-connected variety
which allows us to formulate a continuous function q : [0, 1]→ (B ⊂ Ycov) such that
q(0) = an, q(1) = ai where q([0, 1]) ⊂ µp×I . Hence, by considering ∀t ∈ [ 0, 1], q(1− t) ≡
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q(t) we can formulate a set of path-homotopy equivalences in (Y, τY) which are given as:
(1) [(icov ◦ fn)] ∼=H [q] ∗ [q] and (2) [(icov ◦ (hni ◦ fn))] ∼=H [q]. �

Note that the function fn : [0, 1]→ (Kn C Gn) maintains a path-homotopy equiva-
lence at the base point i−1

cov(an) which can be represented as [ fn] ∼=H [i−1
cov(an)]. If we

consider that B ⊂ Ycov is a dense and simply connected subspace then an arbitrary continu-
ous function in the dense subspace also preserves the path-homotopy equivalence property.
This observation is presented in the following lemma.

Lemma 1. Let the covering space B ⊂ Ycov be a simply connected locally dense subspace and
the function q : [0, 1]→ (B ⊂ Ycov) is continuous. If the function q([0, 1]) is arbitrary such
that ∀t1, t2 ∈ (0, 1), (t1 6= t2)⇒ (q(t1) 6= q(t2)) ∧ (q(t) ∩ µp×I = φ) then the path-homotopy
[(icov ◦ fn)] ∼=H [q] ∗ [q] is preserved with respect to the identity fiber µp×I .

Proof. The proof is relatively straightforward. If we consider that B ⊂ Ycov is a sim-
ply connected locally dense subspace then it is path-connected. Hence a continuous
function q : [0, 1]→ (B ⊂ Ycov) can be constructed such that it maintains two conditions
given as: q([0, 1]) ∩ µp×I = {q(0), q(1)} and ∀t1, t2 ∈ (0, 1), (t1 6= t2)⇒ (q(t1) 6= q(t2)) .
Hence, a path-homotopy is formulated in Ycov which is given by [(icov ◦ fn)] ∼=H [q] ∗
[q] where fn : [0, 1]→ (Kn C Gn) is a continuous function such that hom( fn([0, 1]), S1)
is preserved. �

Interestingly, there is interplay between the algebraic properties of group homomor-
phism in LN covering of (C, R) spaces and the homotopy property if the space is a simply
connected variety and the fiber is identity-rigid. Suppose the finite linear translation
T : Y → Y in the respective topological (C, R) space is restricted on the fiber µp×I ⊂ Y
which is denoted as Tµ : µp×I → µp×I . We show in the following theorem that such
translation establishes a path-homotopy equivalence on the identity-rigid fiber µp×I if
µp×I ∩ icov(Kn C Gn) 6= φ.

Theorem 7. If ei ∈ icov(Xi) and en ∈ icov(Xn) are respective identities of GY,i and GY,n such
that µp×I is identity-rigid then the continuous function fn : [0, 1]→ (Kn C Gn) preserves the
path-homotopy equivalence relation under finite translation Tµ : µp×I → µp×I .

Proof. Let Ai, An ⊂ Xcov be two LN covering components of (C, R) space of a neighbor-
hood Np ⊂ X where Ai ⊃ Xi and An ⊃ Xn. Suppose Y is a non-compact topological (C, R)
space such that X ∩Y = φ. If we consider a compact identity-rigid fiber µp×I ⊂ Y then we
can conclude that {ei, en} ⊂ µp×I where ei ∈ icov(Xi) and en ∈ icov(Xn) are the identities
of respective groups GY,i and GY,n. If the function hni : Gn → Gi is a group homomor-
phism then hni(Kn C Gn) = i−1

cov(ei). If the continuous function fn : [0, 1]→ (Kn C Gn)
is constructed such that fn(0) = fn(1) = i−1

cov(en) then we can conclude that [ fn] ∼=H
[i−1

cov(en)]. Hence, if the finite linear translation on fiber Tµ : µp×I → µp×I maintains the
property that ∃m ∈ Z+, 1 ≤ m < +∞, Tm

µ (en) = ei then we can further conclude that
[Tm

µ ((icov ◦ fn))] ∼=H [(icov ◦ hni)(Kn)] in Y. �

Remark 4. It is important to note that in this case Ai, An ⊂ Xcov are considered to be simply connected
topological subspaces such that ∀g ∈ [ fn] in An the continuous function g : [0, 1]→

{
i−1
cov(en)

}
is

nullhomotopic in nature where hom(g([0, 1]), S1) is preserved. If we relax this condition then the
aforesaid property may not always be satisfied if we enforce the condition that π1(An, i−1

cov(en)) is
also a fundamental group in Xcov.

Interestingly, if a group in the LN covering of (C, R) space is a trivial group then an
equivalence relation involving the finite linear translation on an identity-rigid fiber can be
established. This observation is presented in the following lemma.
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Lemma 2. If GY,i is a trivial group then ∃m ∈ [1,+∞) such that (icov ◦ (gin ◦ hni))(Kn) ∼=
Tm

µ (icov(Xi)) in (Y, τY) where the fiber is identity-rigid.

Proof. Let in the topological space (Y, τY) two topological groups be presented as GY,i
and GY,n such that GY,i is a trivial group and n > i in the corresponding LN covering
of (C, R) space Xcov. If there is a group homomorphism hni : Gn → Gi where Kn C Gn
then the function gin : Ai → An maintains the property given by gin(Xi) ⊂ Kn. Moreover
in this case (hni ◦ gin)(Xi) = hni(Kn) condition is preserved by the trivial group GY,i.
Suppose we consider a linear finite translation on the identity-rigid fiber Tµ : µp×I → µp×I
in (Y, τY). Thus ∃m ∈ [1,+∞) such that Tm

µ (icov(Xi)) = (gin ◦ icov)(Xi) in (Y, τY) where
µp×I ∩ icov(Ai) = {ei ∈ Xi} and µp×I ∩ icov(An) = gin(Xi). Hence we can conclude
that (icov ◦ (gin ◦ hni))(Kn) = µp×I ∩ icov(An) and this results in the property given by
(icov ◦ (gin ◦ hni))(Kn) ∼= Tm

µ (icov(Xi)). �

The formulation of path-homotopy equivalences on a single fiber requires the specific
condition about the position of identity elements in a fibered topological (C, R) space. How-
ever a more relaxed version of path-homotopy equivalences can be formulated involving
multiple fibers in the topological (C, R) space where the identity elements are distributed
on multiple fibers for respective group structures within the embedded LN covering of
(C, R) space. This observation is presented in the following theorem.

Theorem 8. If a fibered topological (C, R) space (Y, τY) is dense then ∃B ⊂ Ycov such that the
continuous function q : [0, 1]→ B establishes path-homotopy equivalence where q(0) = ei ∈ µp×I
and q(1) = en ∈ µr×I on the respective identity fibers for finite topological groups GY,i, GY,n under
locally homeomorphic embeddings in (Y, τY).

Proof. Let us consider that hni : Gn → Gi be a group homomorphism in the LN covering
(C, R) space Xcov. Suppose the space B ⊂ Ycov is locally dense and the finite variety of two
topological groups Gn = (Xn, ∗n) and Gi = (Xi, ∗i) are established such that Xi ⊂ Ai ⊂
Xcov, Xn ⊂ An ⊂ Xcov where Xn ∩Xi = φ. Suppose the group identities ai ∈ Xi, an ∈ Xn of
two locally homeomorphic group embeddings are given as icov(ai) = ei and icov(an) = en
for the respective Gi, Gn. Let the two fibers µp×I , µr×I in a dense topological (C, R) space
(Y, τY) maintain the following conditions.

µp×I ∩ µr×I = φ,
{ei}, {en} ∈ τY,

µp×I ∩ icov(Xi) = {ei},
µr×I ∩ icov(Xn) = {en}.

(5)

Note that the respective fibers are identity fibers in this case. Thus there exists a
continuous function q : [0, 1]→ B such that q(0) = ei and q(1) = en in B ⊂ Ycov. Now
consider another continuous function in B ⊂ Ycov given by fn : [0, 1]→ icov(Kn C Gn) such
that fn(0) = fn(1) = en. Note that the locally homeomorphic embeddings preserve group
homomorphism as (icov ◦ hni)(Kn) = {ei}. Hence the continuous function fn([0, 1]) in
dense B ⊂ Ycov maintains a path-homotopy equivalence relation given by [ fn] ∼=H [q] ∗ [q]
involving the corresponding two identity fibers

{
µp×I , µr×I

}
. �

The locally homeomorphic embeddings of LN covering of (C, R) spaces and the
corresponding projections of fibers on a path component of covering (C, R) spaces generate
a cyclic group structure under certain conditions. First, the projections of fibers on real
subspace need to be finite, and second the resulting planar subspace forms a 2-simplex.
This interesting property is presented in the following theorem.
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Theorem 9. If (Y, τY) is a dense topological (C, R) space containing icov(Xcov) then there
exists a cyclic group structure under finite real projections of fibers into embedded LN covering
(C, R) spaces.

Proof. Let (Y, τY) be a dense topological (C, R) space such that (icov ◦ f−1
c )(Np) is the

embedded LN covering (C, R) spaces of corresponding iX(B ⊂ X) such that Np ⊂ B. If
(Y, τY) is a fibered space then one can select three fibers µp×I , µr×I , µs×I ⊂ Y such that
µp×I ∩ (icov(Ap)) =

{
yp
}

, µr×I ∩ (icov(Ar)) = {yr} and µs×I ∩ (icov(As)) = {ys} where
∪

k∈{p,r,s}
Ak ⊂ Xcov. Moreover if the respective projections on real subspace πR : µp×I → R

maintains the property that ∀yp ∈ Y, πR(µp×I) ∈ R\{−∞,+∞} then we can infer that
∃
{

rp, rr, rs
}
⊂ R\{−∞,+∞} such that yp ∈ C ×

{
rp
}

, yr ∈ C × {rr} and ys ∈ C × {rs}.
Thus a planar 2-simplex is formed in Ycov denoted as σ2

Y =
〈
yp, yr, ys

〉
and a corresponding

planar as well as closed triangulated topological subspace is generated which is given
by
∣∣σ2

Y

∣∣⊂ icov(Xcov) . Hence a prime ordered cyclic group Gσ = (Yσ, ·) is formed where
Yσ = πR(σ

2
Y). �

Remark 5. Note that the linear translations restricted to fibers given by ∀yp ∈ Ycov, Tµ

∣∣p : µp×I →
µp×I admits k ∈ {p, r, s}, GTσ = (Tm

µ

∣∣∣k(Yσ), ·) as long as
∣∣∣∣∣∣Tm

µ

∣∣∣k∣∣∣∣∣∣< +∞ where Tm
µ

∣∣∣p(yp) 6=

Tm
µ

∣∣∣r(yr) 6= Tm
µ

∣∣∣s(ys) . However the restriction to be maintained is that the finite fiber-restricted

translations within the space must maintain symmetry condition given by (πR(Tm
µ

∣∣∣p(yp))) · (πR

(Tm
µ

∣∣∣r(yr))) = πR(Tm
µ

∣∣∣s(ys)) so that the cyclic group structure is preserved considering that
πR(ys) represents the identity element.

Corollary 1. Even if the structure σ2
Y =

〈
yp, yr, ys

〉
is generated by µp×I , µr×I , µs×I ⊂ Y in

Ycov such that rp = rr = rs and yp 6= yr 6= ys then ∃Am ⊂ Xcov forming
∣∣σ2

Y

∣∣⊂ icov(Am)
which preserves cyclic group structure successfully as GAσ = (Yσ ⊂ icov(Am), ·) where the group
operation is an abstract algebraic operation.

Proof. The proof is straightforward if we consider that the finite real projection πR : Y → R
generates

{
yp, yr, ys

}
⊂ icov(Am) such that

∣∣σ2
Y

∣∣⊂ icov(Am) and the group operation is an
abstract algebraic operation retaining the prime ordered cyclic group structure. �

Remark 6. It is interesting to note that GAσ = (Yσ ⊂ icov(Am), ·) is largely a relaxed variety
because it does not require the topological condition that every continuous function v : S1 →

〈
σ2

Y
〉

is nullhomotopic in nature. However, in this case there is a restriction with respect to the translation
of
∣∣σ2

Y

∣∣⊂ icov(Am) by employing any finite linear function T : icov(Am)→ icov(Am) in order
to retain the GTAσ = (Tn(Yσ ⊂ icov(Am)), ·) structure for some 1 ≤ n < +∞. Note that some
forms of finite linear translations support GTAσ = (Tn(Yσ ⊂ icov(Am)), ·) structure; however
some other varieties of translations will not. This property is presented in the following theorem.

Theorem 10. If T : icov(Am)→ icov(Am) is a finite linear translation then GTAσ = (Tn(Yσ ⊂
icov(Am)), ·) is a cyclic group if, and only if, icov(Am) is simply connected.

Proof. Let us consider a separation of topological (C, R) subspace W ⊂ icov(Am) such that
W ⊂ Ym1 ∪Ym2 where Ym1 ∩Ym2 = {yw} and W ∩Ym1 6= φ, W ∩Ym2 6= φ. Suppose we con-
sider that

∣∣σ2
Y

∣∣⊂ Ym1 and Tn(Yσ) ⊂ Ym2 such that σ2
TY =

〈
Tn(yp), Tn(yr), Tn(ys)

〉
and 1 ≤

n < +∞. Now consider a continuous function in the subspace given by v : S1 → icov(Am) . If
we impose two contradictory conditions on the restriction of the function v

∣∣W : S1 → icov(Am)
within the separation such that v : S1 →

〈
σ2

Y
〉

is nullhomotopic and v : S1 →
〈
σ2

TY
〉

is not
nullhomotopic then the finite linear translation function T : icov(Am)→ icov(Am) violates
hom(

∣∣σ2
Y

∣∣, ∣∣σ2
TY

∣∣) property and as result such a translation does not exist in icov(Am) support-
ing GTAσ = (Tn(Yσ ⊂ icov(Am)), ·). Hence, the subspace icov(Am) is simply connected by the
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nullhomotopic function v : S1 → icov(Am) and as a result v : S1 →W is also nullhomotopic
in its separations preserving GTAσ = (Tn(Yσ ⊂ icov(Am)), ·) cyclic group structure under
finite translations. �

Corollary 2. If the fiber µp×I ⊂ Y is arbitrary (i.e., general fiber) such that
{

yi = icov(Ai) ∩ µp×I ,
yk = icov(Ak) ∩ µp×I

}
⊂ µp×I where {yi, yk} ⊂ f−1

cov(y0) then the covering projection of funda-
mental group Hk = fcov∗(π1(Ycov, yk)) maintains the property that Hk ⊂ π1(iX(X), y0) if, and
only if, there is a continuous function β : [0, 1]→ Ycov such that β(0) = yi, β(1) = yk.

The proof of aforesaid corollary is straightforward and it shows that a fibered topo-
logical (C, R) space containing embedded LN covering spaces and base space successfully
preserves the classification of covering spaces in terms of fundamental groups. In other
words the interplay of homotopy and topological groups in a fibered topological (C, R)
covering space of LN variety with embeddings does not interfere with the classical results
related to the covering space classifications based on fundamental groups.

5. Conclusions

The topological covering (C, R) spaces enable suitable incorporation of additional
structures enhancing the richness of their properties. The compact Lindelof variety of path-
connected components of covering (C, R) spaces enables the formulation of finite group
algebraic structures within the spaces. The groups can be equipped with homomorphism
and the corresponding finite Noetherian covering spaces formed by homeomorphic em-
beddings allowtable the formulation of various path-homotopy equivalences in the fibered
topological (C, R) space. The interplay of finite homomorphic groups in the path-connected
components of covering spaces and the topological fibers generates a discrete variety of
fundamental group structure within the embedded dense subspaces. The topological fibers
get classified into several varieties depending on the position of identity elements of the em-
bedded homomorphic groups. As a result a wide array of path-homotopy equivalences is
formulated within the embedded LN covering spaces including the base space. The rigidity
of fibers based on identity and the multiplicity of fibers support path-homotopy equiva-
lences considering that the path connected covering components are simply connected in
view of nullhomotopy. Interestingly, the resulting 2-simplex structures and finite as well as
symmetric translations within the fibered covering space assists in determining the simple
connectedness of the path-connected covering components under topological embeddings.
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