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Abstract: Recently, topology optimization of structures with cracks becomes an important topic for
avoiding manufacturing defects at the design stage. This paper presents a comprehensive compara-
tive study of peridynamics-based topology optimization method (PD-TO) and classical finite element
topology optimization approach (FEM-TO) for designing lightweight structures with/without
cracks. Peridynamics (PD) is a robust and accurate non-local theory that can overcome various
difficulties of classical continuum mechanics for dealing with crack modeling and its propagation
analysis. To implement the PD-TO in this study, bond-based approach is coupled with optimality
criteria method. This methodology is applicable to topology optimization of structures with any
symmetric/asymmetric distribution of cracks under general boundary conditions. For comparison,
optimality criteria approach is also employed in the FEM-TO process, and then topology optimization
of four different structures with/without cracks are investigated. After that, strain energy and dis-
placement results are compared between PD-TO and FEM-TO methods. For design domain without
cracks, it is observed that PD and FEM algorithms provide very close optimum topologies with a
negligibly small percent difference in the results. After this validation step, each case study is solved
by integrating the cracks in the design domain as well. According to the simulation results, PD-TO
always provides a lower strain energy than FEM-TO for optimum topology of cracked structures. In
addition, the PD-TO methodology ensures a better design of stiffer supports in the areas of cracks as
compared to FEM-TO. Furthermore, in the final case study, an intended crack with a symmetrically
designed size and location is embedded in the design domain to minimize the strain energy of opti-
mum topology through PD-TO analysis. It is demonstrated that hot-spot strain/stress regions of the
pristine structure are the most effective areas to locate the designed cracks for effective redistribution
of strain/stress during topology optimization.

Keywords: peridynamics; topology optimization; damaged structure; cracks; strain energy mini-
mization

1. Introduction

Many structural systems contain multiple elements that need to be designed as light
as possible for various engineering applications such as aerospace [1,2], automotive [3,4],
and other structural design industries [5–7]. Prior to manufacturing these lightweight
structures, their designs are commonly performed using density, shape and topology
optimization(TO) [8–10] methods. Topology optimization finds out the most effective and
optimal material deposition/distribution on a predefined design domain by optimizing a
given objective function subjected to relevant constraints.

Earlier TO methods involved ill-posed mathematical algorithms that may lead to
in-stable results or occurrence of checkerboard pattern in final topology. Bendsøe et al. [8]
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solved this problem by proposing a homogenized TO method. Later, more popular meth-
ods including the Solid Isotropic Material with Penalization (SIMP) [11,12] technique and
the Evolutionary Structural Optimization (ESO) technique [13] were developed to serve
highly efficient and accurate TO strategies. For instance, the SIMP method was used
in [14] for designing multi-material compliant structures. In addition, the ESO method
was employed for multi-material interpolation [15], whereby a combination of constraints
and a heuristic design variables updating scheme were considered to perform the com-
pliance minimization. Afterwards, bidirectional ESO (BESO) method was implemented
by Querin et al. [16] to check all possible directions, including material removal and also
addition of material to elements according to their high-stress levels.

In general, TO methods can be classified based on discrete or continuous design
variables. For instance, discrete-based approaches were implemented using genetic algo-
rithms [17,18], simulated annealing optimization [19], and non-gradient topology optimiza-
tion (NGTO) [20] to solve TO problems. In addition, continuous density based methods are
employed together with the SIMP algorithm. Essentially, the continuous methods can be
categorized as two main approaches. Its first kind is the proportional approach (PO) [21],
in which the density of the elements is assigned according the value of objective function in
the previous iteration. Apart from PO approach, two decades ago, Sigmund [22] proposed
the optimality criteria approach (OC) for effectively solving TO problems using continuous
density variables. This approach attempts to satisfy a set of analytically obtained criteria
instead of directly optimizing the objective.

During TO, a proper numerical method is needed to perform accurate structural
analysis. To this end, one of the most common technique is classical continuum mechanics
(CCM) formulations that use finite element method (FEM) [23,24]. Since CCM formulation
is established according to surface traction of locally interacting material points/particles,
it mostly deals with a structure as a whole [25,26], and therefore the domain remains con-
tinuous as the structure deforms. For deriving mathematical relations according to mass,
momentum and energy principles in CCM, particles interactions are considered between a
particle and its nearest neighbor. However, such assumptions pose a modeling/analysis
limitation to the CCM applications for structures including damage, discontinuity, internal
feature or defect. In other words, CCM is incapable of dealing with discontinuity since
it use spatial partial differential equations. In the last decades, various research efforts
have been dedicated to overcome the limitations of CCM for handling cracked structures
such as Linear Elastic Fracture Mechanics (LFEM) [27,28] and eXtended Finite Element
Method (XFEM) [29,30]. LFEM dealt with crack near its tip as a singular point and dealt
with critical energy release rate (artifact manipulation of equation). However, for a com-
plex problem with multiple interacting cracks, this method still becomes complex since
it causes the requirement for redefining the body at each step. Thus, solving these struc-
tures with traditional finite element is very complicated. Furthermore, XFEM overcomes
some of these issues as it uses partition of unity in domain regarding property of finite
elements [31]. Later, the near crack tip elements are partially enriched [32] in the XFEM.
Despite these assumptions, XFEM solutions somewhat become mostly inaccurate especially
in the blending regions.

Another approach for accurately performing structural analysis during TO is non-local
continuum theories. These approaches can simply eliminate inefficiency and computa-
tional complexity of CCM formulations for modeling dynamic/static problems of cracked
structures. One of most common non-local theories that have been extensively studied in
the last decade is the reformulation of continuum mechanics, referred to as Peridynamics
(PD) [33,34]. Unlike CCM, the PD uses integrodifferential equations so it doesn’t contain
any spatial derivatives. In this regard, the material does not necessarily require to remain
continuous during the simulations. As such, PD becomes ideal approach to deal with
discontinuities such as cracks and to predict crack initiation and also crack propagation
without adding complexity to the system of equation. Overall, these features make PD a
viable tool to nucleate damage in the domain of structure without adding any singularity.
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Since its first publication, Silling [35] firstly used PD to simulate complex crack growth
in plate structures. Then, the PD have been widely applied to fracture mechanics simu-
lation of various material and structural systems [36–40]. Further studies such as [41,42]
used PD to solve multi-scale structures failure and damage prediction of different materials
in composites and layered heterogeneous materials [43]. Recently, Basoglu [44] introduced
the PD for integrating micro-crack in structure. PD is also used for predicting different type
of fracture modes [45] on various structures including concrete [46], anisotropic [47] and
functionally graded materials [48]. There are very few studies included direct utilization
of PD for TO of cracked structures. The first study in literature was performed by Ke-
fal et al. [49], who integrated bond-based PD with BESO optimization scheme to perform
TO of structures with discontinuities. Bond-based PD can be considered as a non-local
method accommodating symmetric interactions between particles. Later, peridynamics
based topology optimization (PD-TO) approach was extended to [50] gradient-based opti-
mization algorithms for complex engineering problems involving cracks. Most recently,
the PD-TO algorithm was also utilized for multi material topology optimization [51].

To the best of authors’ knowledge, there is no research study on the extensive compar-
ison of PD-TO capabilities for topology optimization of cracked structures with respect to
FEM-TO. In fact, the available studies ([49,50]) only make consecutive comparison between
FEM and PD for performing topology optimization of structures without cracks. However,
there is a need for justifying why TO algorithms should substitute peridynamics for con-
ventional FEM approach in topology optimization of cracked structures. This important
question can only be addressed if the capabilities of the existing FEM-based optimization
algorithms and PD-TO are utilized and compared on the same design domain having an
initial crack. The main and novel aim of the present study is to resolve this challenging
problem by performing comprehensive simulations on scrupulously selected TO case
studies with single/multiple cracks. Here, to be able to model the cracks practically in the
FEM analysis, the finite elements encountered in the cracked regions are removed from the
design domain during the optimization. On the other hand, the PD bonds are broken on
these same regions of the crack line during the PD-TO simulations. Apart from this aspect,
the present study has another crucial novelty in terms of proposing a useful computational
strategy for designing lighter-weight structures via integration of possible cracks at the
design stage. In other words, this study proposes the utilization of PD-TO for locating
cracks in such way that the final topology of cracked structure becomes better (stiffer) than
the pristine one (i.e., having no cracks). Such an approach can be suitable for modeling,
analysis, and optimization steps using PD since the other methods may be incapable of
modeling crack tip singularities during TO steps. Thus, this study also sheds a light to en-
hancement of the topology optimization via PD and cracks and increases the technological
readiness level of the PD-TO methodology by proposing a viable computational strategy
for the first time in literature. The advancements studied herein will be beneficial to enable
the peridynamics and topology optimization community for designing superior structures
with higher stiffness-to-weight ratio.

This paper organized as follows. First, peridynamic theory is briefly explained in
Section 2.1. Then, mathematical formulation of the optimality criteria approach is presented
together with the description of filtering concept in Section 2.2. Afterwards, four case
studies are investigated in Section 3. Except the third benchmark problem (a bracket
which is studied for effect of geometrical complexity), all case studies are considered to
have symmetrical geometry and boundary condition to reflect the effect of symmetry
in the topology optimization of structures with/without cracks. For each case, PD-TO
results of the structures without cracks are compared to those predicted by FEM-TO. After
that, different cracks are included in the design domains of the structures to compare TO
capability of FEM versus PD for the cracked structures. For comparison between local and
non-local approaches, the optimized topologies are assessed by evaluating the strain energy
and displacement results. For the last case study, effect of crack in topology optimization is
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also studied to decrease strain energy by integrating a crack in a stress-concentrated region.
Finally, concluding remarks of the study are provided in Section 4.

2. Materials and Methods
2.1. Peridynamic

In this section, we will summarize the mathematical formulation of Peridynamics-
based topology optimization. PD theory is a non-local continuum theory, where the
structural media is represented by the ensemble of infinitely small volumes, so-called
material points (particles). Unlike local continuum mechanics, each particle interact with
all particles within its support region, named as Horizon, in PD. Figure 1 shows a set of
particles in a region β and horizon of particle i with size of δ. For each material point i
located at position x , the horizon can be described as:

H = x ∈ β : ‖x′ − x‖ ≤ δ, f or δ > 0 (1)

i
b

H

d

Figure 1. Horizon-Family of the material point i.

According to the bond-based theory, the interaction of particles are defined in sym-
metrical pairwise manner, thus the bond forces acting on particle x and x′ have equal
magnitude but with opposite sign f and f′,~f = −~f′.

The pairwise body force density f between x′ and x is function of relative position
vector ξ = x′ − x and displacement vector η = u′ − u as f(u′ − u, x′ − x, t). According
to [34], the equation of motion for sets of particle is defined as :

ρ(x)ü(x, t) =
∫

H
f(u′ − u, x′ − x, t′ − t)dH + b(x, t) (2)

where ρ(x), b(x, t) and ü(x, t) are density, body force and acceleration of particle x, respect-
fully. Relative position vector of two material points in deformed configuration can be
written as y′ − y = (u′ − u)− (x′ − x). Accordingly the stretch between these two material
points can be defined as:

s =
|y′ − y| − |x′ − x|

|x′ − x| (3)

Utilizing the stretch and peridynamic material parameters, the force density vector
can be expressed along the bond direction in the deformed configuration as:

f = cs
y′ − y
|y′ − y| (4)
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where c is the bond constant that can be calculated through equating the strain energy
densities obtained from PD and CCM theories for an isotropic material. For instance, this
material parameter can be explicitly given under plane stress condition for 2-D domain
as [33]:

c =
9E

πhδ3 (5)

where E is young modulus of isotropic material and h is thickness of the domain. Moreover,
micro-potential energy of each bond can be calculated using linear force and displacement
relation of the bond as:

w = w(ξ,η, t) =
1
2

f s|ξ| (6)

Integrating this micro-potential for each bond in the horizon of particle x, the strain
energy density of each particle can be obtained as:

W(x, t) =
1
2

∫
H

w(η,ξ, t)dH (7)

To be able to obtain total strain energy of domain β, one can integrate the strain energy
density over the full field domain as:

U =
∫

β
W(x, t)dβ (8)

Here U is the total strain energy that is used as a compliance in the topology optimiza-
tion process.

To include local cracks into peridynamic simulation, ratio of the number of eliminated
interactions to the total number of initial interactions is defined as a weighted function φ:

φ(x, t) = 1−
∫

H µ(x′ − x, t)dV′∫
H dV′

(9)

where µ is damage initiation value which is a history-dependent scalar-valued function
that can be defined as :

µ(xj − xi, t) =

{
1 i f s(i)(j)(xj − xi, t) < sc

0 otherwise
(10)

where sc is the critical stretch value. This value is dependent on critical elastic energy
release rate of a brittle material, Gc. Reader can refer to [33] for further information about
calculation of sc using Gc . During the PD analysis, the stretch, s(i)(j)(xj − xi, t), between
pairs of material points xi and xj are monitored in each time iteration such that if it exceeds
its critical value, then the bond is failed, i.e., µ = 0, and not reevaluated in the next time
steps. A demonstration of µ function is presented in Figure 2c. For a given material point’s
horizon, the contributions of µ lead to the φ parameter take a value between 0 and 1. If the
φ = 0, then all bonds are broken, otherwise at least there is an intact bond in the horizon.

A demonstration of crack integration to asymmetric distribution of particles in a PD
horizon is illustrated in Figure 2. Initially, the φ is 0 since there is no broken bonds in
Figure 2a. Then, as the half of the bonds are broken in Figure 2b, the φ value is obtained
as 0.5. Overall, as a result of this vital feature of bonds to model damage mechanism,
peridynamics can be used more effectively to handle topology optimization of cracked
structures as compared to local continuum mechanics.
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b

b)

b

a)

f(x,t)=0.5

f

s
sc

m = 1

m = 0

Bond failure

c

c)

Figure 2. (a) no crack definition , all bonds (green lines) are intact, (b) crack definition, some bonds
(orange lines) are exceeded critical stretch, (c) Correlation between f and s and demonstration of
function µ .

To solve Equation (2) numerically, a mesh-less method (i.e., free from element connec-
tivity) is used for spatial part of equation, as such the domain is divided into finite number
of particles having an equivalent volume. Accordingly, Equation (2) is re-written in the
following discrete form for a material point i as:

ρ(xi)üi =

N f

∑
j=1

f(xj − xi, u(xj, t)− u(xi, t))Vj + b(xi, t) (11)

where ui and uj are position vectors corresponding to ith and jth particles, N f is number of
family members available in the horizon of each particle i, and Vj is volume material point
of j.

This study will use quasi-static analysis so the density part of Equation (2) is neglected
and by following [52] the linearized equation through domain β will be derived as :

Kd = b (12)

where K, d and x are global stiffness matrix, displacement vector, and force vector of all
material points. K is symmetric matrix that includes all the stiffness contributions of the
particles in their horizon. For explicit mathematical definition, reader can refer to recent
study of Kefal et al. [49].

2.2. Optimization Statement, Optimality Criteria Method

TO problems in PD are focused on minimization of an objective function G with
constraint of F as:

min
k

G(k)
s.t.

{
F(k) = 0
0 ≤ k(x) ≤ 1, ∀x ∈ β

(13)

where k is design variable varying between 0 (for void) and 1 (for the domain). During the
topology optimization process, Young modulus of particle i can be represented via power
law integration of design variable k as:
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Ei(k) = Ev + (ki)
p(Es − Ev) (14)

where Ev and Es are young modulus of void and solid, respectively. In addition, the p
factor is a penalty parameter defined in the range of 1 ≤ p ≤ 5. Besides, ki value can vary
from minimum design variable kmin up to unity. For the current study, kmin is considered
as 10−3 whereas the penalty parameter is set to as p = 3.

Compliance is an objective function that is used generally in TO with a targeted
volume fraction. Here, compliance can be defined from Equation (12), thus, for the general
optimization scheme, the constraints are as follows:

k
min

U(ki) =
N

∑
i=1

W(xi)Vi
s.t.


KD = B

∑N
i=1 kiVi

∑N
i=1 Vi

= V̄

kmin ≤ ki ≤ 1

(15)

where minimization method is subjected to the global displacements solution, updated
strain field and maximum allowable volume constraint V̄, i.e., ratio of the target volume to
the total volume of the design space.

TO method adopted in the present numerical simulations is the OC method. Essen-
tially, this approach updates the design variable at each iteration via the following criteria:

knew
i =


max(0, ki −mv) i f kiB0.5

i ≤ max(0, ki −mv)
min(0, ki + mv) i f kiB0.5

i ≥ min(0, ki + mv)
kiB0.5

i otherwise

(16)

where move limit is defined as mv = 0.2 and optimality condition Bi can be written as:

Bi =

∂U(ki)
∂ki

λ
∂V(ki)

∂ki

(17)

where λ is Lagrangian multiplier chosen to satisfy the volume constraint. The sensitiv-
ity of material volume ∂V(ki)

∂ki
is equal to 1, and sensitivity of objective function ∂U(ki)

∂ki
is

specified as:

∂U(ki)

∂ki
= −pkp−1

i Us
i (18)

To avoid instabilities and checkerboard patterns [53], a smooth filtering scheme is
utilized during each iteration step of the OC-based TO process. Based on the family of
particle i, the sensitivities are updated using the Shepard interpolation scheme defined as:

∂Û
∂ki

=
∑n

j=1 ψ(rij)
∂U
∂ki

∑n
j=1 ψ(rij)

, where ψ(rij) =

{
rmin − rij f or rij < rmin

0 f or rij > rmin
(19)

where ∂Û
∂ki

is updated sensitivity, rij is distance between particle i and j, rmin is filter radius,
n is number of particles and ψ(rij) is weighting function. Here rmin is set to 3.

At each iteration step, convergence of OC is monitored, and the satisfaction of the
target volume constraint is insured as well. Based on error tolerance τ̄, the convergence
criteria is defined and compared at each step as:

τk =
∑k−5

m=k−9(C
m+5 − Cm)

∑k−5
m=k−9 Cm

≤ τ̄ f ork ≥ 10 (20)

where Cm represent objective function at iteration m.
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3. Results and Discussion

This section investigates effects of crack/damage integration for designing lightweight
structures using topology optimization. Firstly, structures with no cracks are studied using
both PD and FEM based topology optimization algorithms and the obtained results are
compared with each other. After introducing a crack in the design domain for each case
study, the TO simulations are performed again to compare the capability of PD and FEM
in terms of strain energy minimization of cracked structures. For comparison of strain
energy predictions, the final topology obtained from local and non-local approaches are
analyzed utilizing a commercial FEM software, COMSOL, where both displacements and
total strain energies of each case are calculated. During this simulation in COMSOL,
the young modulus of void particles/finite elements is considered using the following
penalization method:

Ev = 10−9Es (21)

where Ev and Es are young modulus of the void and solid elements. Here, elastic modulus
of solid particles/elements is always considered to be 200 GPa. The penalization parameter
is equal to p = 3 and Poisson’s ratio is ν = 1/3. The optimization process begins with
the total solid particles in the design domain and ends after satisfying the proposed
convergence criterion given by Equation (20).

For each model, the constraint boundary conditions, the loading condition and number
of particles/elements are presented. A convergence study is performed to identify best
number of particles/elements in PD/FEM. For sake of clarity in convergence results, one
can refer to Appendix A where the convergence of topology optimization with respect to
particles/elements sizing is provided for sample III. In addition, Section 3 includes the
effect of particle sizing on the topology optimization of cracked structures. Crack/damage
in PD are defined by breaking bonds according to Equations (9) and (10). Similarly for FEM,
when a crack is considered, the elements corresponding to the crack region are removed
from the design domain and the TO is performed accordingly.

Overall, each subsection includes investigation on structures with/without cracks.
Sections 3.1 and 3.2 investigate a simply supported beam and a cantilever beam. By study-
ing these structures, accuracy and capability of PD compared to FEM are demonstrated. In
addition, capability of PD to provide better support even in a simple geometry for cracked
structure is presented. Furthermore, a geometrically more complex structure such as a
bracket topology is examined in Section 3.3, where divergence of FEM from PD especially
in the cracked case is observed. The last benchmark problem is a bridge structure in
Section 3.4. For this problem, PD-TO is introduced as a tool to provide better support in the
bridge domain by utilizing cracks to reduce the strain energy. To this end, first, stress and
strain energy distribution of structure without crack is obtained. Subsequently, for finding
possible crack position, hot-spots with highest stress concentrations are examined. At last,
by including crack/cracks in the hot-spot regions, effect of crack integration in topology
optimization is studied to decrease the overall strain energy as compared to the pristine
structure.

3.1. Sample I—A Simply Supported Beam

First model is a simple benchmark model as depicted in Figure 3. The structure is a
simply supported beam with ratio 1 : 2 ( L = 1 m ). Namely, it is fixed from one corner and
simply supported on other corner on the down edge as shown in Figure 3. The loading is
at the center of other free edge with magnitude of F = 100 N. For PD/FEM discretization,
number of particles/elements along x and y directions are 120 and 60, respectively. Crack
is located at the center of bottom edge with height of d. For the cracked structure, this
value is set to d = 0.2 m whereas it is zero for the structure without crack. Both structures
with/without crack have the same volume fraction of V̄ = 0.4.
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L

2L

F

c
ra
c
k

L

d

Figure 3. Sample I—a simply supported beam, boundary condition and geometry.

First, in the structure without cracks, maximum vertical displacement and total strain
energy obtained from PD and FEM are compared in Table 1 and Figure 4. As it can be
seen from this comparison, there is a very good match between PD and FEM results with
percent error of maximum displacement and total strain energy less than 0.46%. Also, the
final topologies and displacement contours produced by PD are almost identıcal to those
of FEM, thereby verifying the high predictive capability of PD for topology optimization of
structures without crack.

Table 1. Comparison between PD and FEM for sample I—a simply supported beam without cracks.

Method Displacement Diff (%) Strain Energy Diff (%)

PD 4.8393× 10−7 0.459 0.001237 0.406
FEM 4.817× 10−7 - 0.001232 -

Later for the same case, cracked structure is investigated by keeping same volume frac-
tion, boundary constraints and loading conditions. Since the domain itself has symmetry in
geometry and constraint boundary condition, the crack is located in middle of bottom edge
with symmetrical distance from corners of this edge. As can be seen from Figure 5, there
is a small difference between the final topologies generated by two methods. It worth to
notice that the optimum topologies are fully symmetric as the crack and geometry features
possess symmetry. For a quantitative comparison of the results, the total strain energy
and the maximum vertical displacement are listed in Table 2. Here, the percent difference
between FEM and PD for displacement and energy is obtained as 4.5 and 5.3%, respectively.
In addition, it can be observed that FEM based TO produces an optimum topology that
does not support the crack tip as much as what PD-TO does (Figure 5). Despite being a
simple geometry for TO, when cracks are included, the FEM and PD optimal topology
diverge from each other. The comparison of strain energies also reflects this fact such that
FEM-TO results yields a larger total strain energy than PD-TO (Table 2). Hence, the better
capability of PD for TO of cracked structures is revealed. Such minimization of mechanical
response can also be observed for the maximum displacement of two topologies. For
instance, according to the contour distribution in Figure 5, PD-TO and FEM-TO produces
similar total displacement distribution, however the maximum displacement obtained by
PD-TO is approximately 4.5% lower than of FEM (Table 2. Hence, this case study proves
that regardless of geometrical simplicity, in case a crack is located in the structure, PD-TO
produces stiffer geometry than that of FEM-TO.



Symmetry 2021, 13, 1407 10 of 22

Table 2. Comparison between PD and FEM in cracked structure of sample I - a simply supported
beam, displacement and strain energy comparison.

Method Displacement Diff (%) Strain Energy Diff (%)

PD 5.415× 10−7 4.543 0.001375 5.318
FEM 5.672× 10−7 - 0.001452 -

Max = 4.8173 ×10

Max = 4.8394 ×10a) b)

c) d) -7

-7

Figure 4. Comparison between FEM and PD for sample I, structures without cracks, (a) PD model without crack, (b) Dis-
placement results for PD obtained topology, (c) FEM model without crack, (d) Displacement results for FEM obtained
topology.

Max = 5.6723 ×10

Max = 5.4146 ×10a) b)

c) d)

-7

-7

Figure 5. Comparison between FEM and PD for sample I—a simply supported beam, with integrated crack, (a) PD model
with with crack, (b) Displacement results for PD obtained topology, (c) FEM model with crack, (d) Displacement results for
FEM obtained topology.

3.2. Sample II—A Cantilever Beam

This section investigates another benchmark structure, which is a cantilever beam
shown in Figure 6. This beam is fully clamped on left edge and a force F = 100 N is applied
at the center of free edge on the right side. For PD/FEM models, the discretization size
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along x and y direction are 80 and 40, in the given order. The crack is considered to be
in middle of top edge and with height of d = 0.2 m for cracked structure. For topology
optimization of structures without crack, this value is set to 0. Here, the volume ratio V̄ is
considered to be 0.5 for both structures with/without cracks. Similar to Section 3.1, for this
simple geometry, the structure without crack is used for validation, later by including a
crack in design domain, capability of PD is compared to FEM

L

2L

F

c
ra
c
k

d
L/2

Figure 6. Sample II—a cantilever beam, boundary condition and geometry.

Figure 7 shows the optimum topologies obtained by FEM and PD, and associated
vertical displacement contours. For a comprehensive comparison, the maximum displace-
ment and total strain energy are listed in Table 3. As it can be seen, there is a very close
agreement between both methods and the error is less than 0.66%. In the structure without
cracks, the obtained geometries are symmetry since the strain energy are always distributed
symmetrically during optimization steps.

Table 3. Comparison between PD and FEM for sample II—a cantilever beam without crack.

Method Displacement Diff (%) Strain Energy Diff (%)

PD 1.248× 10−6 0.662 0.002447 0.406
FEM 1.239× 10−6 - 0.002437 -

Max = 1.2394 ×10

Max = 1.2476 ×10a) b)

c) d) -6

-6

Figure 7. Comparison between FEM and PD for sample II, no crack, (a) PD model with no crack, (b) Displacement results
for PD obtained topology, (c) FEM model with no crack, (d) Displacement results for FEM obtained topology.
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Similar to previous case study, in PD, the crack is located regarding Equation (9) and in
FEM, elements are excluded from the damaged/cracked region. Figure 8 shows comparison
of final topologies obtained from both methods and corresponding displacement contours.
As it can be seen, there is a slight difference between final topologies and the PD again
provides better support for damaged area. In addition, it produces lower displacement
and strain energy as well. More quantitative comparison can be observed from Table 4,
where the maximum displacement and total strain energy difference between two methods
is calculated as 2.9 to 3.9% respectively. On the other hand, FEM-TO only deals with
constraints of the design domain without considering crack properties. Since PD include
crack directly into the governing equations, it can handle cracked structures more effectively.
Essentially, FEM-TO topology diverges from PD-TO one if a crack is included even in a
simple geometry. It can be indicated that PD-TO produces an optimum topology having
lower strain energy and displacement. In addition, PD-TO optimized topology includes
better support in the cracked regions, thereby providing a less compliant structure for crack
propagation as compared to FEM.

Max = 1.3649 ×10

Max =  1.3251 ×10a) b)

c) d) -6

-6

Figure 8. Comparison between FEM and PD for sample II, with integrated crack, (a) PD model with with crack, (b) Dis-
placement results for PD obtained topology, (c) FEM model with crack, (d) Displacement results for FEM obtained topology.

Table 4. Comparison between PD and FEM in cracked structure of sample II - a cantilever beam,
displacement and strain energy comparison.

Method Displacement Diff (%) Strain Energy Diff (%)

PD 1.325× 10−6 2.916 0.002584 3.927
FEM 1.365× 10−6 - 0.002689 -

3.3. Sample III—A Bracket

In this section, geometrical complexity is enhanced to investigate the PD/FEM perfor-
mance on topology optimization of cracked structures. Basically, as shown in Figure 9, an
L-shaped bracket with size of (2 L = 2 m) is chosen for the topology optimization process.
The bracket is fully fixed at its top edge, and a concentrated force of F = 100 N is applied
at the top corner of right edge. This bracket has a notched area in its design domain which
produces high concentrated hot-spot stress regions during structural analysis. The crack is
included near notched area with the length of d = 0.2 m. For structure without crack, this
value is set to 0. To generate PD/FEM model, the particle spacing or element size in both
directions of the design domain is set to L/30.
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Here, the volume ratio V̄ is 0.5 for both structures with/without cracks. Similar
to previous sections, structure without crack is used for verification purposes and the
cracked case is utilized to compare the capability of PD-TO versus FEM-To for handling TO
problems with cracks. In addition, the effect of discretization size on the optimum topology
is discussed by including smaller mesh/element sizing i.e., L/50.

2L

2L

F
crack

d

L

L

Figure 9. Sample III—a bracket, boundary condition and geometry.

For the validation, Figure 10 shows the optimum topology obtained from FEM and
PD, and related displacement/strain energy. A thorough comparison for total strain energy
and maximum vertical displacement between FEM-TO and PD-TO are presented in Table 5.
From this comparison of figures and values in table, it can be indicated that, PD can estimate
an optimum topology that is almost indistinguishable from that of FEM. In particular, the
percent difference for displacement and energy between two models is less than 0.75%.
Hence, the robustness of PD-TO is validated for a complex geometry without crack.

Max = 1.9496 ×10

Max = 1.9642 ×10

a) b)

c) d)

-6

-6

Figure 10. Comparison between FEM and PD for sample III, no crack, (a) PD model with no crack, (b) Displacement results
for PD obtained topology, (c) FEM model with no crack, (d) Displacement results for FEM obtained topology.
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Table 5. Comparison between PD and FEM for sample III—bracket without cracks.

Method Displacement Diff (%) Strain Energy Diff (%)

PD 1.9642× 10−6 0.749 0.004827 0.106
FEM 1.9496× 10−6 - 0.004822 -

3.3.1. Sample III—Part A

First cracked structure is discretized with 2700 particles/elements, loading and bound-
ary condition are kept similar to those of the structure without crack. Figure 11 shows a
comparison between topologies obtained from these two methods as well as their corre-
sponding displacements. As it can be seen, when the structure become a little bit complex,
the obtained topologies from PD and FEM have significant differences. In addition, dis-
placement contours are following same trend and maximum displacement in PD is lower
than the FEM one. Table 6 shows the comparison of maximum displacement and total
strain energy between FEM and PD. The difference is approximately 24%, and PD has lower
total strain energy and maximum displacement. Since PD-TO provides better support, it
produces tougher structure. Therefore, the displacement in PD is smaller compared to FEM
for the same loading condition. This case study demonstrates the advantages of PD over
FEM for dealing with topology optimization of cracked structures. In fact, PD-TO provides
a superior supports in order to avoid high concentrated stress regions. However, FEM-TO
only satisfies the domain constraints regardless of crack location and its effective properties.

Max = 3.1012 ×10

Max = 2.3715 ×10

a) b)

c) d)

-6

-6

Figure 11. Comparison between FEM and PD for sample III-part a, with integrated crack, (a) PD model with with crack,
(b) Displacement results for PD obtained topology, (c) FEM model with crack, (d) Displacement results for FEM obtained
topology.
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Table 6. Sample III-part a with crack structure, displacement and strain energy comparison.

Method Displacement Diff (%) Strain Energy Diff (%)

PD 2.372× 10−6 23.530 0.005750 23.818
FEM 3.101× 10−6 - 0.007548 -

3.3.2. Sample III—Part B

In the second cracked structure, the particles/elements number is increased to 7500 to
make the model with smaller meshes to investigate effect of sizing. Figure 12 shows a com-
parison of topologies obtained from PD and FEM, and their corresponding displacement.
Accordingly, as it can be seen, even with smaller mesh size, the FEM still diverges from PD
for producing an optimum topology whereas PD provides thicker and rigid support at the
vicinity of cracked regions. Table 7 provides a clear comparison of maximum displacement
and total strain energy between PD and FEM models, where the percent differences are
obtained approximately 18%. Since PD provides a better support in the cracked region,
it has lower maximum displacement and total strain energy as compared to FEM. When
the size of elements is decreased to a level that is enough to model crack as void in the
FEM mesh, the FEM-TO still produces much softer topology than as what PD-TO offers.
Overall, it can be concluded that PD-TO can rigorously handle topology optimization
of complex cracked structures whereas FEM can not overcome this problem even using
smaller meshes.

Max = 3.0213 ×10

Max = 2.470 ×10

a) b)

c) d)

-6

-6

Figure 12. Comparison between FEM and PD for sample III-part b, with integrated crack, (a) PD model with with crack,
(b) Displacement results for PD obtained topology, (c) FEM model with crack, (d) Displacement results for FEM obtained
topology.
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Table 7. Comparison between PD and FEM in cracked structure of sample III—bracket, part b,
displacement and strain energy comparison.

Method Displacement Diff (%) Strain Energy Diff (%)

PD 2.47× 10−6 18.247 0.006100 18.066
FEM 3.021× 10−6 - 0.007444 -

3.4. Sample IV—Bridge

Up to this section, topology optimization of simple and complex geometries are
examined to reveal the advantages of peridynamics for finding an optimum topology of
cracked structures. In addition, this section is devoted to establish a computational strategy
for finding suitable crack locations to reduce the stress level at the hot-spots regions of the
original design domain during topology optimization process. Therefore, the total strain
energy of optimum topology with cracks may be smaller than the one without cracks.

A bridge like structure with length of 3L = 3 m is chosen to demonstrate the application
of the computational strategy proposed herein. As depicted in Figure 13, the left and right
edges of bridge are fully clamped and a uniform pressure with magnitude of F = 100 N/m
is applied on the top edge of bridge. Note that these boundary conditions results in
hot-spots stress regions at the constrained edges of the domain. The discretization size
along x and y directions are equal to 3L/120 in both PD and FEM models. The volume
fraction V̄ is considered as 0.5 for both design domains with/without cracks. The position
and size of cracks, d and w, demonstrated in Figure 13 are carefully designed through
conducting an ‘a priori’ analysis with the known loading conditions. Here, due to the
symmetry of geometry and loading/constraint conditions of bridge, the designed cracks
are symmetrically integrated to the design domain. Note that if the size of crack is set to
(d = 0), the structure becomes crack-free.

3L

P

L

crack

d

crack

d

w w

Figure 13. Sample IV—a bridge, boundary condition and geometry.

First, structure without crack is studied to generate a reference solution for the verifica-
tion purposes. Figure 14 shows the topologies and corresponding displacements contours
obtained by PD-TO and FEM-TO. As seen from this figure, the PD-TO generates very
similar structural geometry to the one predicted by FEM-TO with almost indistinguishable
displacement contours. Moreover, the maximum displacement and total strain energy are
listed and compared in Table 8. From these values, it can be indicated that the PD-TO
results agree very well with those of FEM-TO with the percent error less than 1%. As
validated herein, the optimum topology simply stands for a reference solution in the
comparative study of structure with designed cracks.
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Max = 3.6576 ×10

Max = 3.6215 ×10
a) b)

c) d)

-7

-7

Figure 14. Comparison between FEM and PD for sample IV, no crack, (a) PD model with no crack, (b) Displacement results
for PD obtained topology, (c) FEM model with no crack, (d) Displacement results for FEM obtained topology.

Table 8. Comparison between PD and FEM for sample IV—bridge without cracks.

Method Displacement Diff (%) Strain Energy Diff (%)

PD 3.622× 10−7 0.986 0.001304 0.678
FEM 3.658× 10−7 - 0.001313 -

Furthermore, the strain energy and von-Mises stress distribution are exported from the
optimized topology of structure without crack to find out the logical cracks location. These
positions are determined based on the strains/stresses exceeding 95% of their maximum
values in the domain as shown in Figure 15. Accordingly, a crack with size d = 0.3 m and
with position w = 0.2 m can be included in the topology optimization of the structure for
increasing stiffness of those hot-spot regions.

Possible Position for crack integration

a) b)

Possible Position for crack integration

Figure 15. (a) strain energy (b) stress distribution of sample IV, the high stress concentrated areas are mentioned in
red-dashed boxes.

After embedding the designed cracks in the structure, topology optimization is per-
formed utilizing the peridynamics simulation, which generates the results shown in
Figure 16a,b. When this figure is compared with Figure 14, it can be implied that the
PD-TO analysis of cracked structure provides an optimum topology which supports the
damaged/cracked regions better than the intact one. Also, note that the optimum topolo-
gies of both structures with/without cracks a have symmetric shape as a result of the
symmetry in the strain energy distribution of bridge during TO steps. In Figure 16c,d, the
stress and strain energy nearby the cracked regions are redistributed through the domain
and PD-TO finally reduces total strain energy as compared to that of pristine topology.
This reduction in compliance is about 3.5% as listed in Table 9. Moreover, the improve-
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ment in the optimum topology can be clearly recognized by comparing the maximum
displacement results of the bridge with and without crack, which is about 3.3%, as listed in
Table 9. Overall, it can be concluded that PD can provide an increased stiffness for topology
optimization of a given structure by integrating an intended crack (i.e., having designed
position and size) in the design domain. Hence, consecutive case studies presented in this
study demonstrates the practical utility of PD-TO algorithms for topology optimization of
cracked structures as well as designing lightweight structures through enhancing the hot-
spot regions via including cracks (with designed position and size) during the optimization
process.

Table 9. Sample IV—a bridge, comparison between structures with/without cracks, displacement
and strain energy comparison.

Method Displacement Diff (%) Strain Energy Diff (%)

PD no crack 3.622× 10−7 - 0.001304 -
PD with crack 3.503× 10−7 −3.272 0.001259 −3.502

Max = 4.1204 x10-7

Max = 3.5030 ×10a) b)

c) d)

-7

Figure 16. (a) Obtained topology from PD model with crack, (b) Displacement results for PD obtained topology, (c) strain
energy distribution of sample IV structure with cracks, (d) stress distribution of sample IV structure with cracks.

4. Conclusions

In this research effort, the effect of crack inclusion is studied for designing lightweight
structures utilizing topology optimization method. Peridynamic theory is adopted as the
main algorithm to accurately model cracks within the structure during structural analysis
and optimality criteria method is employed for topology optimization process. Four
different case studies with symmetrical/asymmetrical geometry and boundary conditions
are solved by using PD-TO, and strain energy and displacement results are compared with
those predicted by FEM-TO approach. It is demonstrated that the results of PD-TO have a
very good agreement with the FEM-TO results for structures without cracks with almost
negligible percent error.

To reveal the advantages of PD as compared to FEM, the same TO problems are also
examined by embedding a crack with symmetric position/size in the structural domain. It
is found out that the PD provides much better support for cracked structures such that total
strain energy and maximum displacements estimated by PD-TO are much lower than the
associated FEM results. For simple geometries with crack, the discrepancy between two
methods ranges from 3 to 5%. On the other hand, this percent error increases up to 23% for
a complicated structure with a crack such as a notched bracket. Moreover, this difference is
not affected even if the discretization size is decreased, thereby indicating incompetence of
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FEM approach for handling structures with crack regardless of mesh size. Furthermore,
the results show that existing initial cracks affect the final design of structures in topology
optimization process, and PD-TO is much better tool for integrating crack and dealing with
discontinuity like damages and internal features as compared to FEM. Overall, the main
advantages of PD-TO are twofold: (i) producing optimum topologies with lower strain
energy as compared to that of classical FEM-TO approach and (ii) providing better/stiffer
supports for the cracked regions during the topology optimization.

Finally, a possible crack location is determined for the last case study by inspecting
strain/stress distribution of the structure without crack. Then, PD-TO analysis is performed
by integrating the intended crack within the structural domain. It is shown that the strain
energy in the cracked structure can be reduced by proper allocation of cracks as such
being even less than the original structure without cracks. Hence, it can be concluded that
PD-TO can serve as a viable topology optimization tool for designing lightweight structures
through wisely embedding cracks in structural domain to lower the strain energy density.
Further studies can be performed to investigate the capability of PD-TO for 3D structures
with surface cracks. Also, PD can be employed in structural/geometrical optimization
with cracks by utilizing other optimization algorithms such as genetic algorithm in future
studies.
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Appendix A. Convergence Study for Sample III

This appendix shows the convergence study for sample III as an example for defining
the best number of particles/elements for PD/FEM. By increasing number of particles
from 1200 to 7500, Figure A1 shows different topology obtained from PD and FEM analysis
for structures without crack. As can be seen from this figure, number of particles have
a relatively small effect on the optimum topology until 2700 particles, after which shape
optimization yields to the same topology. A brief comparison of maximum displacement
and total strain energy convergence behaviour of both methods are presented Table A1
and Table A2. According to listed results, neither the refinement of particles nor the
method being used has a very considerable influence in convergence rate of maximum
displacement/total strain energy. Hence, it can be indicated that 3*30*30 discretization can
be suitably used to embed cracks for both PD-TO and FEM-TO simulations, and 3*50*50
one can be utilized to check the effect discretization size on topology otpimzıation of
cracked structures.
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PD

FEM

3x20x20 3x30x30 3x40x40 3x50x50

Figure A1. Convergence of Particles for Increasing Number of Particles for PD/FEM Models.

Table A1. Displacement convergence study.

3 × 20 × 20 Diff (%) 3 × 30 × 30 Diff (%) 3 × 40 × 40 Diff (%) 3 × 50 × 50

PD 1.99× 10−6 1.713 1.9642× 10−6 0.414 1.961× 10−6 0.235 1.956× 10−6

FEM 1.924× 10−6 1.141 1.9496× 10−6 0.195 1.945× 10−6 0.036 1.946× 10−6

Table A2. Strain energy convergence study.

3× 20× 20 Diff (%) 3× 30× 30 Diff (%) 3× 40× 40 Diff (%) 3× 50× 50

PD 0.004833 0.754 0.004827 0.867 0.004862 0.158 0.004869
FEM 0.004704 2.980 0.004822 0.551 0.004832 0.342 0.004849
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