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Abstract: A diagonalization scheme for the shell model mean-field plus isovector pairing Hamil-
tonian in the O(5) tensor product basis of the quasi-spin SUΛ(2) ⊗ SUI (2) chain is proposed. The
advantage of the diagonalization scheme lies in the fact that not only can the isospin-conserved,
charge-independent isovector pairing interaction be analyzed, but also the isospin symmetry break-
ing cases. More importantly, the number operator of the np-pairs can be realized in this neutron
and proton quasi-spin basis, with which the np-pair occupation number and its fluctuation at
the J = 0+ ground state of the model can be evaluated. As examples of the application, binding
energies and low-lying J = 0+ excited states of the even–even and odd–odd N∼Z ds-shell nuclei
are fit in the model with the charge-independent approximation, from which the neutron–proton
pairing contribution to the binding energy in the ds-shell nuclei is estimated. It is observed that
the decrease in the double binding-energy difference for the odd–odd nuclei is mainly due to the
symmetry energy and Wigner energy contribution to the binding energy that alter the pairing
staggering patten. The np-pair amplitudes in the np-pair stripping or picking-up process of these
N = Z nuclei are also calculated.

Keywords: np-pairs; N∼Z nuclei; ground-state np-pair occupation; isovector pairing interaction

PACS: 21.60.Fw; 03.65.Fd; 02.20.Qs; 02.30.Ik

1. Introduction

It is evident from both theoretical and experimental analysis of available data that,
besides neutron–neutron (nn) and proton–proton (pp) pairing, neutron–proton (np) pairing
is equally of importance in N∼Z nuclei [1–9]. Though isoscalar T = 0 np-pairing in nuclei is of
importance in the high-energy regime [10,11], isovector T = 1 np-pairing seems dominating
in thelow-energy regime [9,12], where a shell model mean-field plus isovector pairing may
provide a simple and clear description of the np-pairing correlations [8,13,14]. Exact solutions
of the mean-field plus charge-independent O(5) isovector pairing is available [15,16], in which
the same valence proton and neutron mean-fields and the same isovector paring strengths
among pp-, nn- and np-pairs are assumed. For nuclei away from the N = Z line, not only the
valence neutron and proton mean-fields, but also the isovector pairing strengths among pp-,
nn- and np-pairs may differ, for which ananalytic solution has not been reported.

Shell model calculations with effective interactions focusing on the neutron–proton
pairing correlations have also been carried out. For example, the pair correlation was
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investigated by means of the shell model Monte Ca method performed with the modified
Kuo–Brown interaction and the pairing plus quadrupole–quadrupole interaction within
the fp-shell space [17,18]. The direct diagonalization of the KB3 interaction within the
fp-shell showed that the isovector pairing interaction strength seems 2–3 times stronger
than the isoscalar one when the total isospin is small, as seems to apply in this case [19,20].
Shell model calculations based on effective interactions with respect to the isovector and
isoscalar pairing were also performed within sdfp and f5 pg9 subspaces [7,21]. System-
atic analysis of N ≈ Z nuclei in various model spaces within the extended pairing plus
quadrupole–quadrupole (EPQQ) Hamiltonian has been studied extensively [22–24]. Very
recently, a distinct quartet strcuture was proposed and applied to describe isovector and
isoscalar pairing correlations [25–27]. The isovector and isoscalar pairing in N = Z nuclei
was also studied through an analysis of the shell-model wavefunctions with effective
interactions as reported in [28,29]. Though the agreement of the shell model results with
experimental data suggests that the isovector and isoscalar pairing interactions are realistic,
the actual interaction strengths are subject to considerable uncertainty due to the fact that
the competition of the isovector and isoscalar pairing, deformation and other correlations
lead to a very complex picture.

On the other hand, besides calculations based onan M-scheme or a J-scheme with
various algorithms [30–34], as shown in the pioneering work of Elliott [35–37] and the
further work carried out by Moshinsky and many others [38], group theoretical or algebraic
descriptions of the full shell model are now feasible [39,40], in which the symmetry adapted
bases used are equivalent to the shell model Fock states up to a unitary transformation.
It is also well known [13,14] that the isovector pairing Hamiltonian can be built by using
generators of the quasispin group O(i)(5) (i = 1, · · · , p), where p is the number of orbits
considered in the model space. Thus, the isovector pairing Hamiltonian can be diagonalized
within a given irreducible representation of ⊗p

i=1O(i)(5), of which the basis is simply called
the O(5) tensor product basis.

Though the algebraic scheme presented in this article is specifically designed for the
nuclear isovector pairing problem, it can also be extended for the O(5) nonlinear σ model
that unifies antiferromagnetism and d-wave superconductivity [41]. It is obvious that the
scheme in the SU(2) case, where only like-nucleon pairs are considered, can also be applied
to Heisenberg spin interaction systems. Therefore, the scheme outlined in this work can
also be extended to study spontaneous symmetry breaking processes and the appearance
of Nambu–Goldstone modes [42] due to spontaneous symmetry breaking in quantum
many-body systems [43,44].

This article is an extension of our previous work [45] and a recent Letter [46], in
which neutron–proton pairing in even–even and odd–odd ds-shell nuclei was analyzed
by a shell model mean-field plus isovector pairing model reailzed in the O(5) tensor
product basis adapted to the quasi-spin SUΛ(2) ⊗ SUI(2) chain. In Section 2, the group
theoretical classification of the shell model Fock states, with the isospin related O(5) group
as a subgroup in a given j-orbit, is outlined. In Section 3, the relevant canonical and
non-canonical basis of the O(5) group are briefly reviewed. In Section 4, based on the
results shown in Section 3, the isovector pairing Hamiltonian is diagonalized in the O(5)
tensor product basis adapted to the quasi-spin SUΛ(2) ⊗ SUI(2) chain within which some
quantities related to the np-pairing corrections can be analyzed. As an example, this
diagonalization scheme for the O(5) charge-independent isovector pairing model in a
description of even–even and odd–odd N∼Z ds-shell nuclei are presented in Section 5.
A short summary is presented in Section 6.

2. Fock States in a Given j-Orbit with the Group Theoretical Classification

In the shell model, let {a†
j mj , t mt

, aj mj , t mt} be a set of the (valence) nucleon creation
and annihilation operators in the j-orbit, where mj is the quantum number of the angular
momentum projection, t = 1/2 is the quantum number of the isospin, and mt = 1/2
or −1/2 is the quantum number of the isospin projection, respectively. It is well known
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that the total number of many-particle product (Fock) states, Γ, provided by {Ξ†
φn
|0〉 =

∏n
mj mt a†

j mj ,t mt
|0〉}, where |0〉 is the (valence) nucleon vacuum state, and φn, up to the

permutations among n creation operators, stands for the n unequal sub-indices involved,
is given by

Γ =
4j+2

∑
n=0

(4j + 2))!
n!(4j + 2− n)!

= 24j+2, (1)

which is due to the fact that the maximal number of creation operators involved in the
nonzero many-particle product states is 4j+ 2 restricted by Pauli exclusion. It is obvious [47]
that the set of operators {Qφn ,φ′

n′
= Ξ†

φn
Ξφ′

n′
, 1 ≤ n, n′ ≤ 4j + 2} generate the unitary group

U(24j+2). The set of the many-particle product (Fock) states {Ξ†
φ1
|0〉, · · · , Ξ†

φ4j+2
|0〉} spans

a complex linear space for the fundamental irrep [1, 0, · · · , 0] of U(24j+2). A subset of
{Ξ†

φn
, Ξφn} with n = 1, 2 and Hφφ′ = Ξ†

φ1
Ξφ′1

generate the O(8j + 5) group. Therefore,

U(24j+2)) ⊃ O(8j + 5) with the branching rule [1, 0, · · · , 0] ↓ ( 1
2 , · · · , 1

2 ), where ( 1
2 , · · · , 1

2 )

with 4j + 2 components to be 1
2 is a spinor representation of O(8j + 5). The largest nontrivial

subgroup of O(8j + 5) is O(8j + 4) generated by {Ξ†
φ2

, Ξφ2 , Hφφ′} with the branching rule:

O(8j + 5) ↓ O(8j + 4)
( 1

2 , · · · , 1
2 ) ↓ (

1
2 , · · · , 1

2 , 1
2 )⊕ ( 1

2 , · · · , 1
2 ,− 1

2 ),
(2)

where the irreducible representation (irrep) ( 1
2 , · · · , 1

2 , 1
2 ) of O(8j+ 4) is spanned by {Ξ†

φn
|0〉}

with n even, while ( 1
2 , · · · , 1

2 ,− 1
2 ) is spanned by {Ξ†

φn
|0〉} with n odd. There are several

important subgroup chains useful to provide various complete basis vectors of the irreps of
O(8j + 4), among which the following chain

O(8j + 4) ⊃ (O(5) ⊃ OT(3)⊗ON (2))⊗
(
Sp(2j + 1) ⊃ SUJ(2)

)
(3)

is used to label the complete basis vectors with nj valence nucleons in the j-orbit, where T
is the quantum number of the total isospin, J is the quantum number of the total angular
momentum and N (j) = n̂j/2−Ωj with Ωj = j + 1/2, in which n̂j is the number operator
of valence nucleons in the j-orbit.

The generators of the O(5) group in this case are (J = 0, T = 1) pair creation operators
A†

µ(j), pair annihilation operators Aµ(j), the number operator of valence nucleons in the
j-orbit n̂j and isospin operators Tµ(j), with

A†
µ(j) = ∑

mj>0
(−)j−mj a†

jmj ,tmt
a†

j−mj ,tmt
for µ = 1 or − 1, (4)

corresponding to mt = 1/2 or −1/2,

A†
0(j) =

√
1
2

 ∑
mj>0

(−)j−mj a†
jmj ,t 1/2a†

j−mj ,t−1/2 + ∑
mj>0

(−)j−mj a†
jmj ,t−1/2a†

j−mj ,t 1/2

, (5)

n̂j = ∑
mjmt

a†
jmj ,tmt

ajmj ,tmt , T+(j) = ∑
mj

a†
jmj ,t 1/2ajmj ,t−1/2, T−(j) = ∑

mj

a†
jmj ,t−1/2ajmj ,t 1/2,

T0(j) =
1
2 ∑

mj

(
a†

jmj ,t 1/2ajmj ,t 1/2 − a†
jmj ,t−1/2ajmj ,t−1/2

)
, (6)

of which the commutation relations among the above O(5) generators were explicitly
shown in [15]. The generators of Sp(2j + 1) are given by

∑
mt

(
a†

j,tmt
ãj,tmt

)(k)
ρ

(7)
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with k = 1, 3, · · · , 2j, and ρ = k, k− 1, · · · ,−k for a given k, where ãjmj ,tmt = (−)j+mj aj−mj ,tmt ,

and
(

AjBj
)(k)

ρ
stands for the angular momentum coupling with j⊗ j ↓ k. It should be stated

that the generators of Sp(2j + 1) shown in (7) are commutative with the O(5) generators
shown in (4)–(6).

Thus, for a fixed number of valence particles nj, the labels of the O(8j + 4) irrep are
redundant; the complete basis vectors of (3) may be denoted as∣∣∣∣ (v1, v2)

nj β T MT
; α J MJ

〉
. (8)

where in (8), v1 and v2, being positive integers or positive half-integers simultaneously,
are used to label a possible irrep of O(5) with v1 ≥ v2 ≥ 0, which are related to the O(5)
seniority number of nucleons v and the reduced isospin t with v1 = Ωj − v/2 and v2 = t.
v and t indicate that there are v nucleons coupled to the isospin t, which are free from
the angular momentum J = 0 and T = 1 pairs. v and t also label the corresponding irrep
of Sp(2j + 1) simultaneously represented by a two-column Young diagram 〈2v, 12t〉 with
v + 2t boxes in the first column and v boxes in the second column. β and α in (8) are
multiplicity labels for given T and J needed in the reduction O(5) ↓ OT(3) ⊗ ON (2) and
Sp(2j + 1) ↓ SUJ(2), respectively.

For the O(5) seniority zero case corresponding to v = t = 0 and J = 0 discussed in this
work, the quantum numbers of Sp(2j + 1) and SUJ(2) are thus neglected. In this case, for a
given number of valence nucleons nj, the basis vectors (8) can be constructed by using nj
(J = 0, T = 1) pair creation operators A+

µ (j) coupled to isospin T as shown in [48].

3. O(5) in the SUΛ(2)⊗ SUI(2) and OT (3)⊗ ON (2) Basis

As shown in Section 2, in the O(5) seniority zero J = 0 case, one only needs to deal
with the O(5) irreps. Besides the non-canonical OT(3) ⊗ ON (2) basis presented in Section 2,
the (branching multiplicity-free) canonical SUΛ(2) ⊗ SUI(2) basis seems more convenient
for our purpose. The generators of O(5) in the canonical SUΛ(2) ⊗ SUI(2) basis are denoted
as {ςρ, τρ, Uµν} with −1 ≤ ρ ≤ 1 and − 1

2 ≤ µ, ν ≤ 1
2 , where {ς+, ς−, ς0} and {τ+, τ−, τ0}

generate the subgroup SUΛ(2) and SUI(2), respectively, and the double tensor operators
{Uµν} satisfy the following Hermitian conjugation relation:(

Uµν

)†
= (−)µ+ν U−µ−ν. (9)

The commutation relations of the O(5) generators are given by

[ς0, ς±] = ±ς±, [ς+, ς−] = 2ς0,

[τ0, τ±] = ±τ±, [τ+, τ−] = 2τ0,

[ς0, Uµν] = µ Uµν, [τ0, Uµν] = ν Uµν,

[ς±, Uµν] =
√
( 1

2 ∓ µ)( 1
2 ± µ + 1)Uµ±1ν, [τ±, Uµν] =

√
( 1

2 ∓ ν)( 1
2 ± ν + 1)Uµν±1,

[U± 1
2

1
2
, U± 1

2−
1
2
] = ±ς±, [U 1

2±
1
2
, U− 1

2±
1
2
] = ±τ±, [U± 1

2
1
2
, U∓ 1

2−
1
2
] = −(ς0 ± τ0).

(10)

Alternatively, within the i-th orbit of the spherical shell model, after a linear transformation,
the i-th copy of O(5) generators in the non-canonical O(5)⊃OT(3)×ON (2) basis may be
expressed as [14,49]
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A†
1(i) = ς

(i)
+ , A†

−1(i) = τ
(i)
+ , A1(i) = ς

(i)
− , A−1(i) = τ

(i)
− , A†

0(i) = U(i)
1
2

1
2

, A0(i) = −U(i)
− 1

2−
1
2

,

T+(i) = −
√

2U(i)
1
2−

1
2

, T−(i) = −
√

2U(i)
− 1

2
1
2

, T0(i) = ς
(i)
0 − τ

(i)
0 , N̂ (i) = ς

(i)
0 + τ

(i)
0 ,

(11)

where A†
1(i), A†

0(i), A†
−1(i) [A1(i), A0(i), A−1(i)] are the i-th orbit pp-, np- and nn-pair cre-

ation (annihilation) operators, respectively, {T+(i), T−(i), T0(i)} generate the i-th copy of
the isospin subgroup OT(3), and N̂ (i) generates that of the ON (2) related to the number
operator n̂i of the valence nucleons with N̂ (i) = n̂i/2− Ωi and Ωi = ji + 1/2. Addi-
tionally, {ς(i)+ = A†

1(i), ς
(i)
− = A1(i), ς

(i)
0 = n̂π,i/2− Ωi/2} and {τ(i)

+ = A†
−1(i), τ

(i)
− =

A−1(i), τ
(i)
0 = n̂ν,i/2−Ωi/2}, where n̂π,i and n̂ν,i with n̂i = n̂π,i + n̂ν,i are the valence pro-

ton and neutron number operator, respectively, and generate the SUΛ(2) ⊗ SUI(2) related
to the proton quasispin Λi = (Ωi − vπ,i)/2 and the neutron quasispin Ii = (Ωi − vν,i)/2,
where vπ,i and vν,i indicate that there are vπ,i and vν,i protons and neutrons not coupled
into J = 0 pp- and nn-pairs are proton and neutron seniority numbers, respectively.

For any orbit, since O(5)↓O(4) is simply reducible and O(4) is locally isomorphic to
SUΛ(2) ⊗ SUI(2), the canonical (branching multiplicity-free) orthonormal basis vectors of
O(5)⊃SUΛ(2) ⊗ SUI(2)⊃UΛ(1) ⊗ UI(1) may be labeled as∣∣∣∣∣∣

(v1, v2)

Λ = 1
2 (u1 + u2), I = 1

2 (u1 − u2)
µ ν

〉
, (12)

where (u1, u2) labels possible irrep of O(4) within the given irrep (v1, v2) of O(5) are
restricted by v2 ≤ u1 ≤ v1 and −v2 ≤ u2 ≤ v2. The Casimir (invariant) operator of O(5)
can be expressed as

C2(O(5)) = 2 ς · ς + 2 τ · τ + ∑µν(−1)µ+νUµνU−µ−ν

= ∑ρ

(
A†

ρ Aρ + Aρ A†
ρ

)
+ T · T + N̂ 2,

(13)

where l · l ≡ 1
2 (l+l− + l−l+) + l2

0 . Eigenvalues of C2(O(5)), ς · ς and τ · τ under (12) are
given by  C2(O(5))

ς · ς
τ · τ

∣∣∣∣∣∣
(v1, v2)

Λ = 1
2 (u1 + u2), I = 1

2 (u1 − u2)
µ ν

〉
= v1(v1 + 3) + v2(v2 + 1)

Λ(Λ + 1)
I(I + 1)

∣∣∣∣∣∣
(v1, v2)

Λ = 1
2 (u1 + u2), I = 1

2 (u1 − u2)
µ ν

〉
,

(14)

where u1 = v1 − q and u2 = v2 − p with p = 0, 1, · · · , 2v2 and q = 0, 1, · · · , v1 − v2.
For a given irrep (v1, v2) of O(5), the matrix representations of O(5) ⊃ SUΛ(2) ⊗

SUI(2) are given by [14,49]〈
Λ− 1

2
I + 1

2

∥∥∥∥U
∥∥∥∥ Λ

I

〉
= −

[
(v1 − I + Λ + 1)(v2 − I + Λ)(v1 −Λ + I + 2)(v2 −Λ + I + 1)

2(2Λ)(2I + 2)

] 1
2
,

〈
Λ− 1

2
I − 1

2

∥∥∥∥U
∥∥∥∥ Λ

I

〉
=

[
(v1 + I + Λ + 2)(v2 + I + Λ + 1)(v1 −Λ− I + 1)(Λ + I − v2)

2(2Λ)(2I)

] 1
2

(15)

with the SUΛ(2)⊗ SUI(2) conjugation relation

〈
Λ
I

∥∥∥∥U
∥∥∥∥ Λ′

I′

〉
=

[
(2I′ + 1)(2Λ′ + 1)
(2I + 1)(2Λ + 1)

] 1
2

(−)I′−I+Λ′−Λ+1
〈

Λ′

I′

∥∥∥∥U
∥∥∥∥ Λ

I

〉
, (16)
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where the phase factor shown in [49] has been corrected.
The branching rule of O(5) ↓ SUΛ(2)⊗ SUI(2) can be expressed as

O(5) ↓ SUΛ(2) ⊗ SUI(2)
(v1, v2) ↓

⊕v1−v2, 2v2
q=0, p=0

(
Λ = 1

2 (v1 + v2 − p− q), I = 1
2 (v1 − v2 + p− q)

)
,

(17)

which can be verified by the sum rule

Dim(O(5), (v1, v2)) = ∑v1−v2
q=0 ∑2v2

p=0(v1 + v2 − p− q + 1)(v1 − v2 + p− q + 1)

= 1
6 (2v1 + 3)(v1 − v2 + 1)(v1 + v2 + 2)(2v2 + 1),

(18)

where Dim(O(5), (v1, v2)) is the dimension of the O(5) irrep (v1, v2) with v1 ≥ v2 ≥ 0.

4. Diagonalizaing the Mean-Field Plus Isovector Pairing Hamiltonian

In this section, the spherical mean-field plus isovector pairing model is diagonalized
in the O(5) tensor product basis. In general, the model Hamiltonian with p orbits may be
written as [49]

Ĥ0 =
p

∑
i=1

επ,i n̂π,i +
p

∑
i=1

εν,i n̂ν,i − Gπ A†
1 A1 − Gν A†

−1 A−1 − Gπν A†
0 A0, (19)

where A†
ρ = ∑

p
i=1 A†

ρ(i) and Aρ = ∑
p
i=1 Aρ(i) are collective pairing operators, επ,i and εν,i

are valence proton and neutron single-particle energies in the i-th orbit, Gπ > 0, Gν > 0
and Gπν > 0 are pp-, nn- and np-pairing interaction strength, respectively.

The Hamiltonian (19) is digonalized in the subspace of tensor product ⊗p
i=1O(i)(5)

basis when p j-orbits of the shell model are considered, in which each copy of the O(5)
irreducible representation (irrep) is adapted to the O(5)⊃SUΛ(2) ⊗ SUI(2)⊃UΛ(1) ⊗ UI(1)
chain. Though the procedure for seniority nonzero cases is the same, in this article, only
seniority-zero configuration with total angular momentum J = 0 constructed from the
tensor product of p copies of the O(5) irrep (Ωi, 0) is considered, in which only equal proton
and neutron quasispin Ii = Λi in the i-th orbit is allowed according to (17). Moreover,
though the proton and neutron single-particle energies with επ,i 6= εν,i can be considered
in the same way, only επ,i = εν,i = εi (i = 1, · · · , p) case, which is a good approximation for
N∼Z nuclei, is considered in the following for simplicity, with which the Hamiltonian (19)
diagonalized in the seniority-zero configuration is suitable to describe low-lying J = 0+

states of both even–even and odd–odd N∼Z nuclei. Eigenstates of (19) within the seniority-
zero J = 0+ subspace are denoted as

|ξ; n, MT〉 = ∑
Λini MT(i)

C
ξ; Λ1,··· , Λp
n1mT(1),··· , npmT(p)

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
n1, mT(1); · · · ; np, mT(p)

〉
, (20)

where the eigenstate |ξ; n, MT〉with total number of valence nucleons n = ∑
p
i=1 ni and total

isospin projection MT = ∑
p
i=1 mT(i) is expended in terms of the p copies of O(5) tensor

product basis ⊗p
i=1(Ωi, 0) in the O(5) ⊃ SUΛ(2) ⊗ SUI(2) ⊃ UΛ(1) ⊗ UI(1) labeling

scheme with

Ii = Λi, µi =
1
4 (ni + 2mT(i)− 2Ωi), νi =

1
4 (ni − 2mT(i)− 2Ωi) (21)

according to the relations shown in (11), C
ξ; Λ1,··· , Λp
n1mT(1),··· , npmT(p) is the corresponding expansion

coefficient, and ξ labels the ξ-th eigenstate with the same n and MT. The number of np-
pairs in the i-th orbit for a given Λi can be expressed in terms of the neutron (proton)
quasi-spin as
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qi = Ωi − 2Λi (22)

for i = 1, 2, · · · , p. Matrix elements of each terms involved in (19) under the O(5) tensor
product basis ⊗p

i=1(Ωi, 0) in the O(5) ⊃ SUΛ(2) ⊗ SUI(2) ⊃ UΛ(1) ⊗ UI(1) labeling
scheme needed in the diagonalization can be evaluated according to the results shown in
the previous section, of which the analytical expressions are provided in Appendix A.

It is obvious that this diagonalization scheme is equivalent to the MT-scheme realized
in the O(5) ⊃ SUΛ(2)⊗ SUI(2) ⊃ UΛ(1)⊗UI(1) basis. The results produced from this
scheme have been checked against the exact solution of the model for up to three pairs
shown in [15,50], which shows that the results produced from this scheme are exactly the
same as those obtained from the formalism provided in [15,50].

It can be verified that the ground-state isospin projection of the model for the seniority-
zero case is always MT = 0 when the number of valence nucleon pairs k = n/2 is even,
while it is always MT = 1 when k = n/2 is odd. The total isospin T is a good quantum
number of the system only when x = 1. In the single-j case,

k = 0, 1, 2, · · · , 2Ω. (23)

The possible total isospin T of the system when x = 1 is given by

T =

{
k, k− 2, k− 4, · · · , for k ≤ Ω,
2Ω− k, 2Ω− k− 2, · · · , for k > Ω.

(24)

One can check that the dimension of the subspace spanned by the above pair states is
exactly equal to the dimension of the O(5) irrep (Ω, 0) with

Dim(O(5); (Ω, 0)) = 1
6 (2Ω + 3)(Ω + 1)(Ω + 2) =

∑Ω
k=0 ∑

[k/2]
q=0 (2(k− 2q) + 1) + ∑2Ω

k=Ω+1 ∑
[(2Ω−k)/2]
q=0 (2(2Ω− k− 2q) + 1). (25)

Hence, when Gπ = Gν = Gπν, the lowest isospin is T = 1 when k is odd, and T = 0 when
k is even. Let Gπ = Gν = G and Gπν = x. Figure 1 shows the lowest MT = 0 and MT = 1
level energies as functions of x for even k = 250 shown in panel (a) and odd k = 251 shown
in panel (b) for Ω = 1000, where the single-particle energy term is a constant and not
involved in the plot. For the even k case, the MT = 0 level is with T = 0, while MT = 1
level is with T = 1 when x = 1. The ground state in this case is always the lowest MT = 0
state. For the odd k case, on the contrary, there is a gap between the MT = 0 and MT = 1
levels, which gradually diminishes with the increasing of x. The MT = 0 and MT = 1 levels
degenerate when x = 1 leads to the T = 1 ground state in this case. This feature persists
in realistic systems as well. For example, panels (c,d) show MT = 0 and MT = 1 levels
generated from (19) for n = 12 and n = 10 valence particles, respectively, in the ds-shell
with j1 = 1/2, j2 = 3/2 and j3 = 5/2 orbits, for which the experimentally deduced single-
particle energies above the 16O core with ε1 = ε1s1/2 = −3.27 MeV, ε2 = ε0p3/2 = 0.94 MeV,
ε3 = ε0d5/2

= −4.14 MeV [50], together with the nn- and pp-pairing strengths being set as
Gπ = Gν = 1 MeV, are used. Due to the mean-field contribution, the energy gap between
MT = 0 and MT = 1 levels is less changed with the variation of x for k even, in comparison
to the single orbit case, even when x = 0, while the two levels still degenerate when x = 1
for odd k case leading to the T = 1 ground state.
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Figure 1. The lowest MT = 0 (solid curve) and MT = 1 (dashed curve) level energies per particle of the
model for (a) n = 500 and (b) n = 502 valence nucleons confined in a single Ω = j + 1

2 = 1000 orbit,
(c) n = 12 and (d) n = 10 valence nucleons in the ds-shell as functions of x = Gπν/G, where Gπ =

Gν = G, the constant single-particle energy term is not involved in (a,b), while ε1 = ε1s1/2 = −3.27 MeV,
ε2 = ε0p3/2 = 0.94 MeV, ε3 = ε0d5/2

= −4.14 MeV and G = 1 MeV are used for (c,d).

When p j-orbits are involved in the charge-independent case with Gπ = Gν = Gπν,
since ρ of the pairing operator A+

ρ can be taken as three different values, for a given number
of pairs k = n/2, the possible irrep constructed by the k pairing operators {A+

ρ } denoted
by a Young diagram [λ]k of the permutation group Sk with exactly k boxes can have three
rows at most. Due to the Schur–Weyl duality relation between the permutation group Sk
and the unitary group U(N), the Young diagram [λ]k of Sk can be regarded as the same
irrep of U(N). Since [λ]k contains three rows at most, in this case it can be considered to be
equivalent to the same irrep of U(3). Therefore, the possible isospin quantum number T for
a given irrep [λ]k of Sk can be obtained by the reduction U(3) ↓ OT(3) for [λ]k ↓ T, of which
the branching rule gives the possible values of T for given number of pairs k = n/2 of the
system [15].

5. Model Applications to Even–Even and Odd–Odd ds-Shell Nuclei

As an application of this diagonalization scheme, some low-lying J = 0+ level energies
of even–even and odd–odd A = 18–28 nuclei up to the half-filling in the ds-shell outside the
16O core are fitted by the Hamiltonian (19) in the charge-independent approximation with
Gπ = Gν = Gπν = G, of which some results have been reported in our recent paper [46].
In order to fit binding energies of these nuclei, in addition to the mean-field plus isovector
pairing, the Coulomb energy and the symmetry energy with the isospin-dependent part of
the Wigner energy contribution to the binding are considered with the expression of the
model Hamiltonian, the same as that used in [46,50]:

Ĥ = −BE(16O) + ε(n) n̂ + Ĥ0 + Ec(A, Z)− Ec(16, 8) + αsym(A)T · T, (26)

where Ĥ0 is given by (19) with επ,i = εν,i = εi, which is the mean-field plus isovector
pairing Hamiltonian (19) in the charge-independent form, BE(16O) = 127.619 MeV is the
binding energy of the 16O core taken as the experimental value, ε(n) is the average binding
energy per valence nucleon in the ds-shell with j1 = 1/2, j2 = 3/2 and j3 = 5/2 orbits, of
which the number of valence nucleons dependent form is determined from a best fit to
binding energies of all ds-shell nuclei considered.

Ec(A, Z) = 0.699
Z(Z− 1)

A1/3

(
1− 0.76

(Z(Z− 1))1/3

)
(MeV) (27)
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is the Coulomb energy [51] and

αsym(A) =
1
A

(
134.4− 203.6

A1/3

)
(MeV) + δα(A) (28)

is the parameter of the symmetry energy and the isospin-dependent part of the Wigner
energy contribution, of which the first term is taken to be the empirical global symmetry
energy paramter provided in [51], while δα(A) is adjusted according to the experimental
binding energy of the nucleus with a given mass number A needed to account for local
deviation from the first term when the Hamiltonian (26) is used; the experimentally
deduced single-particle energies above the 16O core with ε1 = ε1s1/2 = −3.27 MeV, ε2 =
ε0p3/2 = 0.94 MeV, ε3 = ε0d5/2

= −4.14 MeV [50] are used for the mean-field, and in order
to achieve a better fit for low-lying J = 0+ level energies, the overall isovector pairing
strength is taken as G = 1 MeV for all the nuclei considered. The best fit yields

ε(n) = −2.3325− 0.2000 n− 0.0125 n2 (MeV), (29)

of which the first constant is very close to the value of the average binding energy per
valence nucleon with εavg = −2.301 MeV used in [50]; the contribution from the second
term to the binding related to the two-body interaction becomes smaller because relatively
larger pairing strength is used in the present calculation, while the third term is related to
the three-body interaction as further correction. The parameter δα(A) obtained from the
fitting procedure is provided in Table 1.

Table 1. The value of δα(A) (in MeV) of (28) obtained by fitting to the binding energies and some
low-lying J = 0+ level energies of even–even and odd–odd A = 18–28 nuclei in this model.

A 18 20 22 24 26 28

δ(A) −0.025 −0.700 −0.940 −0.500 1.900 −0.005

Since the binding energies and a few low-lying Jπ = 0+ level energies of even–even and
odd–odd A = 18–28 nuclei were fit together, deviations remain between the fitted values
and experimental binding energies shown in Table 2 with a root mean square deviation
σBE = 0.32 MeV, except 22F and 22Al, for which Jπ = 0+ level energies are not available
experimentally. Table 3 shows the lowest experimentally known J = 0+ level energies (in
MeV) of these even–even and odd–odd ds-shell nuclei fit by (26) with the same model
parameters as used in fitting the binding energies, in which the corresponding shell model
results (SM) obtained by using the KSHELL code [34] with the USD (W) interaction [52]
are also provided for comparison. The root mean square deviation of the fit values to these
excited J = 0+ level energies is σlevel = 1.20 MeV, while the average deviation of the excited
level energies φ = ∑i |Ei

Th − Ei
Exp|/ ∑i Ei

Exp appears to be φ = 17.4%, where the sum runs
over all the excited level energies of these nuclei. In addition, when the ground state of
the nucleus is not a Jπ = 0+ state, which cannot be determined from present calculation for
J = 0+ states only, the eigen-energy of (26) is given by

E(ξ, T, J = 0) = −BE(Z, N) + Eex(ξ, T, J = 0), (30)

where Eex(ξ, T, J = 0) > 0 is the excitation energy of the ξ-th excited state with isospin T
and J = 0. The theoretical value of BE(Z, N) is adjusted to reproduce a reasonable value
of the excitation energy Eex(ξ, T, J = 0). Due to the Coulomb energy contribution and the
freedom in adjusting the binding energy with a reasonable value of the excitation energy
in this case, there is about a few hundreds of keV energy difference in these excitation
energies of mirror nuclei with J 6= 0 ground state, as shown in Table 3.
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Table 2. Binding energies BEth (in MeV) of 22 even–even and odd–odd nuclei with valence nucleons
confined to the ds-shell up to the half-filled level fit by the mean-field plus charge-independent
isovector pairing Hamiltonian (26) with its parameters shown in the text, where n is the number of

valence nucleons in the corresponding nucleus, E(1)
n (in MeV) is the lowest eigen-energy of (19) and

the experimental binding energy BEexp (in MeV) of these nuclei is taken from [53].

Nucleus n Isospin E(1)
n BEth BEexp

18
8 O10 2 T = 1 −13.788 140.000 139.808
18
9 F9 2 T = 1 −13.788 137.313 137.369

18
10Ne8 2 T = 1 −13.788 132.035 132.143
20
8 O12 4 T = 2 −25.378 151.201 151.371
20
9 F11 4 T = 1 −21.870 154.405 154.403

20
10Ne10 4 T = 0 −28.653 160.405 160.645
20
11Na9 4 T = 1 −21.870 145.965 145.970
20
12Mg8 4 T = 2 −25.378 133.839 134.561
22
8 O14 6 T = 3 −34.674 161.446 162.037

22
10Ne12 6 T = 1 −40.242 178.228 177.770
22
11Na11 6 T = 1 −40.242 174.144 174.145
22
12Mg10 6 T = 1 −40.242 168.858 168.581

22
14Si8 6 T = 3 −34.674 133.328 133.276

24
10Ne14 8 T = 2 −49.538 191.600 191.840
24
11Na13 8 T = 1 −46.770 193.522 193.522
24
12Mg12 8 T = 0 −52.938 198.852 198.257
24
13Al11 8 T = 1 −46.770 183.113 183.590
24
14Si10 8 T = 2 −49.538 171.522 172.013

26
12Mg14 10 T = 1 −62.231 216.775 216.681
26
13Al13 10 T = 1 −62.231 211.66 211.894
26
14Si12 10 T = 1 −62.231 206.088 206.042
28
14Si14 12 T = 0 −72.685 247.665 247.737

Panel (a) of Figure 2 shows the double binding-energy difference defined as [54]

δVpn =
1
4
(BE(Z, N)− BE(Z− 2, N)− BE(Z, N− 2) + BE(Z− 2, N− 2)) (31)

calculated by using the binding energies of both the related even–even and odd–odd nuclei
Included in the fitting procedure, which shows that the experimental data are well-fit by
the model Hamiltonian (26). Moreover, it is clearly shown in panel (a) of Figure 2 that δVpn
becomes comparatively smaller for odd–odd N = Z nuclei with A = 22 and 26 in this case.
Since the one- and two-body interaction dominating average binding energy term and the
Coulomb energy term of (26) only contribute a Z and N independent constat to δVpn, the
symmetry energy and the isospin-dependent part of the Wigner energy term seem to be
the main source that alters the usual pairing gap staggering pattern, which is consistent to
the claim made in [6] that the double-binding energy difference (31) actually reveals the
evidence for the Wigner energy contribution to the binding, where the usual staggering
pattern of the pairing gaps disappears [50]. Alternatively, instead of BE(Z, N), we calculate
the double pairing energy difference defined as

δE =
1
4

(
E(1)(Z, N)− E(1)(Z− 2, N)− E(1)(Z, N− 2) + E(1)(Z− 2, N− 2)

)
, (32)

where
E(1)(Z, N) = 〈ξ = 1, n, TMT |ĤP|ξ = 1, n, TMT〉, (33)

in which |ξ = 1, n, TMT〉 is the lowest eigenstate of the model, with either ĤP = G ∑ρ A+
ρ Aρ

or ĤP = G A+
0 A0, of which the first one is the total pairing energy contribution, while the

second one is the np-pairing energy contribution to the binding. By substituting BE(Z, N)
used in (31) with
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B̃E(Z, N) = BE(Z, N) +
1
A

(
134.4− 203.6

A1/3

)
T(T + 1) (MeV), (34)

which removes the symmetry energy and the isospin-dependent part of the Wigner energy
contribution to the binding energy, the resultant δ̃Vpn obtained from (31) should be close to
the double-pairing energy difference (32). And indeed, as shown in panel (b) of Figure 2,
the value of δ̃Vpn is very close to one of the δE values calculated with the total pairing
energy contribution and that with the np-pairing energy contribution. Most noticeably,
the staggering pattern appears, and the actual np-pairing energy in the odd–odd N = Z
nuclei turns to be comparatively strong. Table 4 shows actual nn-, pp- and np-pairing
contribution at the ground state or the lowest eigenstate of (26) for these nuclei defined by

E(1)
np = G〈ξ = 1, n, TMT |A+

0 A0|ξ = 1, n, TMT〉, E(1)
nn = G〈ξ = 1, n, TMT |A+

−1 A−1|ξ = 1, n, TMT〉,

E(1)
pp = G〈ξ = 1, n, TMT |A+

1 A1|ξ = 1, n, TMT〉, (35)

and the percentage of the np-pairing energy contribution to the binding ηnp = E(1)
np /(E(1)

np +

E(1)
nn + E(1)

pp ). It can be observed that E(1)
nn in the N = Z + 2 nuclei is the same as E(1)

pp in

the Z = N + 2 mirror nuclei, while E(1)
nn = E(1)

pp in the N = Z nuclei due to the charge-

independent isovector pairing is adopted. However, E(1)
np = E(1)

nn = E(1)
pp in even–even

N = Z nuclei, while E(1)
np > E(1)

nn = E(1)
pp in odd–odd N = Z nuclei, which shows that the

np-pairing energy contribution to the binding is the largest in odd–odd N = Z nuclei.
Since the total number of valence nucleons n and the total isospin projection MT

are good quantum numbers of the system, the number of valence protons and that of
valence neutrons are certainly fixed in each nucleus with nπ = (n + 2MT)/2 and nν =
(n− 2MT)/2, respectively. As shown in Section 3, the number of np-pairs in the i-th orbit
can be defined as qi = Ωi − 2Λi within the seniority-zero configuration, where the neutron
(proton) quasi-spin Λi is a good quantum number in the O(5) tensor product basis adapted
to the SUΛ(2)⊗ SUI(2) ⊃ UΛ(1)⊗UI(1) chain. Therefore, the average number of the
np-pairs in the lowest J = 0+ state of the model can be defined as

knp = 〈ξ = 1, n, TMT |q̂|ξ = 1, n, TMT〉, (36)

with q̂ = ∑
p
i=1(Ωi − 2Λ̂i). Thus, the average number of nn-pairs and that of pp-pairs are

given by
knn = (nν − knp)/2, kpp = (nπ − knp)/2. (37)

knp, knn, and kpp values for each nucleus at the lowest J = 0+ state are shown in Table 4.
Since the number of np-pairs is not a conserved quantity, its fluctuation in the lowest J = 0+

state of these nuclei defined as

∆knp =
(
〈ξ = 1, n, TMT |

(
q̂− knp

)2|ξ = 1, n, TMT〉
)1/2

(38)

is also provided. It can be observed from Table 4 that the knp value is a definite integer
for nuclei with less than or equal to one valence neutron or proton, for which the knp
value is also easily countable, while (38) must be used for evaluating knp for nuclei with
more valence neutrons and protons. It is obvious that the knp value is indeed relatively
large in the odd–odd N = Z nuclei, which is consistent with the larger np-pairing energy
contribution to the binding shown in Table 4, while the average number of the np-pairs
knp in the even–even nuclei is considerably small with very large fluctuation. For example,
knp = 0.711 with ∆knp = 1.342 in 24Mg, while knp = 0.585 with ∆knp = 1.066 in 28Si.
The ∆knp value in these even–even N = Z nuclei is almost two times of the corresponding
average value. Though the np-pair occupation number defined as ζnp = knp/k in the even–
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even N = Z nuclei is small, the np-pairing energy contribution is still comparable to the nn-
or pp-pairing energy contribution. Using the data shown in Table 4, one can check that the
np-pairing energy per np-pair E(1)

np /knp is 2.31 and 4.63 times of E(1)
nn /knn = E(1)

pp /kpp in
24Mg and 28Si, respectively. As shown in Figure 3, the distribution of either the percentage
of the np-pairing energy ηnp or the np-pair occupation number ζnp is symmetric with
respect to the N = Z line owing to the charge-independent approximation with the clear
even–odd staggering pattern along the lines parallel to the N = Z line on the N-Z plane,
where the nuclei with fixed MT are connected by each line. In short, the np-pairing is
more favored in odd–odd N = Z nuclei as described by the charge-independent isovector
pairing model.

Table 3. A few lowest J = 0+ level energies (in MeV) of the 22 even–even and odd–odd ds-shell nuclei fit by (26) (Th), where
Tξ denotes the ξ-th excited levels with isospin T, the label g denotes the ground state, the experimental data (Exp) are taken
from [53], ‘—’ denotes the corresponding level is not observed experimentally, and the shell model results (SM) are obtained
by using the KSHELL code [34] with the USD (W) interaction [52] and the parameters of (26) are the same as those used in
fitting the binding energies.

18O Exp Th SM 18F Exp Th SM 18Ne Exp Th SM

0+ (Tξ = 1g) 0 0 0 0+ (Tξ = 11) 1.04 1.10 1.19 0+ (Tξ = 1g) 0 0 0
0+ (Tξ = 12) 3.63 5.71 4.32 0+ (Tξ = 12) 4.75 6.75 5.51 0+ (Tξ = 12) 3.58 5.71 4.32

20O Exp Th SM 20F Exp Th SM 20Ne Exp Th SM

0+ (Tξ = 2g) 0 0 0 0+ (Tξ = 11) 3.53 1.23 3.49 0+ (Tξ = 0g) 0 0 0
0+ (Tξ = 22) 4.46 5.07 5.04 0+ (Tξ = 21) 6.52 6.80 6.52 0+ (Tξ = 02) 6.73 5.90 6.76

0+ (Tξ = 11) 13.64 11.33 13.64
0+ (Tξ = 21) 16.73 16.90 16.66

20Na Exp Th SM 20Mg Exp Th SM

0+ (Tξ = 11) 3.09 1.48 3.49 0+ (Tξ = 2g) 0 0 0
0+ (Tξ = 21) 6.53 7.05 6.52 0+ (Tξ = 21) — 5.07 5.04

22O Exp Th SM 22Ne Exp Th SM 22Na Exp Th SM

0+ (Tξ = 3g) 0 0 0 0+ (Tξ = 11) 0 0 0 0+ (Tξ = 11) 0.66 0.36 0.66
0+ (Tξ = 32) 4.91 4.35 4.62 0+ (Tξ = 12) 6.24 5.03 6.34 0+ (Tξ = 12) — 5.40 7.01

22Mg Exp Th SM 22Si Exp Th SM

0+ (Tξ = 1g) 0 0 0 0+ (Tξ = 3g) 0 0 0
0+ (Tξ = 12) 5.95 5.03 6.34

24Ne Exp Th SM 24Na Exp Th SM 24Mg Exp Th SM

0+ (Tξ = 2g) 0 0 0 0+ (Tξ = 11) 3.68 0.37 3.33 0+ (Tξ = 0g) 0 0 0
0+ (Tξ = 22) 4.77 4.30 4.66 0+ (Tξ = 21) 5.97 6.23 5.88 0+ (Tξ = 02) 6.43 5.15 7.56

0+ (Tξ = 11) 13.04 10.48 12.87
0+ (Tξ = 21) 15.44 16.35 15.43

24Al Exp Th SM 24Si Exp Th SM 26Mg Exp Th SM

0+ (Tξ = 11) — 0.48 3.33 0+ (Tξ = 2g) 0 0 0 0+ (Tξ = 1g) 0 0 0
0+ (Tξ = 21) 5.96 6.35 5.88 0+ (Tξ = 12) 3.59 4.24 3.68

0+ (Tξ = 13) 4.97 5.13 5.20
26Al Exp Th SM 26Si Exp Th SM 28Si Exp Th SM

0+ (Tξ = 11) 0.23 0.23 0.08 0+ (Tξ = 1g) 0 0 0 0+ (Tξ = 0g) 0 0 0
0+ (Tξ = 12) 3.75 4.47 3.76 0+ (Tξ = 12) 3.36 4.24 3.68 0+ (Tξ = 02) 4.98 4.25 5.01
0+ (Tξ = 13) 5.20 5.36 5.29 0+ (Tξ = 13) 4.83 5.13 5.20 0+ (Tξ = 11) 10.27 10.27 10.29
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Figure 2. (a) The double-binding-energy difference δVpn (in MeV) defined in (31) for even–even and
odd–odd ds-shell nuclei, where the red solid squares are the experimental data, and the (black) dots
connected with the dashed lines are the results of the present model. (b) The double-pairing energy
difference (in MeV) defined in (32), where the red open circles connected with the solid lines are
calculated from (32) with the np-pairing energy contribution; the black solid dots connected with the
dashed lines are calculated from (32) with the total pairing energy contribution and the blue solid
squares connected with the dashed lines are δ̃Vpn values calculated from (31) with B̃E(Z, N).

Table 4. The np-, nn- and pp-pairing energy contribution (in MeV) to the binding energy of the 22 even–even and odd–odd
ds-shell nuclei, the average number of the np-pairs knp and its fluctuation ∆knp and the np-pair occupation number ζnp in
the J = 0+ ground state or the lowest J = 0+ excited state.

Nucleus n Isospin E(1)
np E(1)

nn E(1)
pp ηnp knp ∆knp knn kpp ζnp

18
8 O10 2 T = 1 0 5.036 0 0% 0 0 1 0 0%
18
9 F9 2 T = 1 5.036 0 0 100% 1 0 0 0 100%

18
10Ne8 2 T = 1 0 0 5.036 0% 0 0 0 1 0%
20
8 O12 4 T = 2 0 7.945 0 0% 0 0 2 0 0%
20
9 F11 4 T = 1 2.568 2.568 0 50% 1 0 1 0 50%

20
10Ne10 4 T = 0 3.707 3.707 3.707 33.33% 0.497 0.865 0.7515 0.7515 24.85%
20
11Na9 4 T = 1 2.568 0 2.568 50% 1 0 0 1 50%
20
12Mg8 4 T = 2 0 0 7.945 0% 0 0 0 2 0%
22
8 O14 6 T = 3 0 8.666 0 0% 0 0 3 0 0%

22
10Ne12 6 T = 1 2.226 7.356 4.444 15.87% 0.205 0.606 1.8975 0.8975 6.83%
22
11Na11 6 T = 1 9.573 2.226 2.226 68.25% 1.756 0.940 0.622 0.622 58.53%
22
12Mg10 6 T = 1 2.226 4.444 7.356 15.87% 0.205 0.606 0.8975 1.8975 6.83%

22
14Si8 6 T = 3 0 0 8.666 0% 0 0 0 3 0%

24
10Ne14 8 T = 2 1.600 8.393 4.756 10.85% 0.083 0.159 2.9585 0.9585 2.08%
24
11Na13 8 T = 1 5.061 4.167 2.681 42.49% 1.404 0.645 1.798 0.798 35.10%
24
12Mg12 8 T = 0 6.000 6.000 6.000 33.33% 0.711 1.342 1.6445 1.6445 17.78%
24
13Al11 8 T = 1 5.061 2.681 4.167 42.49% 1.404 0.645 0.798 1.798 35.10%
24
14Si10 8 T = 2 1.600 4.756 8.393 10.85% 0.083 0.159 0.9585 2.9585 2.08%

26
12Mg14 10 T = 1 3.615 7.917 7.186 19.31% 0.234 0.449 2.883 1.883 4.68%
26
13Al13 10 T = 1 11.489 3.615 3.615 61.38% 1.792 1.179 1.604 1.604 35.84%
26
14Si12 10 T = 1 3.615 7.186 7.917 19.31% 0.234 0.449 1.883 2.883 4.68%
28
14Si14 12 T = 0 6.847 6.847 6.847 33.33% 0.585 1.066 2.7075 2.7075 9.75%

Finally, np-pair stripping reactions, such as (α, d) or (3He, p), or the corresponding
picking-up process, should be sensitive tests for np-pairing correlations in nuclei, for which
the np-pair amplitude determined by the matrix elements of the np-pair operator in target
and product states are of importance. Here, we only calculate the np-pair amplitude
contributed from the q-th orbit defined as

B(jq; ξ f Tf ; ξiTi; MT) =
2
π
|〈ξ f ; n + 2; Tf MT |A†

0(jq)|ξi, n; Ti MT〉|2 (39)

with MT = 0 for N = Z nuclei, where |ξi, n; Ti MT〉 and |ξ f , n + 2; Tf MT〉 are eigenstate of
the isovector pairing model for target nucleus with n valence nucleons and that of product
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nuclei with n + 2 valence nucleons of total angular momentum J = 0, respectively, and the
expression is consistent with that shown in (4.15) of [55]. The matrix elements of A†

0(jq) in
the O(5) tensor product basis used in the expansion of (20) are given by

〈 (Ω1, 0) · · · (Ωq, 0) · · · (Ωp, 0)
Λ′1 · · · Λ′q · · · Λ′p

n′1, m′T(1) · · · n′q, m′T(q) · · · n′p, m′T(p)

∣∣∣∣∣∣A+
0 (jq)

∣∣∣∣∣∣
(Ω1, 0) · · · (Ωq, 0) · · · (Ωp, 0)

Λ1 · · · Λq · · · Λp
n1, mT(1) · · · nq, mT(q) · · · np, mT(p)

〉
=

∏
p
i 6=q δΛ′iΛi

δµ′iµi
δν′i νi

δµ′qµq+
1
2
δν′qνq+

1
2

(
δΛ′qΛq+

1
2
〈Λqµq

1
2

1
2 |Λq +

1
2 µq +

1
2 〉〈Λqνq

1
2

1
2 |Λq +

1
2 νq +

1
2 〉×(

(Ωq+2Λq+3)(Ωq−2Λq)(2Λq+1)
2(2Λq+2)

) 1
2
+ δΛ′qΛq− 1

2
〈Λqµq

1
2

1
2 |Λq +

1
2 µq +

1
2 〉〈Λqνq

1
2

1
2 |Λq − 1

2 νq +
1
2 〉 ×(

(Ωq+2Λq+2)(Ωq−2Λq+1)(2Λq+1)
2(2Λq)

) 1
2

)
, (40)

which is used in calculating the np-pair amplitude contributed from the q-th orbit shown
in (39).

Figure 3. (Color online). The percentage of the np-pairing energy ηnp (Green) and the np-pair
occupation number ζnp (Red) in the lowest J = 0+ state of even–even and odd–odd ds-shell nuclei
described by the charge-independent mean-field plus isovector pairing model.

It is obvious that the selection rule for (39) is ∆T = +1, −1. The np-pair amplitudes
in the ds-shell with |∆T| = 1 are shown in Table 5. As estimated in [55], in which the
single-particle energies of the mean-field were taken to be degenerate, and the isospin was
not considered explicitly; the amplitude for the reactions among the J = 0+ ground states
or the lowest J = 0+ excited states only depends on j with B̄(j) = (j2 + 2j + 3/4)/(2π),
from which one achieves B̄(1/2) = 0.318, B̄(3/2) = 0.955 and B̄(5/2) = 1.910. The B̄(5/2)
value is indeed very close to the values of (39) for the reactions among the lowest J = 0+

states shown in Table 5 because the j = 5/2 orbit is the lowest in energy. Nevertheless,
the amplitude for the j = 3/2 orbit shown in Table 5 are one or two orders of magnitude
smaller than B̄(3/2), mainly due to the fact that there is a 0.87 MeV gap between the j = 3/2
and the j = 5/2 orbit. Since the j = 1/2 orbit is the highest in energy, the corresponding
amplitudes shown in Table 5 are also systematically smaller than B̄(1/2).
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Table 5. The np-pair amplitude contributed from each j-orbit defined in (39) for ds-shell N = Z nuclei.

j = 1/2 j = 3/2 j = 5/2

B(j; 20Ne,T = 0g ; 18F,T = 11) 0.060 0.041 1.186
B(j; 20Ne,T = 02; 18F,T = 11) 0.207 0.001 0.114
B(j; 20Ne,T = 21; 18F,T = 11) 0.113 0.081 1.476
B(j; 20Ne,T = 0g ; 18F,T = 12) 0.002 ≈0 0.003
B(j; 20Ne,T = 02; 18F,T = 12) 0.097 0.022 0.468
B(j; 20Ne,T = 21; 18F,T = 12) 0.018 ≈0 0.033

B(j; 22Na,T = 11; 20Ne,T = 0g) 0.144 0.100 1.837
B(j; 22Na,T = 11; 20Ne,T = 02) 0.012 ≈0 0.021
B(j; 22Na,T = 11; 20Ne,T = 21) 0.049 0.033 0.945
B(j; 24Mg,T = 0g ; 22Na,T = 11) 0.120 0.081 1.751
B(j; 24Mg,T = 02; 22Na,T = 11) 0.150 0.001 0.075
B(j; 24Mg,T = 21; 22Na,T = 11) 0.152 0.109 1.269
B(j; 26Al,T = 11; 24Mg,T = 0g) 0.195 0.136 1.570
B(j; 26Al,T = 12; 24Mg,T = 0g) 0.192 0.003 0.083
B(j; 26Al,T = 13; 24Mg,T = 0g) 0.007 ≈0 0.004
B(j; 26Al,T = 11; 24Mg,T = 02) 0.045 ≈0 0.088
B(j; 26Al,T = 12; 24Mg,T = 02) 0.058 0.019 0.775
B(j; 26Al,T = 13; 24Mg,T = 02) 0.118 0.077 0.927
B(j; 26Al,T = 11; 24Mg,T = 21) 0.099 0.064 1.388
B(j; 26Al,T = 12; 24Mg,T = 21) 0.002 ≈0 ≈0
B(j; 26Al,T = 13; 24Mg,T = 21) 0.187 0.001 0.094
B(j; 28Si,T = 0g ; 26Al,T = 11) 0.181 0.117 1.726
B(j; 28Si,T = 02; 26Al,T = 11) 0.087 0.001 0.037
B(j; 28Si,T = 0g ; 26Al,T = 12) 0.006 ≈0 0.015
B(j; 28Si,T = 02; 26Al,T = 12) 0.138 0.064 0.908
B(j; 28Si,T = 0g ; 26Al,T = 13) 0.097 ≈0 0.192
B(j; 28Si,T = 02; 26Al,T = 13) 0.065 0.020 0.976

6. Summary

In this work, a diagonalization scheme for the shell model mean-field plus isovector
pairing Hamiltonian in the O(5) tensor product basis is adapted to accommocate quasi-
spin, which means the scheme is equivalent to a MT-scheme realized in the O(5) ⊃
SUΛ(2)⊗ SUI(2) ⊃ UΛ(1)⊗UI(1) basis. Additionally, the scheme conserves a charge-
independent isovector pairing interaction while accommodating isospin symmetry break-
ing and provides for a number operator that counts the effective number of np-pairs that
can be realized in a neutron–proton quasi-spin basis.

To illustrate the vaue of the theory, the scheme was used to determine binding energies
and low-lying J = 0+ excited states of even–even and odd–odd N∼Z ds-shell nuclei by
fitting to the charge-independent isovector pairing interaction, within which the np-, nn-
and pp-pairing energy contributions to the binding in the ds-shell nuclei were estimated.
The results show that the np-pairing contribution to the binding energies of the odd–odd
N = Z nuclei is systematically larger than that in the even–even nuclei.

It is also shown that the decrease in the double binding-energy difference for the
odd–odd nuclei is mainly due to the symmetry energy and Wigner energy contributions
that alter the pairing staggering pattern. In particular, the average number of the np-pairs
in the J = 0+ ground state or the lowest J = 0+ excited state of the even–even and odd–odd
ds-shell nuclei were evaluated. The resuts serve to show that the average number of the
np-pairs knp in the even–even N = Z nuclei is considerably smaller with large fluctuation
in comparison to that in the odd–odd N = Z nuclei, which leads to the conclusion that the
isovector np-pairing is more favored in odd–odd N = Z nuclei. np-pair amplitudes of given
single-particle orbits of the model useful in evaluating he neutron–proton transfer reaction
rates among these N = Z nuclei are also calculated.

It should be stated that the computation of the isovector np-pair number is demon-
strated for the even–even and odd–odd N∼Z ds-shell nuclei described by the isovector
pairing model restricted within the O(5) seniority-zero subspace only, where the isoscalar
np-pairs are not involved. In order to reveal the actual np-pair contents in these N∼Z nuclei,
other O(5) seniority-nonzero configurations must be considered, for which an alternative
O(8) model [56–58] should be more convenient. Nevertheless, as has been shown in our
recent work on the O(8) model [59], not only the binding energies and the low-lying Jπ = 0+

level energies shown in Tables 2 and 3, but also the isovector pairing energy contributions



Symmetry 2021, 13, 1405 16 of 19

to the binding energies provided in Table 4 are the same as those calculated from the O(8)
model, where the isoscalar np-pairs are also involved. Therefore, the conclusion of the
present work on the isovector pairing energy contribution to the binding energies of these
ds-shell nuclei is still valid even in the presence of isoscalar np-pairs.

Further applications of this scheme to the model with more j-orbits or in other major
shells are straightforward, for which detailed analysis will be a part of our future work.
Extensions of the algebraic scheme outlined may also be applicable to study the sponta-
neous symmetry breaking process in the O(5) nonlinear σ model [41] and Heisenberg spin
interaction systems [43].
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Appendix A

Matrix elements of each terms involved in the model Hamiltonian (19) under the
O(5) tensor product basis ⊗p

i=1(Ωi, 0) in the O(5) ⊃ SUΛ(2)⊗ SUI(2) ⊃ UΛ(1)⊗UI(1)
labeling scheme can be evaluated according to the results shown in Section 3. Specifically,
we have 〈 (Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν′1; · · · ; µ′p, ν′p

∣∣∣∣∣∣∑
p
i=1 εi n̂i

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

∏
p
q=1 δΛqΛ′q δµqµ′q δνqν′q ∑

p
i=1 2εi(µi + νi + Ωi), (A1)

〈 (Ω1, 0); · · · ; (Ωp, 0)
Λ′1; · · · ; Λ′p

µ′1, ν′1; · · · ; µ′p, ν′p

∣∣∣∣∣∣A†
1(i)A1(i)

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

〈 (Ω1, 0); · · · ; (Ωp, 0)
Λ′1; · · · ; Λ′p

µ′1, ν′1; · · · ; µ′p, ν′p

∣∣∣∣∣∣ς(i)+ ς
(i)
−

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
= (A2)

∏
p
q=1 δΛqΛ′q δµqµ′q δνqν′q(Λi − µi + 1)(Λi + µi),

〈 (Ω1, 0); · · · ; (Ωp, 0)
Λ′1; · · · ; Λ′p

µ′1, ν′1; · · · ; µ′p, ν′p

∣∣∣∣∣∣∣A†
1(i)A1(j)

∣∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp

µ1, ν1; · · · ; µp, νp

〉
=

〈 (Ω1, 0); · · · ; (Ωp, 0)
Λ′1; · · · ; Λ′p

µ′1, ν′1; · · · ; µ′p, ν′p

∣∣∣∣∣∣∣ς(i)+ ς
(j)
−

∣∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp

µ1, ν1; · · · ; µp, νp

〉
= (A3)

∏
p
q=1 δΛqΛ′q ∏

p
r 6=i 6=j δµrµ′r δνrν′r δµ′i µi+

1
2

δµ′j µj− 1
2

√
(Λi + µi + 1)(Λi − µi)(Λj − µj + 1)(Λj + µj)
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for i 6= j,

〈 (Ω1, 0); · · · ; (Ωp, 0)
Λ′1; · · · ; Λ′p

µ′1, ν′1; · · · ; µ′p, ν′p

∣∣∣∣∣∣A†
−1(i)A−1(i)

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

〈 (Ω1, 0); · · · ; (Ωp, 0)
Λ′1; · · · ; Λ′p

µ′1, ν′1; · · · ; µ′p, ν′p

∣∣∣∣∣∣τ(i)
+ τ

(i)
−

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
= (A4)

∏
p
q=1 δΛqΛ′q δµqµ′q δνqν′q(Λi − νi + 1)(Λi + νi),

〈 (Ω1, 0); · · · ; (Ωp, 0)
Λ′1; · · · ; Λ′p

µ′1, ν′1; · · · ; µ′p, ν′p

∣∣∣∣∣∣∣A†
−1(i)A−1(j)

∣∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp

µ1, ν1; · · · ; µp, νp

〉
=

〈 (Ω1, 0); · · · ; (Ωp, 0)
Λ′1; · · · ; Λ′p

µ′1, ν′1; · · · ; µ′p, ν′p

∣∣∣∣∣∣∣τ(i)
+ τ

(j)
−

∣∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp

µ1, ν1; · · · ; µp, νp

〉
= (A5)

∏
p
q=1 δΛqΛ′q ∏

p
r 6=i 6=j δµrµ′r δνrν′r δν′i νi+

1
2
δν′j νj− 1

2

√
(Λi + νi + 1)(Λi − νi)(Λj − νj + 1)(Λj + νj)

for i 6= j,

〈 (Ω1, 0); · · · ; (Ωp, 0)
Λ′1; · · · ; Λ′p

µ′1, ν′1; · · · ; µ′p, ν′p

∣∣∣∣∣∣A+
0 (i)A0(i)

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

〈 (Ω1, 0); · · · ; (Ωp, 0)
Λ′1; · · · ; Λ′p

µ′1, ν′1; · · · ; µ′p, ν′p

∣∣∣∣∣∣(−1)U(i)
1
2 , 1

2
U(i)
− 1

2 ,− 1
2

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
= (A6)

∏
p
q 6=i δΛqΛ′q ∑Λ′′i

〈Λ′i||U||Λ′′i 〉〈Λ′′i ||U||Λi〉∏
p
r=1 δµrµ′r δνrν′r ×

(−1)〈Λ′′i µi − 1
2

1
2

1
2 |Λ′iµi〉〈Λ′′i νi − 1

2
1
2

1
2 |Λ′iνi〉〈Λiµi

1
2 −

1
2 |Λ

′′
i µi − 1

2 〉〈Λiνi
1
2 −

1
2 |Λ′′i νi − 1

2 〉,〈 (Ω1, 0); · · · ; (Ωp, 0)
Λ′1; · · · ; Λ′p

µ′1, ν′1; · · · ; µ′p, ν′p

∣∣∣∣∣∣A†
0(i)A0(j)

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

〈 (Ω1, 0); · · · ; (Ωp, 0)
Λ′1; · · · ; Λ′p

µ′1, ν′1; · · · ; µ′p, ν′p

∣∣∣∣∣∣(−1)U(i)
1
2 , 1

2
U(j)
− 1

2 ,− 1
2

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
= (−1)〈Λ′i||U||Λi〉〈Λ′j||U||Λj〉 × (A7)

∏
p
q 6=i 6=j δΛqΛ′q δµqµ′q δνqν′q〈Λiµi

1
2

1
2 |Λ′iµ′i〉〈Λiνi

1
2

1
2 |Λ′iν′i 〉〈Λjµj

1
2 −

1
2 |Λ′jµ′j〉〈Λjνj

1
2 −

1
2 |Λ′jν′j〉

for i 6= j, where 〈Λiµi
1
2

1
2 |Λ′iµ′i〉 and 〈Λjµj

1
2 −

1
2 |Λ′jµ′j〉 are the CG coefficients of SU(2),

and 〈Λ′i||U||Λi〉 is the SUΛ(2)⊗ SUI(2) reduced matrix element with Ii = Λi = (Ωi −
qi)/2 for qi = 0, 1, · · · , Ωi shown in (15) and (16), in which qi is the number of np-pairs in
the i-th orbit defined in (22).
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