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Abstract: There is a substantial strand of literature about ranking the subsets of a set of alternatives,
usually referred to as opportunity sets. We investigate a model that is dependent on the preference of
a grand set of alternatives. In this framework, the indirect-utility criterion ranks the opportunity sets
by the following rule: a subset A is weakly preferred to another subset B if and only if A contains at
least one preference maximizing element from A ∪ B. This criterion leads to the indifference of each
subset of alternatives to a singleton; symmetry appears at this stage, as the property holds true for
any one of the maximizers in A. Conversely, suppose that a ranking of opportunity sets satisfies the
property that each opportunity set is indifferent to a singleton contained within it. Then, we prove
that such a ranking must use a generalized form of the indirect-utility criterion, where maximization
is applied to a selection of the alternatives. Altogether, these results produce a characterization of the
advised indirect-utility criterion for ranking opportunity sets.

Keywords: sequential preference; ranking subsets; indirect-utility criterion; choice correspondence

JEL Classification: D01; D71

1. Introduction

Making decisions is a problem that we face everyday, and decisions often take the
form of multiobjective optimization problems [1]. Frequently, in our daily lives, prior to
making a final decision, we select a smaller set of alternatives from the set of all available
possibilities in order to reduce the complexity of the structure of the problem. This might
correspond to the sequential application of criteria in a multiobjective setting. Kreps [2]
cites a simple example consisting of ranking menus (or restaurants): before selecting a
meal, the decision maker has to choose a menu or restaurant from the many available
choices. The selection of a committee, coalition building, or hiring workers are situations
of this kind, to mention but a few from different areas.

These sort of experiences raise the problem of ranking the subsets of a fixed set of
alternatives, which, in the social choice literature, are also named ‘opportunity sets’ or
‘menus’. This issue has been considered in different contexts and it has given rise to
various interesting formulations. Contrary to the case of mathematical analysis, which
focuses on numerical valuations, the fundamental tool in mathematical economics is
typically a binary relation that captures the preferences of the agents. The mathematical
argument is that binary relations have allowed to extend the scope of application of the
Weierstrass Extreme Value Theorem to economics and the social sciences quite efficiently
(cf., Bergstrom [3], Walker [4], Alcantud [5]). The recent Quartieri [6] gives an updated
account of concepts, results and techniques that take advantage of this classical approach.
Nevertheless, numerical assessments and binary relations are strongly linked by the idea
of a utility function (cf., Aleskerov, Bouyssou and Monjardet [7]).

Fishburn [8] was the first to investigate the preferences of agents over sets of alterna-
tives or ‘opportunity sets’. Other authors have characterized different criteria based on
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principles of independence and continuity (Nehring and Puppe [9]), or in a framework of
choice under complete uncertainty (for example, Bossert et al. [10] or Arlegi [11]). Some
scholars have extended this analysis to incorporate the value of freedom of choice (see,
for example, Bossert et al. [12] and Puppe [13], among others). Many competing mod-
els have contributed to understanding these problems and the choice behavior that they
induce. An extensive, although outdated, survey of these approaches can be found in
Barberà et al. [14].

From a more general standpoint, both individual and collective decision making
may be based on either simultaneous or sequential multiple criteria. Pre-screening can
be applied in more than one stage, and then each stage can utilize a specific criterion.
For example, when a family decides on a place for their holiday, budget restrictions might
produce a first reduction of the set of resorts under consideration; subsequently, other
factors, such as the tastes of parents and children or weather forecasts are applied until a
final choice is reached by a multi-stage decision process. A more technical recent example
is Wu et al. [15], who use a screening tool for selecting criteria prior to the application of
the TOPSIS (or Technique for Order Preference by Similarity to Ideal Solution) technique.

Our approach in this work belongs to the strand of literature that investigates choices
under the fundamental model that determines the ranking of the subsets by the examination
of a part of the alternatives. In this sense, the model responds to the principle of limited
rationality, so that the agent concentrates on some focal alternatives, and more concretely,
to the subset formed by the best elements, according to a criterion. Such a model is the
germ of the indirect-utility (IU) approach for which Kreps [2] provides a characterization.
The difference in the model that we propose here is that prior to the application of the IU
criterion to rank the subsets of alternatives, in each subset, some of the options are rejected.
We do not attach special semantics to this process, which we model by the fictitious figure
of an ‘adviser’. The reduction of the opportunity sets may be achieved either by a real
external adviser, by another criterion that precedes the IU criterion (e.g., gender regulations
in the selection of a committee), by a search engine that provides some alternatives (maybe
those in the first page only), or simply by drawing a lottery in order to focus on a lower
number of options. We call the ranking defined under these characteristics “advised IU
ranking” and we investigate when a given ranking (a complete preorder) of subsets < of
a finite set X is an advised IU ranking. Theorem 1 answers this question: one single
behavioral property of choice serves us to test whether it belongs to this class or not.

Prior attempts to extend the logic of the IU criterion include Lahiri [16] and Ryan [17].
More precisely, Lahiri [16] obtains a necessary and sufficient condition for the existence
of a preference R on the set of alternatives that explains both the transitive and quasi
transitive preferences over opportunity sets in the sense of selecting the best elements
of each set of alternatives. Ryan [17] generalizes the IU criterion to encompass decision
makers who choose alternatives, according to a path-independent choice function. Re-
latedly, the sequential application of different criteria has been studied by Manzini and
Mariotti [18], Apesteguía and Ballester [19], García-Sanz and Alcantud [20,21], Kops [22],
Cuhadaroglu [23] or Cantone et al. [24], among others.

The rest of the paper is organized as follows. In Section 2, we introduce some notation
and preliminaries about binary relations. Moreover the IU criterion is defined, and one
of its properties (the indifference of each subset to a singleton) is highlighted since it is
essential for the main result. Section 3 contains the definition of a ranking of opportunity
sets in two steps. In the first one, some alternatives are selected from each subset (for an
external expert, because of a budget restriction, . . . ) and then, the IU criterion is applied.
This section ends with the main result: the characterization of the advised IU rankings.
We summarize our conclusions in Section 4. Here, we highlight the fact that we have not
dealt with the popular indirect-utility criterion for ranking subsets, but that rather we have
approached a particular form of it.
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2. Notation and Preliminaries

We denote by X = {x1, . . . , xn} a finite set of n objects or alternatives, and by P∗(X)
the set of nonempty subsets of X, also named opportunity sets. A binary relation on X,
R ⊆ X× X, is interpreted as a preference relation of an agent, that is to say, we claim xRy
(a convenient shorthand for (x, y) ∈ R) if and only if the element x ∈ X is at least as good
as the element y ∈ X.

Any binary relation R on X produces two associated relations in a natural way, namely
the following:

(i) A strict relation P defined by the expression xPy⇔ {xRy and not yRx}, for each
x, y ∈ X.

(ii) An indifference relation I defined by the expression xIy ⇔ {xRy and yRx}, for
each x, y ∈ X.

Irrespective of the properties of R, strict relations are asymmetric, whereas indifference
is obviously symmetric.

A binary relation R is transitive if for any x, y, z ∈ X, when xRy and yRz we have xRz.
R is complete if for any x, y ∈ X it must be the case that either xRy or yRx or both hold
true. When R satisfies transitivity and completeness, we say that R is a complete or total
preorder.

Definition 1. Given a total preorder R on a finite set X, a best element of a subset A ⊆ X for R is
an element x ∈ A such that xRx′ for all x′ ∈ A. In particular, a best element for R is x ∈ X such
that xRx′ for all x′ ∈ X (cf., [25]).

According to Definition 1, best elements must exist due to the finiteness assumption
on X. However, they are not necessarily unique. When R is a linear preorder, which means
that R satisfies the antisymmetry property, then the best elements are forcefully unique.

2.1. Opportunity Sets: Criteria for Comparisons

In order to deal with rankings of opportunity sets, notice that any complete preorder
R over a set X can be extended to a complete preorder over P∗(X) in the following fashion:

A < B⇔ max(A)R max(B), for any A, B ∈ P∗(X) (1)

where max(C) denotes a best element of a subset C ⊆ X for the complete preorder R. Since
best elements are not necessarily unique, it is important to emphasize that the properties
of R ensure that the definition of < is independent of the choice of the best elements in A
and B.

Definition 2. The criterion defined by Equation (1), which resorts to the ordering among a selection
of best elements for each set of alternatives, is called the “indirect-utility criterion” (also IU criterion
for brevity): cf., [14].

Henceforth, we refer to a “ranking” (over X) in order to denote any complete preorder
< over P∗(X). With this convention, Equation (1) defines the IU ranking, as one can readily
check that the IU criterion satisfies the properties of transitivity and completeness, and
thus, it is a complete preorder.

The strict relation associated with < is denoted by �, and ∼ denotes its indifference
relation.

Conversely, when < is a ranking over X, it produces a complete preorder R< on X in
the following natural manner:

xR<y⇔ {x} < {y}, for any x, y ∈ X. (2)
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An alternative x is considered at least as good as another alternative y if and only if
their corresponding singletons satisfy this relationship (i.e., when {x} is at least as good as
{y} in terms of the ranking).

2.2. Ranking Opportunity Sets: Axiomatic Approches

It is well known that the IU criterion is characterized by Kreps’ property (see [2])
that establishes A < B ⇒ A ∼ A ∪ B for any A, B ∈ P∗(X). Whenever a ranking of
opportunity sets < satisfies this property, it must be the case that any subset of alternatives
is indifferent to a singleton formed by any one of the best elements in the subset (by the
relation R< trivially induced by <). Indeed, for any A = {a1, . . . , ap}, we can suppose
without loss of generality that the following holds:

{a1} < {a2} < . . . < {ap}

which entails a1R<a2R< . . . R<ap by (2). Now, Kreps’ property and transitivity lead to the
successive indifferences as follows:

{a1} ∼ {a1, a2} ∼ . . . ∼ {a1, . . . , ap}

hence {a1} ∼ {a1, . . . , ap} = A.
Motivated by this characteristic of the IU criterion, we pose the problem of investigat-

ing the rankings over X for which any opportunity set is indifferent to one of its singletons.
Therefore we consider the following property:

Indifference to singletons (IS): A ranking < of the opportunity sets of a finite set of
alternatives X satisfies IS if for any subset S ⊆ X, there exists x ∈ S such that S ∼ {x}.

When for each S ⊆ X the element in this singleton is one of the best elements in S by
the relation aRb⇔ {a} < {b}, the IU criterion associated with R is applied.

This property can be understood as a case of choosing alternatives in which the final
choice is an only element. When the ranking is observed and each opportunity set is
identified with one of its singletons, we can think of this element as the chosen alternative.
The ranking of the singletons leads to the ranking of all the opportunity sets.

We have argued that Kreps’ property implies IS. In order to prove that IS is strictly
weaker than the Kreps’ property, Example 1 below shows a case in which IS is satisfied, but
not the Kreps’ property. In this way, we are assured that there does not exist a complete and
transitive binary relation R over X such that < is the IU ranking associated with Example 1.

In fact, we shall prove that a stronger conclusion is true. Example 1 below considers
the property A < B ⇒ A < A ∪ B. This is a relaxed version of Kreps’ property that is
used in [16] for characterizing (jointly with a monotonicity property) “justifiable” transitive
preferences over opportunity sets, that is, transitive preferences < for which there exists
a complete and reflexive binary relation R over the set of alternatives such that for any
subsets of alternatives A, B, the comparison A < B holds true if and only if {x ∈ A ∪ B :
xRy, ∀y ∈ A ∪ B} ∩ A 6= ∅. Example 1 below does not satisfy this property, so it cannot
be justified in Lahiri’s sense either.

Example 1. Let X = {a, b, c, d}, and consider a ranking < over X which is represented in Figure 1
below. Subsets in the same ellipses are indifferent among them, and subsets in higher ellipses are
strictly preferred to those in lower ellipses.

The ranking < does not satisfy Kreps’ property because of the following:

{a} � {b} but {a} 6∼ {a, b}

The ranking < does not satisfy A < B⇒ A < A ∪ B because of the following:

A = {a, c} < B = {d}, but A ∪ B = {a, c, d} � A = {a, c}

Nevertheless, < clearly satisfies IS.
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a a, d a, b, d a, c, d a, b, c, d
∼ ∼ ∼ ∼

b a, b b, d a, b, c b, c, d
∼ ∼ ∼ ∼

c a, c b, c c, d d
∼ ∼ ∼ ∼

�

�

Figure 1. Example of a ranking of opportunity sets satisfying IS but not Kreps’ property.

2.3. The Research Question

The IU criterion satisfies IS as explained above. The following question arises: what
is the exact class of rankings that satisfies IS?

To solve this problem, we define a generalization of the IU criterion with the help of
the concept of a choice correspondence.

Definition 3. Let X be a set and D a nonempty domain of nonempty subsets of X. A choice
correspondence of X is an application C : D → P(X) such that C(S) ⊆ S and C(S) 6= ∅ for all
S ∈ D.

The next section defines the concept that characterizes the exact class of rankings of
opportunity sets that satisfy IS.

3. An Advised Indirect-Utility Ranking

This section is devoted to defining a new procedure for ranking opportunity sets, and
then proving that this is the exact solution to the problem posed in Section 2. We call it the
class of advised IU rankings.

The intuitive construction of advised IU rankings proceeds in two steps. For any
subset of alternatives, it applies the indirect-utility criterion to some of them that are
previously selected. The interpretation of this selection is external to the model. It may be
given by an expert who uses their expertise to prune the initial set of feasible alternatives,
or it may be the result of some constraint, as in the case of the budget restriction that
eliminates some alternatives from a travel agency. We use a choice correspondence to
model this preliminary shortlist of options. It is important to bear in mind that the two
steps are independent: the choice correspondence that shrinks the subset of options is not
necessarily linked to the preference over the grand set of alternatives.

Definition 4 below formalizes this idea:

Definition 4. Let X be a finite set of alternatives. Suppose that R is a complete preorder over X
and C is a choice correspondence on X. The advised IU ranking associated with R and C, <C , is
defined as follows:

∀A, B ⊆ X, A <C B⇔ max(C(A))R max(C(B)) (3)
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As in the case of Equation (1), here, max(C) denotes a best element of C ⊆ X for R.
Equation (3) produces a well-defined expression of a complete preorder on P∗(X), so it is
a ranking over X.

Remark 1. The IU ranking (cf., Definition 2) is a special case of advised IU ranking where the
choice correspondence that shrinks the initial set of alternatives is trivial in the sense that it does not
reduce the offer. In other words, when C(A) = A for all A ⊆ X, Definition 4 becomes Definition 2.

The next example proves that not any complete preorder on P∗(X) can be represented
as an advised IU ranking.

Example 2. Let X = {a, b}. We consider the complete preorder over P∗(X) defined by {a, b} �
{a} ∼ {b}.

Then the complete preorder R on X induced by < is aRb and bRa.
A choice correspondence C on P∗(X) is determined by one of the following alternative selec-

tions:
(1) C({a, b}) = {a}, (2) C({a, b}) = {b}, (3) C({a, b}) = {a, b}.

All three conditions lead to {a, b} ∼C {a}, thus proving that < 6=<C for any choice corre-
spondence C on P∗(X).

It is easy to check that the advised IU ranking in Definition 4, as a generalized form of
the IU ranking, also satisfies Property IS. In fact, for each S ⊆ X, it must be the case that
S ∼C {s} when s is a best element of the subset max(C(S)).

Now, we proceed to show that the converse of this statement is true. By doing so, we
establish that IS is the exact property that characterizes the class of advised IU rankings.

For illustration, the next example presents a situation where a ranking that satisfies IS
is explicitly shown to be an advised IU ranking.

Example 3. In continuation of Example 1, observe that the choice correspondence on X =
{a, b, c, d} defined as

C({a, d}) = C({a, b, d}) = C({a, c, d}) = C({a, b, c, d}) = {a},

C({a, b}) = C({b, d}) = C({a, b, c}) = C({b, c, d}) = {b}, and

C({a, c}) = C({b, c}) = C({c, d}) = {c}

allows us to prove that <=<C .
Observe also that the choice correspondence justifying that the IS ranking in Example 1 is an

advised IU ranking is not unique. To prove it, we point out that, if in the definition of C given above,
we modify C({a, b, c}) so that we use C({a, b, c}) = {b, c} instead, the argument proceeds exactly
in the same fashion.

3.1. Defining a Choice Correspondence C from a Ranking < That Satisfies IS

In order to prove our main result, it is convenient to set some additional notation.
Hence, along this section, < denotes a ranking over X satisfying IS.

We proceed to establish a way to construct a choice correspondence associated with <.
The process is inspired by a recent development in a related context (v. Bernardi et al. [26]).

As we have assumed that < is complete, its restriction to the singletons produces a
strict chain as follows:

{xi1} � {xi2} � . . . � {xil}

such that any xj ∈ X satisfies that {xj} ∼ {xik} for some k = 1, . . . , l.



Symmetry 2021, 13, 1404 7 of 10

The whole set of opportunity sets of X has 2|X| elements so that, leaving the empty set
aside, we have the subsets of alternatives S1, S2, . . . , S2n−1. Because < is a ranking, we can
suppose, without loss of generality, the following:

S1 < S2 < · · · < S2n−1.

Then, we can distribute these subsets in indifference classes Σk generated by the
indifference or symmetric part of <:

Σ1︷ ︸︸ ︷
S1

1 ∼ S1
2 ∼ . . . ∼ S1

p1
�

Σ2︷ ︸︸ ︷
S2

1 ∼ S2
2 ∼ . . . ∼ S1

p2
� . . . �

Σl︷ ︸︸ ︷
Sl

1 ∼ Sl
2 ∼ . . . ∼ Sl

pl
.

So, we have split P∗(X) into Σ1 = {S1
1, . . . , S1

p1
}, . . . , Σl = {Sl

1, . . . , Sl
pl
}. Observe that

the number of equivalence classes is exactly l because the ranking satisfies IS. This property
ensures that for each Σk, there exists xik ∈ X such that {xik} ∈ Σk. The number of classes Σk
must coincide with the number of singletons in the strict chain produced by the restriction
of < to such subsets (which is, therefore, a maximal chain of <).

For each k = 1, . . . , l, let Xk be the subset formed by all the elements of X which as
singletons, belong to the indifference class Σk. Then, for each S ⊆ X we have that S ∈ Σk
for some k = 1, . . . , l and then S ∩ Xk 6= ∅ (otherwise it would be S ∼ {xr} 6⊂ Xk which
leads to S 6∼ {xik} and then S 6∈ Σk, against the hypothesis).

Now, we are prepared to define the choice correspondence of X with the required
properties:

Definition 5. Let < be a ranking over the opportunity sets of X that satisfies IS. For any S ⊆ X,
we define the choice correspondence associated with < by the following:

C<(S) = S ∩ Xik (4)

where Xik is such that S ∈ Σk.

The next example illustrates this definition:

Example 4. In continuation of Example 1, the choice correspondence associated with < by the
process described above (cf., Definition 5) is as follows:

C({a, d}) = C({a, b, d}) = C({a, c, d}) = C({a, b, c, d}) = {a},

C({a, b}) = C({b, d}) = C({a, b, c}) = C({b, c, d}) = {b},

C({a, c}) = C({b, c}) = {c}, and C({c, d}) = {c, d}.

The reader can compare this output with the two choice correspondences on X utilized in
Example 3 to justify that < is an advised IU ranking.

3.2. Main Result

We are ready to prove our main result, namely, the characterization of the advised IU
rankings by IS:

Theorem 1. Let X be a finite set of alternatives and let < be a ranking over X. Then, there exist a
complete preorder R over X and a choice correspondence C : P∗(X)→ P∗(X) such that < is the
advised IU ranking associated with R and C (i.e., <=<C) , if and only if < satisfies IS.

Proof. (⇒) We have already mentioned that the ranking <C given by (3) satisfies IS
because for each S ⊆ X, one has S ∼C {s} when s is a best element of C(S) for R.
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(⇐) Let us suppose that we have a ranking< over X. Then, R< defined by Equation (2)
is a complete preorder on X. As < satisfies IS, we can proceed as in Section 3.1, and define
C< by the expression in (4). Finally, we check that the complete preorder R< and the choice
correspondence C< satisfy the consequent, that is to say, <=<C< , or in other words, that <
is the advised IU ranking associated with R< and C<. We proceed in two steps.

First, suppose that A < B. Let us prove that A <C< B.
The assumption A < B leads to A ∈ Σk and B ∈ Σr for any k, r ∈ 1, . . . , l and k 6 r.

Then, C<(A) = A ∩ Xk and C<(B) = B ∩ Xr and for all a ∈ C<(A) and all b ∈ C<(B),
{a} < {b} is satisfied. Therefore, max(C<(A))R max(C<(B)) and A <C< B.

It remains to be proven that whenever A <C< B, it must be the case that A < B. By
contradiction, suppose B � A with B ∈ Σk and A ∈ Σr and k < r. Then, max(C<(B)) �C<
max(C(A))⇔ B �C A, against the hypothesis.

Remark 2. Example 3 above (see also Example 4) explains that the choice correspondence C that
justifies that a ranking < satisfying IS is an advised IU ranking, is not unique. For the sake of
simplicity, we have defined the choice correspondence associated with < by Equation (4). In fact,
for any S′ ⊆ S ∩ Xik (being S ∈ Σk), we can define C<(S) = S′, and it will also satisfy the
required conditions.

We finish by making some further remarks about the choice correspondence we have
defined to prove Theorem 1. First and foremost, we are not restricting our model to
rational choices. This should not restrict the applicability of the model, as we can observe
plenty of real cases in which rationality seems not to exist. For example, everybody is
familiar with working with search engines; however, the way that they select and present
the results in the first page or in the first places is irrelevant to the user, who often finds
different alternatives ranked first when they use different search engines. There is a large
amount of literature about when correspondences can be classified as “rational choice
correspondences” (in a classical way, we cite Suzumura [25] as a good survey of the
characterization of the classical concept of rational choice correspondences). Rationality
when the choice is made in different steps is examined in [18] or [20,21] among others.

In this regard, notice that the choice correspondence C defined in Example 4 does
not satisfy any of the classical properties of rationality, such as the Chernoff condition
or the binariness property. However, this inconvenience does not mean that the choice
cannot be justified. In fact, Dogan and Yildiz [27] (Proposition 1) prove that any choice
correspondence can be rationalized by a plurality-wins election. In our context, this
justification implies that a set of (fictitious) voters exist that order the alternatives so that
for each subset, we first select the plurality winners, and then we apply the IU criterion
to it.

4. Conclusions

The extension of preference on a set of elements to a ranking of its subsets is widely
studied in the literature (see Barberà et al. [14] for a complete survey). One popular ranking
of subsets is the indirect-utility criterion, which ranks subsets of alternatives on the basis
of its best elements with respect to an underlying preference on the original set. From
another point of view, individual and collective decision making based on multiple criteria
(either applied simultaneously or in a sequential way) is also a frequent research target.
We have investigated rankings that combine both dimensions: the decision maker applies
the indirect utility-criterion, not directly to the given subset of alternatives, but to the
result of a pre-screened subset. This selection was done by another criterion, perhaps
representing an external adviser. Put differently, we face a sequential decision. First, some
alternatives are discarded and afterward, the indirect-utility criterion is applied to make
the final choice. We call these kinds of criteria “advised IU rankings”. We formalize the
“adviser” acting at the first step by a choice correspondence C in such a way that for any
S ⊆ X, C(S) ⊆ S and C(S) 6= ∅. However, we are not bound by any particular semantics
for it and the term “adviser” is just a convenient label. The ranking defined in this way
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establishes that A < B⇔ max(C(A))R max(C(B)), and we characterize it by one simple
property: each subset of alternatives is indifferent to one of its singletons. This can ex-post
be understood as a final choice of a single element for each opportunity set.

Although the literature about choice correspondences often works with the idea
or “rational choice”, we have not imposed any rationality property to the “adviser”.
The possibility that a rational adviser (for specific realizations of this concept) justifies the
ranking is an interesting question for future work. In this regard, Dogan and Yildiz [27]
have already proven that any choice correspondence can be rationalized by a plurality-wins
election, so it admits a “rational” ex-post justification. Similar sequential choices in which
the indirect-utility criterion is replaced by another one may become an interesting topic to
consider in future work.
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