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Abstract: Structural complexity measures based on Shannon information entropy are widely used
for inorganic crystal structures. However, the application of these parameters for molecular crystals
requires essential modification since atoms in inorganic compounds usually possess more degrees
of freedom. In this work, a novel scheme for the calculation of complexity parameters (HmolNet,
HmolNet,tot) for molecular crystals is proposed as a sum of the complexity of each molecule, the
complexity of intermolecular contacts, and the combined complexity of both. This scheme is tested
for several molecular crystal structures.

Keywords: information measure; complexity; crystal structure; crystallographic net; coordination
number

1. Introduction

Nowadays, the most widespread method of assessment of the amount of information
contained in a symbolic message is the calculation of so-called information entropy, in-
troduced by Claude Shannon [1]. However, not only fragments of the text, but also other
objects can be considered messages. The only condition necessary for the calculation of the
information entropy falling on a “symbol” of some “message” is the knowledge of proba-
bilities with which these “symbols” appear in the “message”. The Shannon information
theory approach was applied by Krivovichev for crystal structures, in which the role of a
message is played by the list of the orbits (systems of symmetrically equivalent positions)
occupied by atoms, while atoms themselves act as symbols. According to Krivovichev [2],
the amount of structural information possessed by a single atom of a crystal structure
equals the following:

Istr
G = −∑k

i=1 pi log2 pi (bits/atom), (1)

pi = mi/v, (2)

where mi is the multiplicity of the ith crystallographic orbit, v is the number of atoms
in the reduced unit cell, and k is the number of crystallographic orbits in the crystal
structure. That the cell should be strictly reduced as a repetition of the structural motif
by translations actually does not add new information to that already contained. This
indicator of complexity of a structure characterizes also the complexity of the quotient
graph of the structure, i.e., the finite graph containing all v vertices of the reduced unit
cell of the crystal structure along with the edges connecting the corresponding vertices in
the crystal structure, and the edges connecting translationally equivalent vertices being
turned into loops [3]. For instance, the quotient graphs of the crystal structures of α- and
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β-quartz are identical (Figure 1). In both structures, Si and O atoms occupy one orbit
each with the multiplicities equal to 3 and 6, respectively. Therefore, Istr

G = −3/9·log2(3/9)
−6/9·log2(6/9) ≈ 0.918 bits/atom.
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The thermodynamic entropy of a crystal is the sum of configurational, vibrational, and
other parts. The vibrational part of entropy has received significant attention, and several
approaches have been developed for its quantitative estimation [4,5]. In general, aiming
to obtain the vibrational entropy, high-quality multi-temperature high-resolution single-
crystal X-ray diffraction analysis for the better refinement of anisotropic displacement
parameters (ADPs) for all atoms, including hydrogens, which are known to be difficult to
refine from X-ray diffraction data, together with complementary periodic DFT calculations,
should be used [6]. However, it is worth recalling that ADPs are a dustbin for all experi-
mental errors. Incorrect absorption correction, incomplete data, small amounts of disorder,
diffuse scattering and thermal diffuse scattering, twining, problems with deconvolution of
thermal motion, and charge density all can and will dramatically affect the ADPs. However,
even assuming that the ADPs are perfect, it is not straightforward that the compound
with larger ADPs will have the higher entropy, especially in the case of conformational
polymorphs [6].

Considerably less attention has been paid to the evaluation of configurational en-
tropy [7], except for the mixing entropy and order–disorder phase transitions [8,9]. Gener-
ally speaking, the configurational part of entropy represents a portion of its total entropy
that originates solely from the location of its constituents and does not depend upon their
dynamic properties. Within recent years, the vibrational spectra of strong and fragile
metallic phases in different states (glass, liquid and crystalline) were directly measured in
situ and reported [10]. For both strong and fragile phases, only a slight excess over the
crystal was shown for the estimated vibrational entropies of liquid and glass, accounting
for less than 5% of the total excess entropy estimated by step calorimetry. This result
indicated that originally, the excess entropy of metals is almost totally configurational.

It was shown that the reduction in the configurational entropy of a crystal structure
with respect to its greatest possible value is proportional to Istr

G [11], which can be consid-
ered a numerical confirmation of the obvious fact that making a crystal structure more
complicated corresponds to a decrease in its configurational entropy.

The total information content of the reduced unit cell can be calculated as follows:

Istr
G, tot = −v ∑k

i=1 pi log2 pi (bits/u.c.), (3)

The crystal structures of α- and β-quartz (Figure 1) both have Istr
G, tot ≈ 8.265 bits/u.c.

By the value of Istr
G, tot, crystal structures of inorganic substances can be classified as very
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simple (<20 bits/u.c.), simple (20–100 bits/u.c.), intermediate (100–500 bits/u.c.), com-
plex (500–1000 bits/u.c.), and very complex (>1000 bits/u.c.) [12]. The crystal struc-
tures of zeolites and microporous framework materials are commonly very complex.
The most complex framework structure among minerals ever found is that of ewingite,
Mg8Ca8[(UO2)24(CO3)30O4(OH)12(H2O)8](H2O)130 (Istr

G, tot = 23,477.507 bits/u.c.) [13].
Borisov et al. [14] specified that a part of the unit cell that contains information on the

crystal has the volume V* = V0/M, where V0 is the volume of the unit cell, M is the point
group order, and V* is the volume of asymmetric unit (fundamental domain of the space
group). In this case, the reduced unit cell should be considered, whereas the point group is
understood as a crystal class. Within the asymmetric unit, some atoms can freely change
their location (three degrees of freedom), while others can move only along a rotation axis
or a mirror plane (one and two degrees of freedom, respectively) or have fixed positions
(non-variant). According to [14], the ratio ns/np, where ns is the number of the “remained”
translational degrees of freedom and np is the total number of atoms in the reduced unit
cell, along with the value of V*, characterizes the stability of a crystal structure. Along this
line, it was proposed recently to complement the informational complexity of a crystal
structure by its coordinational complexity [15], which considers the number of degrees of
freedom of atoms, depending on their site-symmetry group. This measure also utilizes the
classical entropy functional according to Shannon:

H = ∑k
i=1 L(pi), (4)

L(pi) =

{
0 (pi = 0),

−pi log2 pi (pi > 0)
. (5)

The coordinational complexity Hcoor is calculated by formulas (4) and (5) with pi = ai/A,
where ai ∈ {0, 1, 2, 3} is the number of degrees of freedom (arity) of the ith orbit, and
A = ∑i ai. Analogous with Hcoor, traditional information complexity Istr

G in the notations
of [15] was rewritten as Hcomb (combinatorial complexity), and the weighted sum of Hcomb
and Hcoor (Hconf, configurational complexity):

Hconf = H(M, A) +
M

M + A
Hcomb +

A
M + A

Hcoor, (6)

H(M, A) = − M
M + A

log2
M

M + A
− A

M + A
log2

A
M + A

, (7)

Hconf, tot = (M + A)Hconf, (8)

where M = v (in Krivovichev’s designations).
In fact, the value of Hcomb characterizes the distribution of atoms over crystallographic

orbits, Hcoor is the distribution of translational degrees of freedom over occupied orbits,
and Hconf deals with both distributions. Unlike the simple summation of information from
two subsystems of any system, in expression (6), the property named strong additivity
is used: aside from the terms accounting for two separate subsystems, this sum includes
an additional term, H(M, A), accounting for the informational gain followed from the
mixing of the subsystems. The strong additivity is necessary in order for the informational
index to fully satisfy the algebraic properties of the entropy functional [16]. Recently,
for the calculation of Hconf, the software crystIT with the aid of Python language was
created [17]. An important innovation of [17] was the option of calculating the complexity
of a disordered structure with the partial population of orbits, which was not provided in
any other scheme before.

The definition of the basic crystallographic terms used in this article can be found
in the Online Dictionary of Crystallography compiled by IUCr [18]. From any point of
the three-dimensional Euclidean space, the symmetry operations of a given space group
G generate an infinite set of points, called a crystallographic orbit. The site-symmetry group
(often called point symmetry) of a point is the finite group formed by the set of all symmetry
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operations of G that leave that point invariant. It is isomorphic to a subgroup of the point
group to which G belongs (the crystal class). A Wyckoff position of a space groupG consists of
all points for which the site-symmetry groups are conjugate subgroups of G. A Wyckoff set
with respect to G is the set of all points for which the site-symmetry groups are conjugate
subgroups of the normalizer N of G in the group of all affine mappings. The site-symmetry
group of a Wyckoff position is the stabilizer of that position.

It is worth mentioning that each space group is characterized by the implicit informa-
tional complexity originated from Wyckoff positions [19]. The Wyckoff positions that can
potentially be transformed into each other by the action of the normalizer of a space group
form a Wyckoff set. This approach can be used for the calculation of pi as the probability
of some randomly chosen Wyckoff position to belong to the ith Wyckoff set. Similarly, any
point group has its own implicit complexity following from the equivalence classes of group
elements. With respect to the automorphisms of a group, some elements belong to the same
class, and the partition of elements into classes may be referred to as the definition of pi.
The identity element of a group always forms its own class. For instance, in point group C3,
there is anidentity element and two rotations, C3

1 and C3
–1, forming another class, so the

partition of C3 is {1, 2}; then, H = −1/3·log2(1/3) − 2/3·log2(2/3) ≈ 0.918 bits/element, and
Htot = H·3 ≈ 2.755 bits/group. The 32 crystal classes are distributed over 18 abstract classes
with a definite complexity (Table 1).

Table 1. Crystallographic point groups, abstract groups and their complexity following from the partition of group elements
into equivalence classes with respect to automorphisms of the group.

Crystal Class
(Schoenflies

Symbols)

Crystal Class
(Hermann–Mauguin

Symbols)
Abstract Class Order Partition of Group

Elements
H,

Bits/Element
Htot,

Bits/Group

C1 1 Z1 1 {1} 0 0
C2, Ci, Cs 2, 1, m Z2 2 {1, 1} 1.000 2.000

C3 3 Z3 3 {1, 2} 0.918 2.755
C4, S4 4, 4 Z4 4 {1, 1, 2} 1.500 6.000

C6, S6, C3h 6, 3, 6 Z6 6 {1, 1, 2, 2} 1.918 11.510
C2h, C2v, D2 2/m, mm2, 222 Dih2 4 {1, 3} 0.811 3.245

D2h mmm Dih2×Z2 8 {1, 7} 0.544 4.349
C3v, D3 3m, 32 Dih3 6 {1, 2, 3} 1.459 8.755

C4h 4/m Z4 × Z2 8 {1, 1, 2, 4} 1.750 14.000
C4v, D4, D2d 4mm, 422, 42m Dih4 8 {1, 1, 2, 4} 1.750 14.000

C6h 6/m Z4 × Z2 12 {1, 2, 3, 6} 1.730 20.755
C6v, D6, D3d, D3h 6mm, 622, 3m, 6m2 Dih6 12 {1, 1, 2, 2, 6} 1.959 23.510

D4h 4/mmm Dih4 × Z2 16 {1, 1, 2, 4, 8} 1.875 30.000
D6h 6/mmm Dih6 × Z2 24 {1, 2, 3, 6, 12} 1.865 44.755
T 23 A4 12 {1, 3, 8} 1.189 14.265
Th m3 A4 × Z2 24 {1, 1, 6, 8, 8} 1.939 46.529

Td, O 43m, 432 S4 24 {1, 3, 6, 6, 8} 2.094 50.265
Oh m3m S4 × Z2 48 {1, 1, 3, 8, 8, 12, 15} 2.369 113.700

The value of Hcoor and, as a result, the value of Hconf, is potentially capable of distin-
guishing crystal structures for which the values of Hcomb are identical, for example, those
of α- and β-quartz (Figure 1). In the crystal structure of α-quartz with the space group
P3121 (or P3221), the Si atoms occupy general Wyckoff positions c with the stabilizer 1, and
O atoms occupy the Wyckoff position a with the stabilizer 2. A general position is said
to be tri-variant, as the atom can change its coordinates in three independent directions
without loss of site symmetry, and the position on a twofold rotation axis 2 is mono-variant
because, without the loss of its site-symmetry group, an atom can be displaced only along
the direction of the axis. Therefore, A = 3 + 1 = 4. In the crystal structure of β-quartz with
the space group P6222 (or P6122), the Si atoms occupy the Wyckoff position j (stabilizer 2),
while the O atoms occupy the position c (stabilizer 222). The first position is mono-variant,
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while the second is non-variant, from where it follows that A = 1 + 0 = 1. The values of
Hcoor in α- and β-quartz are, therefore, different (0.811 and 0 bits/atom).

If all atoms in the crystal structure occupy the same orbit (i.e., k = 1), then Hcomb = Hcoor = 0,
and therefore, the two crystal structures containing one crystallographic orbit each cannot
be distinguished from the viewpoint of their complexities. The examples are the simplest
molecular crystal structures, such as iodine, rhombohedral sulfur S6, α-N2, which have a
singlecrystallographic orbit each. It is worth noting that molecular crystals can be considered
as having two independent sources of information: (i) the complexity of a molecule itself, and
(ii) the complexity of molecular packing. The latter could be defined through the orbits formed
by molecular mass centers. Very frequently, there is only one symmetrically independent
molecule in a structure and therefore, again, Hcomb = Hcoor = 0. The value of Hcomb calculated
via the atomic orbits reflects the complexity of a molecule distorted by the intermolecular
interactions but does not contain any information about the molecular packing. The value of
Hcomb calculated via the orbits of the molecular mass centers should reflect the complexity
of molecular packing but is often equal to 0. An alternative way of conducting a complexity
assessment for the molecular packing is to consider the orbits of the intermolecular contacts.
An intermolecular contact is a pair of contacting molecules in a crystal [20], and its midpoint
corresponds to a Wyckoff position with a certain stabilizer (site-symmetry group). In fact,
Hcomb calculated via the orbits of intermolecular contacts reflects the complexity of the edge net
of a crystal. Combining the molecular complexity and the complexity of a packing, according
to the strong additivity rule in the same manner as that given by (6), one would obtain a
meaningful combinatorial complexity of a molecular crystal.

In this work, ten simple molecular crystal structures are considered in order to test
the proposed model of complexity for molecular crystals. The selected structures include,
ordered, I2, S6, α-S8, α-N2, β-P4, C60, ice Ih, polymorphic modifications I and II of benzene,
and naphthalene (Table 2).

Table 2. Refcodes in ICSD/CSD/COD and crystallographic parameters for selected molecular crystals.

Refcode Reference Name Space Group Z” Point Group
of a Molecule

Wyckoff
Sequence

Ideal Point Group
of a Molecule

4511285 [21] I2 Cmce 1 2/m f ∞/mmm
37090 [22] S6 R3 1 3 f 3m
27840 [23] α-S8 Fddd 1 2 h4 82m
15472 [24] α-N2 Pa3 1 3 c ∞/mmm
68326 [25] β-P4 P1 3 1 i12 43m

9011073 [26] C60 Fm3 1 m3 i2h m35
1011023 [27] Ice Ih P63cm 2 m dc4 mm2

BENZEN15 [28] Benzene-I Pbca 1 1 c6 6/mmm
BENZEN16 [28] Benzene-II P21/c 1 1 e6 6/mmm
NAPHTA11 [29] Naphthalene P21/c 1 1 e9 mmm

2. Materials and Methods

Crystallographic files *.cif were taken from the Inorganic Crystal Structure Database
(ICSD) [30] and Crystallography Open Database (COD) [31] for inorganic molecular crys-
tals, and the Cambridge Structural Database (CSD) [32] for organic molecular crystals. All
computations were performed in the ToposPro software [33]. Net classifications were made
on the basis of Reticular Chemistry Structure Resource (RCSR) [34].
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3. Molecular Complexity

The approaches for measuring the information content of a molecule emerged in the
early 1950s and were reviewed by Bonchev [35]. The most precise definition of vertex
equivalence in a finite graph was first given by Trucco [36], and is based on the automor-
phism group of the graph. Equivalent graph vertices are those that belong to the same
orbit of this group, and the derived index is called the information on the vertex orbits [37].

Let pi = ni/N, where N is the total number of atoms in a molecule, ni is the multiplicity
of the ith atomic orbit with respect to the point group of a molecule. Then, the functional
(4) is called the molecular complexity Hmol, and

Hmol,tot = N·Hmol (9)

In fact, Hmol is equal to Hcomb, but the former could be used not only for crystal struc-
tures, but also for separate molecules in a condensed or non-condensed phase (solution,
gas, etc.). In the crystal structure of orthorhombic sulfur (α-S8) with the space group Fddd,
the stabilizer of the molecular mass center is 2 (Figure 2 left), while an idealized “crown”
conformation has the symmetry 82m (Figure 2 right). In the crystal structure, atoms occupy
four different orbits (Wyckoff positions h), Hmol = −4·2/8·log2(2/8) = 2.000 bits/atom,
and Hmol,tot = Hmol·8 ≈ 16.000 bits/molecule. Meanwhile, the idealized conformation
has Hmol = 0. Thus, a distortion of the molecule in the crystal accounts for 100% of the
molecular complexity. It is noteworthy that the idealized symmetry is non-crystallographic,
and therefore, the Wyckoff letters are not defined.
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Figure 2. Symmetry elements of the S8 (“crown”) molecule in the structure of α-sulfur (left) and its
highest symmetry (right). Atoms occupying different orbits are colored differently; atoms down the
plane of the figure are shown by a dashed line.

For other selected structures, Hmol and Hmol,tot are listed in Table 3. Only 3 out of
10 structures (ice Ih, benzene, and naphthalene) have the positive Hmol values for their
idealized symmetries, and 7 out of 10 for real symmetry in the crystal. Both benzene
modifications (I and II) have the same stabilizer of the molecule, 1, and the same value
of Hmol.
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Table 3. The molecular complexity of selected molecular crystals Hmol (bits/atom) and Hmol,tot

(bits/molecule).

Name
Ideal Symmetry of a Molecule Real Symmetry of a Molecule

Hmol Hmol,tot Hmol Hmol,tot

I2 0 0 0 0
S6 0 0 0 0
α-S8 0 0 2.000 16.000
α-N2 0 0 0 0
β-P4 0 0 3.585 14.340
C60 0 0 1.522 91.320

Ice Ih 0.918 2.754 2.252 6.756
Benzene 1.000 12.000 2.585 31.020

Naphthalene 2.281 41.058 3.170 57.060

4. Edge Net Complexity

Graph edges can also be used as structural elements, and the orbits of the correspond-
ing edge group of the graph can determine their equivalence classes as was first mentioned
by Trucco [36]. This kind of information index is referred to as the information on the edge
orbits of the graph [35]. To derive the edge net of a molecular crystal structures, it can be
simplified in the following fashion:

1. At the first step, a molecular coordination shell is defined. In the ToposPro soft-
ware, the coordination shell of a molecule is determined by means of molecular
Voronoi–Dirichlet polyhedron (VDP) (for further details see [38]), but other ways of
determination are also possible.

2. At the second step, each molecule is constricted to its mass center, and all mass
centers are to be connected by edges with respect to the molecular coordination shell
previously found. The number of edges adjacent to a node equals the molecular
coordination number (CNmol). If a crystal structure contains Z” symmetrically not
equivalent molecules, their CNmol may differ, but in the selected crystal structures
they do not.

3. At the third step, a midpoint is added to each edge of the net.
4. At the fourth step, two midpoints are to be connected if and only if they are adjacent

to the same node; after that, the former nodes are to be deleted. The final net is called
an edge net and is 2(CNmol − 1)-connected.

Figure 3 displays the edge net of ice Ih. Since the initial simplified net for Ih is 4-
connected with the lonsdaleite topology(lon), the edge net occurs as being 6-connected with
the extended lonsdaleite-type topology (lon-e). There are two symmetrically independent
molecules in the crystal (Z” = 2) and three symmetrically independent midpoints of
intermolecular contacts (Figure 3 right). One of the occupied orbits corresponds to a
Wyckoff position d (stabilizer 1, multiplicity 12), while the two other orbits correspond to c
(stabilizer m, multiplicity 6) in the space group P63cm.

Let us call the edge net complexity (Hedge) a combinatorial complexity of the edge net.
Then, Hedge = −1/2·log2(1/2) − 2·1/4·log2(1/4) ≈ 1.500 bits/contact. Each molecule forms
CNmol contacts with its neighbors, but each contact is shared by two molecules; therefore, the
ratio of molecules and contacts is 1: CNmol/2, and Hedge,tot = 1.500·4/2 = 3.000 bits/molecule.
Note that the symmetry of the edge net for Ih is not the maximal possible symmetry and
thus, possesses an additional information content in comparison with the highest symmetry
embedding of the net in 3D Euclidean space.



Symmetry 2021, 13, 1399 8 of 12Symmetry 2021, 13, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 3. Crystal structure of ice (left) and H-bond midpoints (painted in shades of blue) in the 
edge net of the structure (right), view along [001]. Each shade corresponds to a certain crystallo-
graphic sort (an orbit) of midpoints. 

Let us call the edge net complexity (Hedge) a combinatorial complexity of the edge 
net. Then, Hedge = −1/2·log2(1/2) − 2·1/4·log2(1/4) ≈ 1.500 bits/contact. Each molecule forms 
CNmol contacts with its neighbors, but each contact is shared by two molecules; therefore, 
the ratio of molecules and contacts is 1: CNmol/2, and Hedge,tot = 1.500·4/2 = 3.000 
bits/molecule. Note that the symmetry of the edge net for Ih is not the maximal possible 
symmetry and thus, possesses an additional information content in comparison with the 
highest symmetry embedding of the net in 3D Euclidean space. 

An embedding of the highest symmetry may be generated by Systre software [39]. 
To find the most symmetric embedding of a net, the algorithm of the Systre software uses 
barycentric placement in which each vertex of the net is placed into the center of gravity 
of its adjacent vertices (all vertices have the same weight). The resulting net is called sta-
ble if no two vertices collide. Stable nets have maximal achievable crystallographic 
symmetry [40]. For the Ih edge net, the maximal possible symmetry is P63/mmc (Table 4) 
as is that of lonsdaleite, with two orbits being occupied by edge midpoints: Wyckoff po-
sitions g (stabilizer 2/m, multiplicity 6) and d (stabilizer 6ത𝑚2, multiplicity 2). Then, Hedge = 
−3/4·log2(3/4) − 1/4·log2(1/4) ≈ 0.811 bits/contact, Hedge,tot ≈ 1.622 bits/molecule. This type of 
complexity is referred to as the topological complexity [11] of the edge net. 

Table 4. Molecular coordination numbers (CNmol) and the symmetry of edge nets for selected mo-
lecular crystals. 

Name CNmol 
Ideal Symmetry of Edge Net Real Symmetry of Edge Net 

Space Group Wyckoff Sequence Wyckoff Sequence 
I2 14 𝐼𝑚3ത𝑚 cb fecb 
S6 14 𝐼𝑚3ത𝑚 cb eda 
α-S8 14 + 1 Fddd hgfedcb hgfedca 
α-N2 12 𝐹𝑚3ത𝑚 d d 
β-P4 14 Fddd fdcb i17hgfedcba 
C60 12 𝐹𝑚3ത𝑚 d d 

Ice Ih 4 P63/mmc gd dc2 
Benzene-I 12 𝐹𝑚3ത𝑚 d c3 
Benzene-II 12 + 2 P42/mnm jcb e2dcb 
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An embedding of the highest symmetry may be generated by Systre software [39].
To find the most symmetric embedding of a net, the algorithm of the Systre software
uses barycentric placement in which each vertex of the net is placed into the center of
gravity of its adjacent vertices (all vertices have the same weight). The resulting net is
called stable if no two vertices collide. Stable nets have maximal achievable crystallo-
graphic symmetry [40]. For the Ih edge net, the maximal possible symmetry is P63/mmc
(Table 4) as is that of lonsdaleite, with two orbits being occupied by edge midpoints: Wyck-
off positions g (stabilizer 2/m, multiplicity 6) and d (stabilizer 6m2, multiplicity 2). Then,
Hedge =−3/4·log2(3/4)− 1/4·log2(1/4)≈ 0.811 bits/contact, Hedge,tot ≈ 1.622 bits/molecule.
This type of complexity is referred to as the topological complexity [11] of the edge net.

Table 4. Molecular coordination numbers (CNmol) and the symmetry of edge nets for selected molecular crystals.

Name CNmol
Ideal Symmetry of Edge Net Real Symmetry of Edge Net

Space Group Wyckoff Sequence Wyckoff Sequence

I2 14 Im3m cb fecb
S6 14 Im3m cb eda
α-S8 14 + 1 Fddd hgfedcb hgfedca
α-N2 12 Fm3m d d
β-P4 14 Fddd fdcb i17hgfedcba
C60 12 Fm3m d d

Ice Ih 4 P63/mmc gd dc2

Benzene-I 12 Fm3m d c3

Benzene-II 12 + 2 P42/mnm jcb e2dcb
Naphthalene 12 + 2 P42/mnm jcb e2dcb

CNmol = 14 proved to be the most widespread among molecular crystals [41], which
is the case for the majority of selected crystals (Table 4). The most frequent topology types
are α-Fe or bcu-x (S6, I2), 14T3 (benzene-II, naphthalene), and fcu (α-N2, C60, benzene-
II, as well as benzene-II and naphthalene, upon considering CNmol = 12). The ordered
modification of white phosphorus (β-P4) has another topology, gpu-x, which is more
commonfororganic crystals. The net of α-S8 cannot be classified at CNmol = 15, but at
CNmol = 14, it has the 14T191 topology according to the TopCryst database [42]. Never-
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theless, all edge nets were generated at the highest found CNmol. Note that α-S8 has the
most complex edge net among the selected structures (Table 5), being the only one with
equal topological and real edge net positive complexities. Two other edge nets with equal
topological and real edge net complexities (α-N2 and C60) have Hedge = 0. The largest
contribution to a topological complexity occurs for the distorted β-P4 (more than 170%),
owing to the high value Z” = 3.

Table 5. The edge net complexity of selected molecular crystals Hedge (bits/contact) and Hedge,tot

(bits/molecule).

Name
Ideal Symmetry of Edge Net Real Symmetry of Edge Net

Hedge Hedge,tot Hedge Hedge,tot

I2 0.985 6.895 1.950 13.650
S6 0.985 6.895 1.449 10.143
α-S8 2.707 20.303 2.707 20.303
α-N2 0 0 0 0
β-P4 1.950 13.650 4.583 32.081
C60 0 0 0 0

Ice Ih 0.811 1.622 1.500 3.000
Benzene-I 0 0 1.585 9.510
Benzene-II 1.379 9.653 2.236 15.652

Naphthalene 1.379 9.653 2.236 15.652

5. Molecular Net Complexity

Analogous with (6), Hmol and Hedge can be summed in a strong additive fashion.
Since the molecular geometry and molecular packing are related, Hmol and Hedge are not
purely independent, and their simple (non-weighted) sum should not be applied. The
principal question for the use of the weighted sum is the values of the weights that should
be attributed to Hmol and Hedge. Since they both may be calculated as an information
content per molecule, a weighted scheme should be related to the ratio with respect to a
molecule. In average, there are CNmol/2 contacts per each N-atomic molecule, but, that
the former number be ever an integer, the numbers CNmol/2 and N should be multiplied
by two:

HmolNet = H(2N, CNmol) +
2N

2N + CNmol
Hmol +

CNmol
2N + CNmol

Hedge, (10)

H(2N, CNmol) = −
2N

2N + CNmol
log2

2N
2N + CNmol

− CNmol
2N + CNmol

log2
CNmol

2N + CNmol
, (11)

HmolNet, tot = (N + CNmol/2)HmolNet. (12)

The values of HmolNet and HmolNet,tot are expressed in bits per degree of freedom
(bits/d.f.) and bits/molecule, respectively. A degree of freedom combines the ability of an
atom to occupy a certain orbit with respect to the point group of the molecule and the ability
of contacts to occupy a certain orbit with respect to the space group of the crystal. Each term
in (10) reflects the impact of a specific source of complexity. The second and the third terms
account for the impacts of Hmol and Hedge, respectively, while the first term accounts for
the mixing of these two information sources. Note that the first term in (11) is determined
by the ratio of N and CNmol and is never 0, even when Hmol = Hedge = 0. Mixing two
information sources is a source itself with meaningful complexity of the outcome.

Table 6 lists the molecular net complexities for the selected crystal structures. In case
of Z” > 1, HmolNet,tot can be multiplied by Z” in order to estimate a molecular complexity
per Z” molecule. As symmetrically independent molecules add to the total complexity
independently, they act as distinct information sources. Contrastingly, a sole, symmetrically
unique molecule replicated in the unit cell entails no additional information.
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Table 6. The molecular net complexity of selected molecular crystals HmolNet (bits/d.f.) and
HmolNet,tot (bits/Z” molecules).

Name H(2N, CNmol) HmolNet HmolNet,tot

I2 0.764 2.281 20.528
S6 0.996 1.776 23.087
α-S8 0.999 3.341 51.791
α-N2 0.811 0.811 6.490
β-P4 0.946 5.166 170.470
C60 0.439 1.823 120.327

Ice Ih 0.971 2.922 29.222
Benzene-I 0.918 3.170 57.059
Benzene-II 0.949 3.406 64.712

Naphthalene 0.855 3.764 94.098

Among the selected structures, the highest value of H(2N, CNmol) ≈ 0.999 bits/d.f. is
observed for α-S8 (8 atoms, 7.5 contacts per molecule), and the lowest one is 0.439 bits/d.f.
for C60 (60 atoms, 6 contacts per molecule). For the structure of α-N2 H(2N, CNmol) ≈ 0.811
bits/d.f. is the only source of complexity (2 atoms, 6 contacts), and this structure has the lowest
HmolNet,tot. The most complex structure is β-P4. Two modifications of benzene essentially
differ by the impact of Hedge,tot and just slightly by the impact of H(2N, CNmol) to a weighted
sum (Figure 4).
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In comparison with traditional combinatorial complexity, molecular net complexity
has evidently more discriminating power. According to [43], the index of discrimination
for typing methods, based on the probability of two unrelated objects being characterized
as the same type, can be written as follows:

D = 1− 1
N(N − 1)

s

∑
j=1

xj
(
xj − 1

)
(13)

where N is the number of unrelated objects in the sample under consideration, s–the
number of different types of objects in the sample, xj–the number of objects belonging to
the jth type, and D–the value of discriminatory power under assumption that objects are
capable of being classified into mutually exclusive classes. For instance, D = 1.0 indicates a
typing method being able to distinguish each object from all other objects of the sample.
Similarly, D = 0.0 indicates all objects of the sample being of an identical type. If there is a
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50% probability that the next object randomly chosen from the sample is indistinguishable
from the first one, then D = 0.5. As one can see from Table 3, Hmol distinguishes just 7 of 10
selected structures (D = 0.877), whereas HmolNet distinguishes all of them (D = 1.000).

6. Conclusions

The calculation of complexity measures based upon Shannon information entropy has
become a routine procedure for inorganic crystal structures [2,11,12,17]. However, a simple
method of dividing atoms into equivalence classes with respect to their occupied orbits is
of limited usefulness, especially for molecular crystals with a high symmetry of molecular
constituents. Moreover, in contrast to common atomic crystal structures, molecular ones
have two distinct sources of complexity: one resulting from a molecular geometry and the
second one resulting from a molecular packing.

In this work, a common calculation scheme for the information of a crystal structure
was adapted to molecular crystals by considering separate contributions of two complexity
sources to the total complexity. As the sources are ruled by so-called strong additivity [15],
a weighted scheme for the complexity with respect to one molecule was introduced,
comprising molecular complexity, edge net complexity, and the combined complexity of
the two sources. The scheme was tested for 10 selected molecular crystals and seems to be
a powerful instrument for the assessment of complexity for molecular solids.
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