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Abstract: The role of symmetry in ring theory is universally recognized. The most directly definable
universal relation in a symmetric set theory is isomorphism. This article develops a certain structure
of bipolar fuzzy subrings, including bipolar fuzzy quotient ring, bipolar fuzzy ring homomorphism,
and bipolar fuzzy ring isomorphism. We define (α, β)-cut of bipolar fuzzy set and investigate the
algebraic attributions of this phenomenon. We also define the support set of bipolar fuzzy set and
prove various important properties relating to this concept. Additionally, we define bipolar fuzzy
homomorphism by using the notion of natural ring homomorphism. We also establish a bipolar fuzzy
homomorphism between bipolar fuzzy subring of the quotient ring and bipolar fuzzy subring of this
ring. We constituted a significant relationship between two bipolar fuzzy subrings of quotient rings
under a given bipolar fuzzy surjective homomorphism. We present the construction of an induced
bipolar fuzzy isomorphism between two related bipolar fuzzy subrings. Moreover, to discuss the
symmetry between two bipolar fuzzy subrings, we present three fundamental theorems of bipolar
fuzzy isomorphism.

Keywords: bipolar fuzzy set; bipolar fuzzy subring; bipolar fuzzy ideal; bipolar fuzzy homomor-
phism; bipolar fuzzy isomorphism

1. Introduction

The theory of fuzzy sets and their initiatory results were proposed by Zadeh [1] in 1965.
This theory has become a blooming area of research in almost all fields of science. The fuzzy
logic provides appropriate solutions in several bio-informatics and computational biolog-
ical based problems such as medical image processing, cellular reconstruction, protein
structure analysis, gene expression analysis, and medical data classification. The idea of
the fuzzy subgroup was commenced by Rosenfeld [2] in 1971. In 1983, Liu [3] presented
the opinion of fuzzy subrings and fuzzy ideals. A fuzzy subset A of ring R is a fuzzy
subring if A(x− y) ≥ min{A(x), A(y)} and A(xy) ≥ min{A(x), A(y)}. A fuzzy subset
A of ring R is fuzzy ideal if A(x− y) ≥ min{A(x), A(y)} and A(xy) ≥ max{A(x), A(y)}.
Atanassov [4] initiated the generalized form of the fuzzy set by including a new component
called the intuitionistic fuzzy set. A new abstraction of bipolar fuzzy sets was initiated by
Zhang [5]. The enlargement of the fuzzy set to the bipolar fuzzy set is commensurate to
the generalization of positive real numbers to negative real numbers. The bipolar fuzzy set
was treated as a new appliance to deal with ambiguity in decision science. More develop-
ments relative to bipolar fuzzy sets may be viewed in [6–8]. The theory of bipolar fuzzy
sets is that it is an effective tool to study the case of vagueness as compared to Zadeh’s
fuzzy sets because it deals with positive membership grade and negative membership
grade. Although intuitionistic fuzzy sets and bipolar fuzzy sets have similar appearances,
according to Lee [9], they are fundamentally distinct concepts. In the intuitionistic fuzzy
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set, both membership and non-membership belongs to [0, 1], and their sum is not more
than one, but in the bipolar fuzzy set one, the membership value belongs to [0, 1] and one
membership value belongs to [−1, 0]. The bipolar fuzzy sets have extensive implementa-
tions in real life problems [10]. Many researchers [11–15] made remarkable achievement to
generalize the concept of bipolar fuzzy sets to decision making and modern mathematics.
In 2009, Fotea and Davvaz [16] proposed the new idea of fuzzy hyperrings. The convic-
tions of self centered bipolar fuzzy graph and distance, diameter, eccentricity, and length
of bipolar fuzzy graph were studied in [17]. The idea of fuzzy hyperideal with fuzzy
hypercongruences was examined in [18]. Baik [19] developed a link between bipolar
fuzzy sets and the ideals of near ring theory in 2012. This link is obviously a core point of
classical fuzzy subring as it provides fresh ideas for various challenges in near ring theory.
Sardar et al. [20] illustrated the abstraction of bipolar fuzzy translation of sub-semigroup
and bipolar fuzzy equivalence relation. Mahmood and Munir [21] proposed the conception
of bipolar fuzzy subgroups and investigated their algebraic features. Ameri et al. [22]
introduced the concept of Engel fuzzy subgroups and investigated the fundamental results
of the left and right fuzzy Engel elements.. Motameni et al. [23] studied a special kinds
of fuzzy hyperideals and extended this concept to fuzzy hperring homomorphism for
maximal fuzzy hyperideal and prim fuzzy hyperideal. The idea of bipolar fuzzy subring
was presented in [24]. The bipolar fuzzy subring is more a generalized form of fuzzy
subring. A bipolar fuzzy subset θ = {x, (θP(x), θN(x)), ∀ x ∈ R} of ring R is a bipolar
fuzzy subring if it satisfied the two axioms for positive membership and two axioms
for negative membership θP(x − y) ≥ min{θP(x), θP(y)}, θP(xy) ≥ min{θP(x), θP(y)},
and θN(x − y) ≤ max{θN(x), θN(y)}, θN(xy) ≤ max{θN(x), θN(y)}. The 4-Engel fuzzy
subgroup are discussed in [25]. Moreover, Mohamadzahed et al. [26] invented the defi-
nition of nilpotent fuzzy subgroup and discussed many algebraic properties of nilpotent
fuzzy subgroups. A fuzzy subgroup A of group G is called a good nilpotent fuzzy sub-
group of G if there exists a non negative integer n such that Zn(A) = G; the smallest such
integer is called the class of A, where Zn(A) is normal subgroup of G. Subbian and Kama-
raj [27] commenced the notion of bipolar fuzzy ideals and explored the extension of bipolar
fuzzy ideals. A bipolar fuzzy subset θ = {x, (θP(x), θN(x)), ∀ x ∈ R} of ring R is bipolar
fuzzy ideal if it satisfied the following axioms θP(x− y) ≥ min{θP(x), θP(y)}, θP(xy) ≥
max{θP(x), θP(y)}, and θN(x − y) ≤ max{θN(x), θN(y)}, θN(xy) ≤ min{θN(x), θN(y)}.
Yamin and Sharma [28] studied the intuitionistic fuzzy ring, intuitionistic fuzzy ideal, and
intuitionistic fuzzy quotient ring with operators in 2018. The algebraic structure between
fuzzy set and normed rings was presented in [29]. Jun et al. [30] depicted the opinion of
bipolar fuzzy subalgebra and k-fold bipolar fuzzy ideals.Trevijano et al. [31] invented a
annihilator for the fuzzy subgroup of the Abelian group. They also discussed the behavior
of annihilator with respect to intersection and union. The different approximation about
fuzzy ring homomorphism was studied in [32].

Liu and Shi [33] presented a novel framework with respect to the fuzzification of
lattice, which is know as M-hazy lattice. In Demirci’s approach [34,35], the characteristic
of the degree between the fuzzy binary operation is not used and the inverse element
and the identity element may number more than one. In order to remove this draw-
back, Liu and Shi [36] introduced M-hazy groups by using a M-hazy binary operation.
Mehmood et al. [37] initiated a new algebraic structure of M-hazy ring and studied the
various algebraic characteristics of this newly defined ring. Alhaleem and Ahmad [38] pro-
posed the idea of intuitionistic fuzzy normed ring in 2020. Mehmood et al. [39] developed
a new algebraic structure of M-hazy ring homomorphism. The mapping φ from M-hazy
ring (R1,+, ◦) to M-hazy ring (R2,

⊕
, •) is called an M-hazy ring homomorphism if the

following conditions hold φM(k + l) = φ(k)
⊕

φ(l) and φM(k ◦ l) = φ(k) • φ(l), ∀, k, l ∈ R1.
Nakkasen [40] studied the properties of Artnians and Noetherian ternary near-rings under
intuitionistic fuzzy ideals. A novel class of t-intuitionistic fuzzy subgroups was investigated
in [41]. Gulzar et al. [42] introduced the notion of complex intuitionistic fuzzy group theory.
The fuzzy homomorphism theorems of fuzzy rings were depicted in [43]. The notion of
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complex fuzzy subfields was analyzed in [44]. The new development about Q-complex
fuzzy subrings were explored in [45]. The recent development of bipolar fuzzy sets in
BCK/BCI-algebras and semigroup theory may be viewed in [46,47]. The competency of
the bipolar fuzzy sets plays a key role in solving many physical difficulties. Additionally,
the study of bipolar fuzzy subrings is significant in terms of its algebraic structure. This
motivates us to describe the concept of bipolar fuzzy sets where one can have multiple
options to discuss a particular problem of ring theory in a much more efficient manner.
Firstly, we shall prove that the (α, β)-cut of bipolar fuzzy subring forms a subring of a
given ring and discuss various algebraic properties of this phenomenon. Secondly, we shall
define bipolar fuzzy left cosets and determine the bipolar fuzzy subring of quotient ring.
We shall also define the support set of bipolar fuzzy set. Thirdly, we shall describe bipolar
fuzzy homomorphism and weak bipolar fuzzy homomorphism and show that bipolar
fuzzy homomorphism preserves the ring operation. Additionally, we prove the bipolar
fuzzy homomorphism and isomorphism theorems of bipolar fuzzy subrings parallel to
natural theorems of ring homomorphism and ring isomorphism.

A sketch of this study is as follows. The bipolar fuzzy sets, bipolar fuzzy subring, and
related results are defined in Section 2. In Section 3, we studied the concepts of (α, β)-cut
of bipolar fuzzy sets and discuss many important algebraic characteristics of bipolar fuzzy
subrings (BFSRs). We prove that the direct product of two bipolar fuzzy subrings (BFSRs)
are bipolar fuzzy subrings (BFSR) by using the notion of (α, β) of bipolar fuzzy set (BFS).
Furthermore, we define support of bipolar fuzzy subset (BFS) and show that support of
bipolar fuzzy ideal (BFI) of ring form a natural ideal of ring. In Section 4, we describe
bipolar fuzzy homomorphism (BFH) of bipolar fuzzy subring (BFSR) under a natural ring
homomorphism and prove that the bipolar fuzzy homomorphism (BFH) preserves the
sum and product operation defined on bipolar fuzzy subring (BFSR). We also develop a
significant relationship between two bipolar fuzzy subrings (BFSRs) of the quotient rings
under given surjective homomorphism and prove more fundamental theorems of bipolar
fuzzy homomorphism (BFH) for these specific fuzzy subrings. Finally, we discuss three
fundamental theorems of bipolar fuzzy isomorphism of bipolar fuzzy subrings (BFSRs).

2. Preliminaries

This section recalls some basic ideas of BFS, BFSR, and BFI that are interconnected to
the analysis of this article.

Definition 1 ([5]). A BFS θ of universe of discourse P is described as an object of the form θ =
{(k, θP(k), θN(k)) : k ∈ P}, where θP : P→ [0, 1] and θN : P→ [−1, 0]. The grades of positive
membership θP(k) represents the degree of belief of an element k to the property corresponding to
a degree of BFS θ and the grades of negative membership θN(k) represents the degree of disbelief
of an element k to some implicit counter-property corresponding to a BFS θ. If θP(k) 6= 0 and
θN(k) = 0, this means that k has only a degree of belief for θ and if θP(k) = 0 and θN(k) 6= 0, this
means that k does not possess belief on the property of θ, but somewhat satisfies the counter property
of θ. It is possible for an element k to be such that θP(k) 6= 0 and θN(k) 6= 0 when the membership
function of the attribution overlaps that of its counter attribution over some part of the nonempty
set P.

Definition 2 ([24]). A BFS θ of a ring R is called a BFSR of a R, if the following conditions hold:

1. θP(k− t) ≥ min{θP(k), θP(t)},
2. θP(kt) ≥ min{θP(k), θP(t)},
3. θN(k− t) ≤ max{θN(k), θN(t)},
4. θN(kt) ≤ max{θN(k), θN(t)}.

Definition 3 ([27]). A BFS θ of a ring R is said to be bipolar fuzzy left ideal(BFLI) of R, if the
following conditions hold:

1. θP(k− t) ≥ min{θP(k), θP(t)},
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2. θP(kt) ≥ θP(t),
3. θN(k− t) ≤ max{θN(k), θN(t)},
4. θN(kt) ≤ θN(t), for all k, t ∈ R.

Definition 4. Ref. [27] A BFS θ of a ring R is said to be bipolar fuzzy right ideal(BFRI) of R, if the
following conditions hold:

1. θP(k− t) ≥ min{θP(k), θP(t)},
2. θP(kt) ≥ θP(k),
3. θN(k− t) ≤ max{θN(k), θN(t)},
4. θN(kt) ≤ θN(k), for all k, t ∈ R.

Definition 5. Ref. [27] A BFS θ of a ring R is said to be BFI of R, if the following axioms hold:

1. θP(k− t) ≥ min{θP(k), θP(t)},
2. θP(kt) ≥ max{θP(k), θP(t)},
3. θN(k− t) ≤ max{θN(k), θN(t)},
4. θN(kt) ≤ min{θN(k), θN(t)}, ∀ k, t ∈ R.

Definition 6 ([24]). Let θ = {(k, θP(k), θN(k)) : k ∈ P} and η = {(t, ηP(t), ηN(t)) : t ∈ Q}
be any two BFSs of nonempty sets P and Q, respectively. Then the Cartesian product of θ and η is
represented by θ × η and is defined as the following:

θ × η = {< (k, t), (θP × ηP)(k, t), (θN × ηN)(k, t) >: k ∈ P, t ∈ Q},

where (θP × ηP)(k, t) = min{θP(k), ηP(t)} and (θN × ηN)(k, t) = max{θN(k), ηN(t)}.

3. Fundamental Algebraic Properties of Bipolar Fuzzy Subrings

In this section, we study the (α, β)-cut of BFS and investigate some important character-
istics of this phenomenon. We define support of BFS and justify their corresponding desirable
set-theoretic properties under BFSR. We also found the BFSR of quotient ring.

Definition 7. Let θ = {(k, θP(k), θN(k)) : k ∈ P} be a BFS of a set P, then a (α, β)-cut of θ is a
crisp subset of P and is defined as Cα,β(θ) = {k ∈ P | θP(k) ≥ α, θN(k) ≤ β}, where α ∈ [0, 1]
and β ∈ [−1, 0].

Theorem 8. If θ is a BFS of a ring R, then Cα,β(θ) is a subring of R if and only if θ is a BFSR of R.

Proof. Clearly Cα,β(θ) 6= ∅, because θP(0) ≥ α, θN(0) ≤ β. Let k, t ∈ Cα,β(θ). Then
θP(k), θP(t) ≥ α and θN(k), θN(t) ≤ β.

Consider θP(k− t) ≥ min{θP(k), θP(t)} ≥ α and θN(k− t) ≤ max{θN(k), θN(t)} ≤ β.

Thus k− t ∈ Cα,β(θ).
Further, we have the following.

θP(kt) ≥ min{θP(k), θP(t)} ≥ α and θN(kt) ≤ max{θN(k), θN(t)} ≤ β.

Therefore, kt ∈ Cα,β(θ). As result, Cα,β(θ) is subring of R.
Conversely, suppose that α = min{θP(k), θP(t)}, β = max{θN(k), θN(t)}. Then

θP(k) ≥ α, θN(k) ≤ β and θP(t) ≥ α, θN(t) ≤ β. This gives k, t ∈ Cα,β(θ). Since Cα,β(θ) is a
subring of R. Then we have k− t ∈ Cα,β(θ). This implies the following.

θP(k− t) ≥ α = min{θP(k), θP(t)} and θN(k− t) ≤ β = max{θN(k), θN(t)}.
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Moreover, as Cα,β(θ) is a subring of R. This implies that kt ∈ Cα,β(θ). Thus, the
following is the case.

θP(kt) ≥ α = min{θP(k), θP(t)}, and θN(kt) ≤ β = max{θN(k), θN(t)}.

Hence, θ is a BFSR of R.

Theorem 9. If θ is a BFS of a ring R, then Cα,β(θ) is a ideal of R if and only if θ is a BFI of R.

Proof. From Theorem 8, we have k− t ∈ Cα,β(θ).
Furthermore, if r ∈ R and t ∈ Cα,β(θ), we have the following.

θP(rt) ≥ max{θP(r), θP(t)} ≥ θP(t) ≥ α and θN(rt) ≤ min{θN(r), θN(t)} ≤ θN(t) ≤ β.

θP(tr) ≥ max{θP(r), θP(t)} ≥ θP(t) ≥ α and θN(tr) ≤ min{θN(r), θN(t)} ≤ θN(t) ≤ β.

Therefore, rt, tr ∈ Cα,β(θ). As result, Cα,β(θ) is an ideal of R.
Conversely, from Theorem 8, we have the following.

θP(k− t) ≥ min{θP(k), θP(t)} and θN(k− t) ≤ max{θN(k), θN(t)}.

Suppose that α = θP(t), β = θN(t). This gives, t ∈ Cα,β(θ), for any r ∈ R. Since Cα,β(θ)
is an ideal of R. In this case, rt, tr ∈ Cα,β(θ). Thus, the following is the case.

θP(rt) ≥ α = θP(t), and θN(rt) ≤ β = θN(t), θP(tr) ≥ α = θP(t), and θN(tr) ≤ β = θN(t).

Hence, θ is bipolar fuzzy ideal. This establishes the proof.

Theorem 10. Let θ be an BFSR of R, then Cα,β(θ) ⊆ Cu,δ(θ) if α ≥ u and β ≤ δ, where
α, u ∈ [0, 1] and β, δ ∈ [−1, 0].

Proof. Let k ∈ Cα,β(θ), then θP(k) ≥ α and θN(k) ≤ β. Since α ≥ u and β ≤ δ, we can
write, θP(k) ≥ α ≥ u and θN(k) ≤ β ≤ δ. Therefore k ∈ Cu,δ(θ).

Theorem 11. If θ and η are BFSRs of a ring R, then Cα,β(θ ∩ η) = Cα,β(θ) ∩ Cα,β(η).

Proof. We have Cα,β(θ ∩ η) = {k ∈ R|(θP ∩ ηP)(k) ≥ α, (θN ∩ ηN)(k) ≤ β}. Now, k ∈
Cα,β(θ ∩ η).

⇔ (θP ∩ ηP)(k) ≥ α, (θN ∩ ηN)(k) ≤ β

⇔ min{θP(k), ηP(k)} ≥ α and max{θN(k), ηN(k)} ≤ β

⇔ θP(k), ηP(k) ≥ α and θN(k), ηN(k) ≤ β

⇔ k ∈ Cα,β(θ) and k ∈ Cα,β(η)

⇔ k ∈ Cα,β(θ) ∩ Cα,β(η).

Therefore, Cα,β(θ ∩ η) = Cα,β(θ) ∩ Cα,β(η).

Theorem 12. If θ ⊆ η then Cα,β(θ) ⊆ Cα,β(η), where θ and η are BFSRs of a ring R.

Proof. Let θ ⊆ η and k ∈ Cα,β(θ). Then θP(k) ≥ α, θN(k) ≤ β. Since θ ⊆ η, so we
have ηP(k) ≥ θP(k) ≥ α and ηN(k) ≤ θN(k) ≤ β and consequently k ∈ Cα,β(η). Thus,
Cα,β(θ) ⊆ Cα,β(η).

Theorem 13. If θ and η are BFSRs of a ring R, then Cα,β(θ ∪ η) = Cα,β(θ) ∪ Cα,β(η).
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Proof. Since θ ⊆ (θ ∪ η) and η ⊆ (θ ∪ η). By the above theorem Cα,β(θ) ⊆ Cα,β(θ ∪ η) and
Cα,β(η) ⊆ Cα,β(θ ∪ η). Therefore, Cα,β(θ ∪ η) ⊇ Cα,β(θ) ∪ Cα,β(η).
Now suppose that k ∈ Cα,β(θ ∪ η). This implies that (θP ∪ ηP(k)) ≥ α and (θN ∪ ηN(k)) ≤
β ⇒ max{θP(k), ηP(k)} ≥ α and min{θN(k), ηN(k)} ≤ β ⇒ θP(k) ≥ α or ηP(k) ≥
α and θN(k) ≤ β or ηN(k) ≥ β. This implies that k ∈ Cα,β(θ) or k ∈ Cα,β(η). This
implies that Cα,β(θ ∪ η) ⊆ Cα,β(θ) ∪ Cα,β(η). Consequently, we have Cα,β(θ) ∪ Cα,β(η) =
Cα,β(θ ∪ η).

Proposition 14. If θ and η be two BFSs of R1 and R2, respectively. Then Cα,β(θ× η) = Cα,β(θ)×
Cα,β(η), for all α,∈ [0, 1], and β ∈ [−1, 0].

Proof. Let (k, t) ∈ Cα,β(θ × η) be any element.

⇔ (θP × ηP)(k, t) ≥ α and (θN × ηN)(k, t) ≤ β

⇔ min{θP(k), ηP(t)} ≥ α and max{θN(k), ηN(t)} ≤ β

⇔ θP(k) ≥ α, ηP(t) ≥ α and θN(k) ≤ β, ηN(t) ≤ β

⇔ θP(k) ≥ α, θN(k) ≤ β and ηP(t) ≥ α, ηN(t) ≤ β

⇔ k ∈ Cα,β(θ) and n ∈ Cα,β(η)

⇔ (k, t) ∈ Cα,β(θ)× Cα,β(η).

Hence, Cα,β(θ × η) = Cα,β(θ)× Cα,β(η).

Theorem 15. Let θ and η be BFSRs of ring R1 and R2, respectively. Then θ × η is also the BFSR
of ring R1 × R2.

Proof. Since θ and η are the BFSRs of ring R1 and R2, respectively. Therefore, Cα,β(θ)
and Cα,β(η) are BFSRs of ring R1 and R2, respectively. ∀ α,∈ [0, 1] and β ∈ [−1, 0].
By Theorem 8, we have the following.

⇔ Cα,β(θ)× Cα,β(η) is subring of R1 × R2.

⇔ Cα,β(θ × η) is subring of R1 × R2.

⇔ θ × η is BFSR of ring R1 × R2. (By Theorem 8.)

Definition 16. Let R be a ring and θ be the BFSR of a ring R. Let k ∈ R be a fixed element. Then,
the set (k + θ)(t) = {< t, k + θP(t), k + θN(t) >: t ∈ R}, where k + θP(t) = θP(t− k) and
k + θN(t) = θN(t− k), for all t ∈ R is said to be bipolar fuzzy left coset of R purposed by θ and k.

Theorem 17. Let θ be a BFI of R and k be an arbitrary fixed element of R. Then, k + Cα,β(θ) =
Cα,β(k + θ).

Proof. Consider k + Cα,β(θ).

= k + {< t ∈ R : θP(t) ≥ α and θN(t) ≤ β >}.
= {< k + t ∈ R : θP(t) ≥ α and θN(t) ≤ β >}.

Place k + t = a so that t = a− k. Then, k + Cα,β(θ):

= {< a ∈ R : θP(a− k) ≥ α and θN(a− k) ≤ β >}
= {< a ∈ R : k + θP(a) ≥ α and k + θN(a) ≤ β >}.

thus, k + Cα,β(θ) = Cα,β(k + θ), ∀ α ∈ [0, 1] and β ∈ [−1, 0].
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Definition 18. Let θ and η be BFSs of universal set P. Then, the bipolar fuzzy sum of θ and η is
denoted by θ + η = {t, (θP + ηP)(t), (θN + ηN)(t) : t ∈ P}, where the following is the case.

(θP + ηP)(t) =

{
max{min{θP(a), ηP(b)}, i f t = a + b
0, otherwise

(θN + ηN)(t) =

{
min{max{θN(a), ηN(b)}, i f t = a + b
1, otherwise

Definition 19. Let θ be a BFS of P. The support set θ∗ of θ is defined as the following.

θ∗ = {k ∈ P : θP(k) > 0, θN(k) < 0}.

Remark 20. Let θ be a BFSR of R. Then θ∗ is a BFSR of R.

The next theorem shows that how a support set of bipolar fuzzy ideal is a ideal of R.

Theorem 21. Let θ be BFI of R, then θ∗ is a BFI of R.

Proof. Note that θ is BFI. Assume that k, t ∈ θ∗. Consider θP(k− t) ≥ min{θP(k), θP(t) } >
0, and θN(k− t) ≤ max{θN(k), θN(t) } < 0. This implies that k− t ∈ θ∗.
Furthermore, suppose that k ∈ θ∗ and t ∈ R. Then we have θP(kt) ≥ max{θP(k), θP(t) } >
0, and θN(kt) ≤ min{θN(k), θN(t) } < 0. Similarly, θP(tk) > 0 and θN(tk) < 0 implies
that kt, tk ∈ θ∗. This implies that θ∗ is an ideal of R.

Our next theorem provides the significant importance of support of intersection of
any two BFSR of a ring R.

Theorem 22. If θ and η are BFSR of R. Then (θ ∩ η)∗ = θ∗ ∩ η∗.

Proof. For any arbitrary element, k ∈ (θ∩ η)∗, implies that (θP ∩ ηP)(k) > 0 and (θN ∩ ηN)
(k) < 0. We have θP(k), ηP(k) ≥ min{θP(k), ηP(k)} = (θP ∩ ηP)(k) > 0. This implies
that θP(k), ηP(k) > 0, and θN(k), ηN(k) ≤ max{θN(k), ηN(k)} = (θN ∩ ηN)(k) < 0. This
implies that θN(k), ηN(k) < 0. This implies that k ∈ θ∗ ∩ η∗. Consequently, (θ ∩ η)∗ ⊆
θ∗ ∩ η∗. Moreover, k ∈ θ∗ ∩ η∗. This implies that θP(k), ηP(k) > 0 and θN(k), ηN(k) <
0. This implies that min{θP(k),ηP(k)} > 0, and max{θN(k),ηN(k)} < 0. this implies
that (θP ∩ ηP)(k) > 0 and (θN ∩ ηN)(k) < 0. This implies that k ∈ (θ ∩ η)∗. Therefore,
(θ ∩ η)∗ ⊇ θ∗ ∩ η∗. Consequently, (θ ∩ η)∗ = θ∗ ∩ η∗. This concludes the proof.

Remark 23. If θ and η are BFSRs of R, then (θ + η)∗ = θ∗ + η∗.

Definition 24. Let θ and η be the BFS and BFSR of R, respectively, with θ ⊆ η. Then θ is called
a BFI of η if the following axiom holds:

1. θP(k− t) ≥ min{θP(t),θP(k)}, ∀k, t ∈ R,
2. θP(kt) ≥ max{min{θP(t),ηP(k)}, min{ηP(t),θP(k)}} ∀ k, t ∈ R,
3. θN(k− t) ≤ max{θN(t),θN(k)}, ∀ k, t ∈ R,
4. θN(kt) ≤ min{max{θN(t),ηN(k)}, max{ηN(t),θN(k)}} ∀ k, t ∈ R.

Theorem 25. Let θ and η be the BFSR of a ring R and θ is a BFI of η. Then θ∗ is ideal of ring η∗.

Theorem 26. Let θ be a BFI and η be a BFSR of R, then θ ∩ η is BFI of η.
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Proof. Consider an elements k, t ∈ R. We have the following.

(θP ∩ ηP)(k− t) =min{θP(k− t), ηP(k− t)},
≥min{min{θP(t), θP(k)}, min{ηP(t), ηP(k)}}
=min{min{θP(t), ηP(t)}, min{θP(k), ηP(k)}}

=min{
(

θP ∩ ηP
)
(t),

(
θP ∩ ηP

)
(k)}, ∀ k, t ∈ R.

Moreover, we also have the following.

(θP ∩ ηP)(kt) =min{θP(kt), ηP(kt)},
≥min{max{θP(k), θP(t)}, min{ηP(k), ηP(t)}}
=max{min{θP(k), min{ηP(k), ηP(t)}}, min{θP(t), min{ηP(t), ηP(k)}}
=max{min{(θP ∩ ηP)(k), ηP(t)}, min{(θP ∩ ηP)(t), ηP(k)}}.

Furthermore, we have the following.

(θN ∩ ηN)(k− t) =max{θN(k− t), ηN(k− t)},
≤max{max{θN(t), θN(k)}, max{ηN(t), ηN(k)}}
=max{max{θN(t), ηN(t)}, max{θN(k), ηN(k)}}

=max{
(

θN ∩ ηN
)
(t),

(
θN ∩ ηN

)
(k)}, ∀ k, t ∈ R.

In addition, we have the following.

(θN ∩ ηN)(kt) =max{θN(kt), ηN(kt)},
≤max{min{θN(k), θN(t)}, max{ηN(k), ηN(t)}}
=min{max{θN(k), max{ηN(k), ηN(t)}}, max{θN(t), max{ηN(t), ηN(k)}}
=min{max{(θN ∩ ηN)(k), ηN(t)}, max{(θN ∩ ηN)(t), ηN(k)}}.

This concludes the proof.

Remark 27. Let θ, η and ψ be BFSR of R such that θ and η are BFI of ψ, then θ ∩ η is BFI of ψ.

Theorem 28. Let L be an ideal of a ring R. If θ = {(k, θP(k), θN(k)) : k ∈ R} is a BFSR of R,
then the BFS θ̄ = {(K + L, θ̄P(k + L), ¯θN(k + L)) : k ∈ R} of R/L is also BFSR of R/L, where
θ̄P(k + L) = max{θP(k + a)|a ∈ L} and ¯θN(k + L) = min{θN(k + a)|a ∈ L}.

Proof. First we shall show that θ̄P : R/L→ [0, 1] and ¯θN : R/L→ [0, 1] are well defined.
Let k + L = t + L, then t = k + a for some a ∈ L.

Consider the following:

θ̄P(t + L) = max{θP(t + b)|b ∈ L}
= max{θP(k + a + b)|b ∈ L}
= max{θP(k + c)|c = a + b ∈ L}
= θ̄P(k + L)
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and the following.

¯θN(t + L) = min{θN(t + b)|b ∈ L}
= min{θN(k + a + b)|b ∈ L}
= min{θN(k + c)|c = a + b ∈ L}
= ¯θN(k + L).

Therefore, θ̄P and ¯θN are well defined. Now we shall prove that θ̄ is BFSR of R/L. We
have θ̄P{(k + L)− (t + L)}.

= θ̄P{(k− t) + L}
= max{θP(k− t + u)|u ∈ L}
= max{θP(k− t + v− w)|u = v− w ∈ L}
= max{θP(k + v)− (t + w)|v, w ∈ L}
≥ max{min{θP(k + v), θP(t + w)|v, w ∈ L}}
= min{max{θP(k + v)|v ∈ L}, max{θP(t + w)|w ∈ L}}

since v and w vary independently.

= min{θ̄P(k + L), ¯θN(k + L)}

Moreover, we have θ̄P{(k + L)(t + L)}.

= θ̄P{(kt) + L}
= max{θP(kt + u)|u ∈ L}
≥ max{min{θP(k + v), θP(t + w)|v, w ∈ L}}
= min{max{θP(k + v), v ∈ L}, max{θP(t + w)|w ∈ L}}
= min{θ̄P(k + L), θ̄P(t + L)}.

In addition, we have ¯θN{(k + L)− (t + L)}. = ¯θN{(k− t) + L}

= min{θN(k− t + u)|u ∈ L}
= min{θN(k− t + v− w)|u = v− w ∈ L}
= min{θN(k + v)− (t + w)|v, w ∈ L}
≤ min{max{θN(k + v), θN(t + w)|v, w ∈ L}}
= max{min{θN(k + v)|v ∈ L}, min{θN(t + w)|w ∈ L}}

since v and w vary independently.

= max{ ¯θN(k + L), ¯θN(k + L)}

Furthermore, ¯θN{(k + L)(t + L)}.

= ¯θN{(kt) + L}
= min{θN(kt + u)|u ∈ L}
≤ min{max{θN(k + v), θN(t + w)|v, w ∈ L}}
= max{min{θN(k + v), v ∈ L}, min{θN(n + w)|w ∈ L}}
= max{ ¯θN(k + L), ¯θN(t + L)}.

Hence, θ̄ = {(k + L, θ̄P(k + L), ¯θN(k + L)) : k ∈ R} is a BFSR of R/L.
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4. Fundamental Theorems of Bipolar Fuzzy Homomorphism and Bipolar Fuzzy
Isomorphism of Bipolar Fuzzy Subrings

In this section, we investigate the concept of BFH of BFSR and prove that this homo-
morphism preserves the operation of fuzzy sum and fuzzy product of BFSR of ring R. We
clarify bipolar fuzzy homomorphism for these fuzzy subrings and investigate the idea of
BFH relation between any two BFSRs. We also presented the bipolar fuzzy isomorphism
theorem of BFSRs.

Definition 29. Let f : R→ R
′

be the ring homomorphism from R to R
′
. Let θ and η be BFSRs of

rings R and R′, respectively. The image and inverse image of θ and η, respectively, are described as
ω(θ)(t) = {(t, ω(θP)(t), ω(θN)(t)), t ∈ R

′} and ω−1(θ)(k) = {(k, ω−1(θP)(k), ω−1(θN)(k)),
k ∈ R} where we have the following:

ω(θP)(t) =

{
max{θP(k) k ∈ ω−1(t) 6= ∅}, for all t ∈ R

′

0 otherwise

ω(θN)(t) =

{
min{θN(k) k ∈ ω−1(t) 6= ∅}, for all t ∈ R

′

1 otherwise.

and the following is the case.

ω−1(ηP)(k) = ηP(ω(k)), ω−1(ηN)(k) = ηN(ω(k)) ∀ k ∈ R.

The homomorphism ω is called a BFH from θ onto η if ω(θ) = η and is denoted by θ ≈ η.
A homomorphism ω from bipolar fuzzy subring θ to η is said to be a bipolar fuzzy isomorphism
from θ to η if ω(θ) = η. In this situation, θ is bipolar fuzzy isomorphic to η and is represented by
θ ∼= η. The homomorphism ω is called weak BFH from θ to η if ω(θ) ⊆ η.

In the next theorem,we illustrate the fuzzy homomorphism relation between bipolar
fuzzy subring of ring and any of its factor ring.

Theorem 30. Let ω be a homomorphism from ring R to ring S. Let θ and η be two BFSs of ring R.
Then, the following is the case.

ω(θ + η) = ω(θ) + ω(η)

ω(θ ◦ η) = ω(θ) ◦ω(η).

Proof. For t ∈ S, we have the following:

ω(θ + η)(t) = (ω(θP + ηP)(t), ω(ηN + ηN)(t))

and (ω(θ) + ω(η))(t) = (ω(θP) + ω(ηP)(t), ω(ηN) + ω(ηN)(t)).

Consider the following.
ω(θP + ηP)(t) = max{(θP + ηP)(k) : k ∈ R, t = ω(k)}

= max{max{min{θP(k1), ηP(k2) : k1, k2 ∈ R, k = k1 + k2}k ∈ R, t = ω(k)}}
= max{max{min{θP(k1), ηP(k2) : k1, k2 ∈ R, t1 = ω(k1), t2 = ω(k2)}, t1, t2 ∈ S,

t = t1 + t2}}
= max{min{max{θP(m1) : k1 ∈ R, t1 = ω(k1)}, max{ηP(k2) : k2 ∈ R : t2 = ω(k2)}}}
= max{min{ω(θP)(t1), ω(ηP)(t2)} : t1, t2 ∈ S, t = t1 + t2}
= (ω(θP) + ω(ηP))(t).
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Moreover, we have the following.
ω(θN + ηN)(t) = min{(θN + ηN)(k) : k ∈ R, t = ω(k)}

= min{min{max{θN(k1), ηN(k2) : k1, k2 ∈ R, k = k1 + k2}k ∈ R, t = ω(k)}}
= min{min{max{θN(k1), ηN(k2) : k1, k2 ∈ R, t1 = ω(k1), t2 = ω(k2)}, t1, t2 ∈ S,

t = t1 + t2}}}
= min{max{min{θN(m1) : k1 ∈ R, t1 = ω(k1)}, max{ηN(m2) : k2 ∈ R : t2 = ω(k2)}}}.
= min{max{ω(θN)(t1), ω(ηN)(t2)} : t1, t2 ∈ S, n = t1 + t2}
= (ω(θN) + ω(ηN))(t).

Therefore, ω(θ + η) = ω(θ) + ω(η).
(ii) For t ∈ S, we have the following.

ω(θ ◦ η)(t) = (ω(θP ◦ ηP)(t), ω(θN ◦ ηN)(t))

and ω(θ) ◦ω(η)(t) = (ω(θP) ◦ω(ηP)(t), ω(θN) ◦ω(ηN)(t)).

Consider ω(θP ◦ ηP)(t).

= max{(θP ◦ ηP)(k) : k ∈ R, t = ω(k)}
= max{max{min{θP(k1), ηP(k2) : k1, k2 ∈ R, k = k1k2}k ∈ R, t = ω(k)}}
= max{max{min{θP(k1), ηP(k2) : k1, k2 ∈ R, t1 = ω(k1), t2 = ω(k2)}, t1, t2 ∈ S,

t = t1t2}}
= max{min{max{θP(k1) : k1 ∈ R, t1 = ω(k1)}, max{ηP(k2) : k2 ∈ R : k1, k2 ∈ R,

t2 = ω(k2)}}}.
= max{min{ω(θP)(t1), ω(ηP)(t2)} : t1, t2 ∈ S, t = t1t2} = ω(θP) ◦ω(ηP)(t).

Furthermore, we have ω(θN ◦ ηN)(t).

= min{(θN ◦ ηN)(k) : k ∈ R, t = ω(k)}
= min{min{max{θN(k1), ηN(k2) : k1, k2 ∈ R, k = k1k2}k ∈ R, t = ω(k)}}
= min{min{max{θN(k1), ηN(k2) : k1, k2 ∈ R, t1 = ω(k1), t2 = ω(k2)}, t1, t2 ∈ S,

t = t1t2}}
= min{max{min{θN(k1) : k1 ∈ R, t1 = ω(k1)}, min{ηN(k2) : k2 ∈ R : k1, k2 ∈ R,

t2 = ω(k2)}}}.
= min{max{ω(θN)(t1), ω(ηN)(t2)} : t1, t2 ∈ S, t = t1t2}
= (ω(θN) ◦ω(ηN))(t).

Consequently, ω(θ ◦ η) = ω(θ) ◦ω(η).

Theorem 31. Let π : R→ R/L be ring homomorphism from R onto R/L, where L is an ideal of
ring R. Let θ and θρ be a BFSRs of R and R/L, respectively. Then, π is a BFH from θ onto θρ.

Proof. Since π is a homomorphism from R onto R/L described by the rule π(a) =
a + L, for any a ∈ R. We have π(θ)(a + L) = (π(θP)(a + L), π(θN)(a + L)). Where
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π(θP(a + L) = max{θP(u) : u ∈ π−1(a + L)} and π(θN(a + L) = min{θN(u) : u ∈
π−1(a + L)}. Consider the following case:

π(θP(a + L) =max{θP(u) : u ∈ π−1(a + L)}
=max{θP(u) : π(u) = a + L}
=max{θP(u) : u + L = a + L}
=max{θP(u) : u = a + n, t ∈ L}
=max{θP(a + n) : t ∈ L}
=θP

ρ (a + L).

which implies that π(θP) = θP
ρ .

Moreover, we have the following:

π(θN)(a + L) =min{θN(u) : u ∈ π−1(a + L)}
=min{θN(u) : π(u) = a + L}
=min{θN(u) : u + I = a + L}
=min{θN(u) : u = a + t, n ∈ L}
=max{θN(a + t) : t ∈ L}
=θN

ρ (a + L).

which implies that π(θN) = θN
ρ . Therefore, π(θ) = θρ. Hence, the above is proved.

We explain the above algebraic fact of BFH in the next example.

Example 32. Consider the factor ring Z/2Z = {2Z, 1 + 2Z}, where R = Z is a ring of integer
and S = 2Z = {2k|k ∈ Z} is an ideal of ring Z. Then BFS of Z is defined as follows:

θP(k) =
{

0.7, if k ∈ 2Z,
0.4, if k ∈ 1 + 2Z.

and the following.

θN(k) =
{
−0.8, if k ∈ 2Z,
−0.5, if k ∈ 1 + 2Z.

Define BFSR θρ of Z/2Z as follows:

θP
ρ (t) =

{
0.7, if t = 2Z,

0.4, if t = 1 + 2Z.

and the following.

θN
ρ (t) =

{
−0.8, if t = 2Z,
−0.5, if t = 1 + 2Z.

The natural homomorphism π from Z to Z/2Z is described as the following: π(k) = k + 2Z,
for all k ∈ Z. This implies that π(θP)(2Z) = max{θP(k) : k ∈ 2Z}, implies that π(θP)(2Z) =
0.7 and π(θN)(2Z) = min{θN(k) : k ∈ 2Z }, and implies that π(θN)(2Z) = −0.8. Moreover,
π(θP)(1 + 2Z) = max{θP(k) : k ∈ 1 + 2Z }, which implies that π(θP)(1 + 2Z) = 0.4 and
π(θN)(1 + 2Z) = min{θN(k) : k ∈ 1 + 2Z }, and implies that π(θN)(1 + 2Z) = −0.5. Thus,
π(θ) = θρ.

Theorem 33. Let θ and η be BFSR of rings R and R
′
, respectively, and ω be a BFH from θ onto η.

Then a mapping ϕ : R/L→ R
′

is a BFH from θρ onto η, where θρ is a BFSR of R/L.
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Proof. Since ω(θ) = η. In addition, we have ϕ is homomorphism from R/L onto R
′

defined by the rule ϕ(k + L) = ω(k) = t, ∀ k ∈ R. The image of θρ under the function ϕ
may be described as the following.

ϕ(θρ)(t) = (ϕ(θP
ρ )(t), ϕ(θN

ρ )(t)), for all t ∈ R
′

Now, we have the following.

ϕ(θP
ρ )(t) =max{θP

ρ (k + L) : k + L ∈ ϕ−1(t), t ∈ R′}

=max{θP
ρ (k + L) : ϕ(k + L) = t, t ∈ R′}

=max{θP
ρ (k + t) : t ∈ L, ω(k) = t}

=max{θP
ρ (u) : u∈ ω−1(t)}

=ω(θP)(t)

=ηP(t).

This Implies that ϕ(θP
ρ )(t) = ηP(t) ∀ t ∈ R′, which implies that ϕ(θρ) = η.

Moreover, we have the following.

ϕ(θN
ρ )(t) =max{θN

ρ (k + L) : k + L ∈ ϕ−1(t), t ∈ R′}

=max{θN
ρ (k + L) : ϕ(k + L) = t, t ∈ R′}

=max{θN
ρ (k + t) : t ∈ L, ω(k) = t}

=max{θN
ρ (u) : u∈ ω−1(t)}

=ω(ηN)(t)

=ηN(t).

Thus, ϕ(θρ) = η. This establishes the proof.

Example 34. Consider the rings Z = {0,±1,±2, ...} and also Z4 = {0̄, 1̄, 2̄, 3̄} is the ring of
integers modulo 4. Define a homomorphism from Z onto Z4 as follows. ω(k) = k (mod 4) the BFS
of Z is given as the following:

θP(k) =
{

0.6, if k ∈ 2Z,
0.5, if k /∈ 2Z.

and the following.

θN(k) =
{
−0.7, if k ∈ 2Z,
−0.4, if k /∈ 2Z.

The BFS η of Z4 is given as follows:

ηP(k) =
{

0.6, if k ∈ 2Z4,
0.5, if k /∈ 2Z4.

and also given as follows.

ηN(k) =
{
−0.7, if k ∈ 2Z4,
−0.4, if k /∈ 2Z4.

Consider the following case.

ω(θP)(0) = max{θP(u) : u ∈ 4Z} = 0.6,

ω(θP)(1) = max{θP(u) : u ∈ 1 + 4Z} = 0.5
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Similarly, ω(θP)(2) = 0.6 and ω(θP)(3) = 0.5. Moreover, we have the following.

ω(θN)(0) = min{θN(u) : u ∈ 4Z} = −0.7,

ω(θN)(1) = min{θN(u) : u ∈ 1 + 4Z} = −0.4,

ω(θN)(2) = −0.7, ω(θN)(3) = −0.4.

Thus, ω(θ) = η. The quotient ring of Z = {0,±1,±2, ...} is given by Z/4Z = {4Z, 1 +
4Z, 2 + 4Z, 3 + 4Z} where 4Z is an ideal of the ring of integers Z. Define BFS θρ of Z/4Z as
follows:

θP
ρ (u) =

{
0.6 : u ∈ {4Z, 2 + 4Z}
0.5 : u ∈ {1 + 4Z, 3 + 4Z}.

and also as follows.

θN
ρ (u) =

{
−0.7 : u ∈ {4Z, 2 + 4Z}
−0.4 : u ∈ {1 + 4Z, 3 + 4Z}.

Define a mapping φ from Z/4Z onto Z4 as follows φ(k + 4Z) = ω(k) = k (mod 4), for all
k ∈ Z.

From the above information, we have the following.

φ(θP
ρ )(0) = max{θP

ρ (k + 4Z) : k + 4Z ∈ φ−1(0), k ∈ Z} = 0.6, and

φ(θN
ρ )(0) = min{θN

ρ (k + 4Z) : k + 4Z ∈ φ−1(0), k ∈ Z} = −0.7,

φ(θP
ρ )(1) = 0.5 = φ(θP

ρ )(3), φ(θP
ρ )(2) = 0.6

and φ(θN
ρ )(1) = φ(θN

ρ )(3) = −0.4, φ(θN
ρ )(2) = −0.7.

Therefore, φ(θρ) = η.

Remark 35. Let θ and η are BFSRs of rings R and R
′
, respectively, and f be a BFH from θ onto η

with S = {k ∈ R, ω(k) = 0R′ } as a kernel of f . Then the mapping ϕ from R/S to R
′

is a BFH
from θS onto η, where θS is a BFSR of R/S.

In following result, we develop an important link between BFSRs of a ring R′ and any
of its factor ring.

Theorem 36. Let θ and η be BFSRs of rings R and R
′
, respectively. Let ω be a BFH from θ onto

η and the natural homomorphism π from R′ onto R′/L′ be a BFH from η onto θ
ρ
′ , where θ

ρ
′ is a

BFSR of R′/L′. Then φ = π ◦ω is a BFH from θ onto θ
ρ
′ , where L is a ideal of R with ω(L) = L′.

Proof. Since π is natural homomorphism from R onto R′/L′.
For any a′+ L′ ∈ R′/L′, we have (π ◦ω)(θ)(a′ + L′) = ((π ◦ω)(θP)(a′ + L′), (π ◦ω)

(θN)(a′ + L′)), where the following is the case:

(π ◦ω)(θP)(a′ + L′) = max{θP(u) : u ∈ (π ◦ω)−1(a′ + L′)}

and the following is also the case.

(π ◦ω)(θN)(a′ + L′) = min{θN(u) : u ∈ (π ◦ω)−1(a′ + L′)}.
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Consider the following.

(π ◦ω)(θP)(a′ + L′) = max{θP(u) : u ∈ (π ◦ω)−1(a′ + L′)}
= max{θP(u) : u ∈ ω−1(π−1(a′ + L′))}
= ω(θP)(π−1(a′ + L′))

= ηP(π−1(a′ + L′))

= (π−1)−1(ηP)(a′ + L′)

= π(ηP)(a′ + L′) = θP
ρ′(a

′ + L′).

= θP
ρ′(a

′ + L′).

⇒ φ(θP) = θP
ρ′ .

Moreover, the following is also the case.

(π ◦ω)(θN)(a′ + L′) = min{θN(u) : u ∈ (π ◦ω)−1(a′ + L′)}
= min{θN(u) : u ∈ ω−1(π−1(a′ + I′))}
= ω(θN)(π

−1(a′ + L′)).

= ηN(π−1(a′ + L′))

= (π−1)−1(ηN)(a′ + L′)

= π(ηN)(a′ + L′)

= ηN
ρ′ (a

′ + L′).

This implies that (π ◦ω)(θN)(a′ + L′) = ηN
ρ′ (a

′ + L′), which implies that φ(ηN) = ηN
ρ′ .

Hence, we have proved our claim.

Theorem 37. Let θ and η are BFSR of R and R′, respectively, and ω be a BFH from θ onto η. Let
π : R′ → R′/ω′ be a natural homomorphism and L = {k ∈ R : ω(k) ∈ L′}. Then, a mapping
σ : R/L → R′/L′ is a BFH from θρ onto θ

ρ
′ where θρ and θ

ρ
′ are BFSR of R/L and R′/L′,

respectively.

Proof. From Theorem 36, we define a mapping φ : R→ R′/L′ such that φ is a composition
of mapping ω and π such that φ(θ) = (π ◦ ω)(θ) = a′ + L′, ∀ a′ ∈ R′. Moreover, φ(L) =
(π ◦ ω)(L) = π(ω(L)) = π(L′) = L′. Consider the BFSR θρ of R/L as: θρ(k + L) =
(θP

ρ (k + L), θN
ρ (k + L))), where we have the following.

θP
ρ (k + L) = max{θP(u) : u ∈ k + L}

and the following is also the case.

θN
ρ (k + L) = min{θN(u) : u ∈ k + L}.

This prove that φ is a BFH with ker(φ) = L. Define a mapping σ from R/L to R′/L′ as
follow σ(a + L) = a′ + L′, a ∈ R, a′ ∈ R′. Where σ(θρ)→ θρ′ is described by the rule:

σ(θρ)(a′ + L′) = (σ(θP
ρ )(a

′ + L′), σ(θN
ρ )(a′ + L′)),

where
σ(θP

ρ )(a
′ + L′) = max{θP

ρ (k + L) : k + L ∈ σ−1(a′ + L′)}

and
σ(θN

ρ )(a′ + L′) = min{θN
ρ (k + L) : k + L ∈ σ−1(a′ + L′)}.
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Consider the following.

σ(θP
ρ )(a

′ + L′) =max{θP
ρ (a + L) : a + L ∈ σ−1(a′ + L′)}

=max{max{θP(a + p) : p ∈ L, a ∈ R, ω(a)}= a′, σ(a + L) = ω(a) + L′}
=max{θP(a + p) : p ∈ L, a ∈ R, ω(a) = a′}
=max{θP(u) : u ∈ ω−1(a′)}
=ω(θP)(a′)

=ηP(a′), a′ ∈ R′

=max{ηP(a′) : π(a′) = a′ + L′}
=max{ηP(a′) : a′ ∈ π−1(a′ + L′)}
=π(ηP)(a′ + L′)

=θP
ρ′(a

′ + L′)

This implies that σ(θP
ρ ) = θP

ρ′ . Moreover, we have the following.

σ(AN
ρ )(a′ + L′) =min{θN

ρ (a + L) : a + L ∈ σ−1(a′ + L′)}

=min{min{θN(a + p) : p ∈ L, a ∈ R, ω(ta)}= a′, σ(a + L) = ω(a) + L′}
=min{θN(a + p) : p ∈ L, a ∈ R, ω(a) = a′}
=min{θN(u) : u ∈ ω−1(a′)}
=ω(θN)(a′)

=ηN(a′), a′ ∈ R′

=min{ηN(a′) : π(a′) = a′ + L′}
=min{ηN(a′) : a′ ∈ π−1(a′ + L)}
=π(ηN)(a′ + L′)

=ηN
ρ′ (a

′ + L′).

And this mplies that σ(θN
ρ ) = θN

ρ′ . Hence, σ(AN
ρ ) = ηN

ρ′ .

Remark 38. There are possible applications of bipolar fuzzy homomorphism. For example, a bipolar
fuzzy homomorphism is used in the positioning of the image. A photograph of a person is in fact
his homomorphic image that explains his many real qualities such as being tall or short, male or
female, and thin or heavy. Sometimes, the homomorphic image become destroyed due to many
distortions in the lenses such as scale and pincushion distortion. A distortion in which magnification
increases with distances from the axis is called a pincushion distortion. We can apply a bipolar fuzzy
homomorphism on a destroyed photograph to remove scale and pincushion distortion in order to
obtain its original form.

Lemma 39. Let θ and η be any two BFSRs of bipolar rings R and R′, respectively, and ω be a
epimorphism from R to R′ such that ω(θ) = η, where θ and η are BFSRs of R and R′, respectively.
Then ω(θ∗) = η∗.

Proof. Given that ω(θ) = η. Let p ∈ ω(θ) ⇒ p = ω(a), for some a ∈ θ∗. Consider,
ω(θP)(p) = max{θP(a), a ∈ ω−1(p)} ≥ θP(a) > 0 and ω(θN)(p) = min{θN(a), a ∈
ω−1(p)} ≤ θN(a) < 0. Therefore, p ∈ η∗. Thus, ω(θ∗) ⊆ η∗. Moreover, from fact of
Definition 29, the epimorphism f develops ω(θ∗) ⊇ η∗. This establishes the proof.
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Theorem 40. (First Bipolar Fuzzy Isomorphism Theorem): Let θ and η be BFSRs of rings R and
R
′
, respectively, and h be a BFH from θ onto η, where ker h = T1 is kernel of fuzzy homomorphism.

Then θ/ψ ≈ η, where ψ is a BFI of θ.

Proof. Given that h is a BFH from θ to η. Consider BFSR ψ of R as follows:

ψP(k) =

{
θP(k) i f k ∈ T1

0 i f k /∈ T1

and the following is also the case.

ψN(k) =

{
θN(k) i f k ∈ T1

1 i f k /∈ T1

Obviously, ψ ⊆ θ. Moreover, for any k ∈ T1and t ∈ R.

Consider ψP(k + t) =θP(k + t) ≥ min{θP(k), θP(t)}
≥min{ψP(k), θP(t)}.

Similarly ψN(k + t) ≤ max{ψN(k), θN(t)}.

If m /∈ M1, then ψP(k) = 0 and ψN(k) = 1. This show that ψ is a bipolar fuzzy
ideal of θ. Since θ ≈ η ⇒ h(θ) = η. In view of Lemma 39, h(θ∗) = η∗. Let χ = h

′
θ∗

then
χ : θ∗ → η∗ is a homomorphism with kernal χ = ψ. Then there exists an isomorphism χ
from θ∗/ψ∗ to η∗ that can be described as χ(k + ψ∗) = z = χ(k) = h(k)) ∀ k ∈ θ∗. We have
χ(θ/ψ)(z) = (χ(θP/ψP)(z), χ(ηN/ψN)(z)). Consider the following.

χ(θP/ψP)(z)=max{(θP/ψP)(k + ψ∗) : k ∈ θ∗, χ(k + ψ∗) = z}
=max{(θP/ψP)(q), q ∈ k + ψ∗ : k ∈ θ∗, χ(q) = z}
=max{(θP/ψP)(q) : q ∈ θ∗, χ(q) = z}
=max{(θP/ψP)(q) : q ∈ R, h(q) = z}
=h(θP)(z)

=ηP(z), ∀ z ∈ η∗.

This implies that χ(θP/ψP) = ηP and the following is the case.

χ(θN/ψN)(z)=min{(θN/ψN)(k + ψ∗) : k ∈ θ∗, χ(k + ψ∗) = z}
=min{(θN/ψN)(q), q ∈ k + ψ∗ : k ∈ θ∗, χ(q) = z}
=max{(θN/ψN)(q) : q ∈ θ∗, χ(q) = z}
=min{(θN/ψN)(q) : q ∈ R, h(q) = z}
=h(ηN)(z)

=ηN(z), ∀ z ∈ η∗.

This implies that χ(θN/ψN) = ηN . Thus, χ(θ/ψ) = η. Hence, (θ/ψ) ≈ η.

Theorem 41. (Second Bipolar Fuzzy Isomorphism Theorem) Let θ be a BFI and η be a BFSR of a
ring R such that θ ⊆ η. Then η/(θ ∩ η) ⊆ (θ + η)/θ.
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Proof. From Remark 27 and the fact θ ⊆ η, one can obtain that quotient rings η∗/(θ∗ ∩ η∗)
and (θ∗ + η∗)/θ∗. Therefore, by applying the second fundamental theorem of classical ring
isomorphism on these specific factor rings, we obtain the following.

η∗/(θ∗ ∩ η∗) ∼= (θ∗ + η∗)/θ∗

The above stated result leads us to obtain the existence of a ring isomorphism h from
η∗/((θ ∩ η))∗ to (θ∗ + η∗)/θ∗, which can be described as follows.

h(k + (θ ∩ η)∗) = k + θ∗, ∀k ∈ η∗.

Consider h(ηP/(θP ∩ ηP))(k + θ∗).

=(ηP/(θP ∩ ηP))(k + (θ ∩ η)∗)

=max{ηP(z) : z ∈ (k + (θ ∩ η)∗)}

≤max{(θP + η
P
)(z) : z ∈ (k + (θ ∩ η)∗)}

≤max{(θP + η
P
)(z) : z ∈ k + θ∗}

=((θP + ηP)/θP)(k + θ∗), ∀ k ∈ η∗.

This implies that h(ηP/(θP ∩ ηP))(k + θ∗) ≤ ((θP + ηP)/θP)(k + θ∗), ∀ k ∈ η∗.
Moreover, h(ηN/(θN ∩ ηN))(k + θ∗).

=(ηP/(θP ∩ ηP))(k + (θ ∩ η)∗)

=min{ηN(z) : z ∈ (k + (θ ∩ η)∗)}

≥min{(θN + η
N
)(z) : z ∈ (k + (θ ∩ η)∗)}

≥min{(θN + η
N
)(z) : z ∈ k + θ∗}

=((θN + ηN/(θN ∩ ηN))(k + θ∗), ∀ k ∈ η∗.

This implies that h(ηN/(θN ∩ ηN))(k+ θ∗) ≥ ((θN + ηN)/ηN)(k+ θ∗), ∀ k ∈ η∗. Thus,
h(η/(θ ∩ η)) ⊆ (θ + η)/θ. As result, we obtain a weak bipolar fuzzy isomorphism between
(η/(θ ∩ η)) and (θ + η)/θ.

Theorem 42. (Third Bipolar Fuzzy Isomorphism Theorem): Let θ, η, and ψ be BFSRs of R such
that θ and η are BFIs of ψ with θ ⊆ η. Then, (ψ/θ)/(η/θ) ∼= (ψ/η).

Proof. From Remark 27, and the fact that θ and η are BFI of ψ with θ ⊆ η and one can
obtain the quotient rings (ψ∗/θ∗)/(η∗/θ∗) and (ψ∗/η∗). Therefore, by applying the third
fundamental theorem of classical ring isomorphism on these specific factor rings, we obtain
the following.

(ψ∗/θ∗)/(η∗/θ∗) ∼= (ψ∗/η∗)

The above stated results leads us to obtain the existence of a ring isomorphism R from
(ψ∗/θ∗)/(η∗/θ∗) to (ψ∗/η∗), which may be described as follows.

h(k + θ∗ + (η∗/θ∗)) = k + η∗, ∀ k ∈ ψ∗.
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Consider h((ψP/θP)/(ηP/θP))(k + η∗).

=((ψP/θP)/(ηP/θP))(k + θ∗ + (η∗/θ∗))

=max{(ψP/θP)(t + θ∗) : t ∈ ψ∗, t + θ∗ ∈ (k + θ∗ + (η∗/θ∗))}
=max{max{ψP(z) : z ∈ t + θ∗} : t ∈ ψ∗, t + θ∗ ∈ (k + θ∗ + (η∗/θ∗))}
=max{ψP(z) : z ∈ ψ∗, z + θ∗ ∈ (k + θ∗ + (η∗/θ∗))}
=max{ψP(z) : z ∈ (k + θ∗ + (η∗/θ∗))}
=max{ψP(z) : z ∈ ψ∗, h(z) ∈ k + η∗}
=(ψP/ηP)(k + η∗), ∀ k ∈ ψ∗.

This implies that h((ψP/θP)/(ηP/θP))(k + η∗) = (ψP/ηP)(k + η∗), ∀ k ∈ ψ∗.
Moreover, h((ψN/θN)/(ηN/θN))(k + η∗).

=((ψN/θN)/(ηN/θN))(k + θ∗ + (η∗/θ∗))

=min{(ψN/θN)(t + θ∗) : t ∈ ψ∗, t + θ∗ ∈ (k + θ∗ + (η∗/θ∗))}
=min{min{ψN(z) : z ∈ t + θ∗} : t ∈ ψ∗, t + θ∗ ∈ (k + θ∗ + (η∗/θ∗))}
=min{ψN(z) : z ∈ ψ∗, z + θ∗ ∈ (k + θ∗ + (η∗/θ∗))}
=min{ψN(z) : z ∈ (k + θ∗ + (η∗/θ∗))}
=min{ψN(z) : z ∈ ψ∗, h(z) ∈ k + η∗}
=(ψN/ηN)(k + η∗), ∀ k ∈ ψ∗.

This implies that h((ψN/θN)/(ηN/θN))(k + η∗) = (ψN/ηN)(k + η∗), ∀ k ∈ ψ∗.
Thus, h(ψ/θ)/(η/θ) = (ψ/η).

(ψ/θ)/(η/θ) ∼= (ψ/η).

5. Conclusions

The concept of BFS is a convenient extrapolation of conventional fuzzy sets which
evaluates the uncertainty and ambiguity of a fuzzy fact in a more effective manner. In this
paper, we have explained (α, β)-cut of a BFS and have demonstrated that (α, β)-cut of a
BFSR works as a subring of a given ring. We have developed the BFSR of quotient ring
and have proved that product of two BFSRs is a subring. We have developed the BFH
between any two bipolar fuzzy subrings, which is actually an important generalization of
the natural ring homomorphism. The fundamental theorems of BFI of BFSRs have been
developed. Potential future research will be the applications of these algebraic structures
to solve certain decision-making problems in order to provide a significant addition to
current existing theories for handling uncertainties, especially in the area of bioinformatics,
medical imaging, and decision making [48–52].

Author Contributions: Conceptualization, H.A., M.H.M., and D.P.; methodology, H.A., M.H.M.,
and D.P.; validation, H.A., M.H.M., and D.P.; formal analysis, H.A., M.H.M., and D.P.; investigation,
H.A. and M.H.M.; data curation, H.A., M.H.M., and D.P.; writing—original draft preparation, H.A.,
M.H.M., M.K.M., and F.A.; writing—review and editing, M.H.M. visualization, H.A., M.H.M., D.P.,
M.K.M., and F.A.; supervision, M.H.M. and D.P.; project administration, H.A., M.H.M., and D.P.; fund-
ing acquisition, H.A. All authors have read and agreed to the published version of the manuscript.

Funding: This project is supported by the Researchers Supporting Project Number (RSP-2021/317),
King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: No real data were used to support this study. The data used in this
study are hypothetical and anyone can use them by citing this article.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2021, 13, 1397 20 of 21

References
1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Rosenfeld, A. Fuzzy groups. J. Math. Anal. Appl. 1971, 35, 512–517. [CrossRef]
3. Liu, W.J. Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets Syst. 1982, 8, 133–139. [CrossRef]
4. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
5. Zhang, W.R. Bipolar fuzzy sets and relations: A computational framework for cognitive modling and multiagent decision analysis.

In Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual
Conference, San Antonio, TX, USA, 18–21 December 1994; pp. 305–309. [CrossRef]

6. Zhang, W.R. (Yin Yang) Bipolar fuzzy sets. In Proceedings of the IEEE International Conference on Fuzzy Systems, Anchorage,
AK, USA, 4–9 May 1998; pp. 835–840. [CrossRef]

7. Lee, K.M. Bipolar valued fuzzy sets and their basic operations. In Proceeding of the International Conference, Bangkok, Thailand,
20–21 January 2000; pp. 307–317.

8. Zhang, W.R.; Zhang, L. Yin Yang bipolar logic and bipolar fuzzy logic. Inf. Sci. 2004, 165, 265–287. [CrossRef]
9. Lee, K.M. Comparision of interval-valued fuzzy sets, intuitionistic fuzzy sets and Bipolar fuzzy sets. J. Fuzzy Logic Intell. Syst.

2004, 14, 125–129.
10. Zhang, W.R. Yin Yang Bipolar Relativity: A Unifying Theory of Nature, Agents and Causality with Application in Quantum Computing,

Cognitive Informatics and Life Sciencs; Information Sciences Reference: Hershey, PA, USA, 2011.
11. Mondal, S.; Pal, M. Similarity Relations, Eigenvalues and Eigenvectors of Bipolar Fuzzy Matrix. J. Intell. Fuzzy Syst. 2016, 30,

2297–2307. [CrossRef]
12. Tahmasbpour, A.; Borzooei, R.A.; Rashmanlou, H. F-morphism on Bipolar Fuzzy Graphs. J. Intell. Fuzzy Syst. 2016, 30, 651–658.

[CrossRef]
13. Sarwar, M.; Akram, M. Bipolar Fuzzy Circuits with Applications. J. Intell. Fuzzy Syst. 2018, 34, 547–558. [CrossRef]
14. Akram, M.; Al-Kenani, A.N.; Alcantud, J.C.R. Group Decision-Making Based on the VIKOR Method with Trapezoidal Bipolar

Fuzzy Information. Symmetry 2016, 11, 1313. [CrossRef]
15. Akram, M.; Al-Kenani, A.N. Multi-Criteria Group Decision-Making for Selection of Green Suppliers under Bipolar Fuzzy

PROMETHEE Process. Symmetry 2020, 12, 77. [CrossRef]
16. VFotea, L.; Davvaz, B. Fuzzy hyperrings. Fuzzy Sets. Syst. 2009, 160, 2366–2378.
17. Akram, M.; Karunambigai, M.G. Metric in bipolar fuzzy graph. World Appl. Sci. J. 2011, 14, 1920–1927.
18. Ameri, R.; Motameni, M. Fuzzy hyperideals of fuzzy hyperrings. World Appl. Sci. J. 2012, 16, 1604–1614.
19. Baik, H.G. Bipolar fuzzy ideals of near rings. J. Korean Inst. Intell. Syst. 2012, 22, 394–398. [CrossRef]
20. Sardar, S.K. Bipolar valued fuzzy transalation in semigroups. Math. Aeterna 2012, 2, 597–607.
21. Mahmood, T.; Munir, M. On bipolar fuzzy subgroups. World Appl. Sci. J. 2013, 27, 818–1811.
22. Ameri, R.; Borzooei, R.A.; Mohammadzadeh, E. Engel fuzzy subgroups. Ital. J. Pure Appl. Math. 2015, 34, 251–262.
23. Motameni, M.; Leoreanu-Fotea, V.; Ameri, R. Classes of fuzzy hyperideals. Filomat 2016, 30, 2329–2341. [CrossRef]
24. Maheswari, P.U.; Arjunan, K.; Mangayarkarasi, R. Notes on bipolar valued fuzzy subrings of a rings. Int. J. Appl. Math. Sci. 2016,

9, 89–97.
25. Mohamadzadeh, E.; Borzouei, R.A.; Jun, Y.B. Results on engel fuzzy subgroups. Algebr. Struct. Their Appl. 2017, 4, 1–14. [CrossRef]
26. Mohamadzadeh, E.; Borzouei, R.A. Nilpotent fuzzy subgroups. Mathematics 2018, 6, 27. [CrossRef]
27. Subbian, S.P.; Kamaraj, D.M. Bipolar polar valued fuzzy ideals of ring and Bipolar valued fuzzy ideal extension in subrings. Int. J.

Math. Trends Technol. 2018, 61, 155–163. [CrossRef]
28. Yamin, M.; Sharma, P.K. Intuitionistic fuzzy ring with operators. Int. J. Math. Comput. Sci. 2018, 6, 1860–1866.
29. Emniyet, A.; Sahin, M. Fuzzy normed rings. Symmetry 2018, 10, 515. [CrossRef]
30. Jun, Y.B.; Song, S.Z. Foldness of bipolar fuzzy sets and its Application in BCK/BCI-Algebras. Mathematics 2019, 7, 1036. [CrossRef]
31. Trevijano, S.A.; Chasco, M.J.; Elorza, J. The annihilator of fuzzy subgroups. Fuzzy Sets Syst. 2019, 369, 122–131. [CrossRef]
32. Deniz, U. Different approximation to fuzzy ring homomorphisms. Sak. üNiversitesi Fen Bilim. EnstitüSü Derg. 2019, 23, 1163–1172.

[CrossRef]
33. Liu, Q.; Shi, F.G. M-hazy lattices and its induced fuzzifying convexities. J. Intell. Fuzzy Syst. 2019, 37, 2419–2433. [CrossRef]
34. Demirci, M. Vague groups. J. Math. Anal. Appl. 1999, 230, 142–156. [CrossRef]
35. Demirci, M. Fuzzy functions and their fundamental properties. Fuzzy Set. Syst. 1999, 106, 239–246. [CrossRef]
36. Liu, Q.; Shi, F.G. A new approach to the fuzzification of groups. J. Intell. Fuzzy Syst. 2019, 37, 6429–6442. [CrossRef]
37. Mehmood, F.; Shi, F.G.; Hayat, K. A new approach to the fuzzification of rings. J. Nonlinear Convex Anal. 2020, 21, 2637–2646.
38. Alhaleem, N.A.; Ahmad, A.G. Intuitionistic fuzzy normed subrings and intuitionistic fuzzy normed ideals. Mathematics 2020,

8, 1594. [CrossRef]
39. Mehmood, F.; Shi, F.G.; Hayat, K.; Yang, X.P. The homomorphism theorems of M-hazy rings and their induced fuzzifying

convexities. Mathematics 2020, 8, 411. [CrossRef]
40. Nakkhasen, W. Intuitionistic fuzzy ideals of ternary near-rings. Int. J. Fuzzy Log. Intell. Syst. 2020, 20, 290–297. [CrossRef]
41. Gulzar, M.; Alghazzawi, D.; Mateen, M.H.; Kausar, N. A Certain Class of t-Intuitionistic Fuzzy Subgroups. IEEE Access 2020, 8,

163260–163268. [CrossRef]

http://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/0022-247X(71)90199-5
http://dx.doi.org/10.1016/0165-0114(82)90003-3
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1109/IJCF.1994.375115
http://dx.doi.org/10.1109/FUZZY.1998.687599
http://dx.doi.org/10.1016/j.ins.2003.05.010
http://dx.doi.org/10.3233/IFS-152000
http://dx.doi.org/10.3233/IFS-151784
http://dx.doi.org/10.3233/JIFS-17758
http://dx.doi.org/10.3390/sym11101313
http://dx.doi.org/10.3390/sym12010077
http://dx.doi.org/10.5391/JKIIS.2012.22.3.394
http://dx.doi.org/10.2298/FIL1608329M
http://dx.doi.org/10.29252/asta.4.2.1
http://dx.doi.org/10.3390/math6020027
http://dx.doi.org/10.14445/22315373/IJMTT-V61P522
http://dx.doi.org/10.3390/sym10100515
http://dx.doi.org/10.3390/math7111036
http://dx.doi.org/10.1016/j.fss.2018.11.001
http://dx.doi.org/10.16984/saufenbilder.379634
http://dx.doi.org/10.3233/JIFS-182725
http://dx.doi.org/10.1006/jmaa.1998.6182
http://dx.doi.org/10.1016/S0165-0114(97)00280-7
http://dx.doi.org/10.3233/JIFS-180001
http://dx.doi.org/10.3390/math8091594
http://dx.doi.org/10.3390/math8030411
http://dx.doi.org/10.5391/IJFIS.2020.20.4.290
http://dx.doi.org/10.1109/ACCESS.2020.3020366


Symmetry 2021, 13, 1397 21 of 21

42. Gulzar, M.; Mateen, M.H.; Alghazzawi, D.; Kausar, N. A Novel Applications of Complex Intuitionistic Fuzzy Sets in Group
Theory. IEEE Access 2020, 8, 196075–196085. [CrossRef]

43. Addis, G.M.; Kausar, N.; Munir, M. Fuzzy homomorphism theorems on rings. J. Discret. Math. Sci. Cryptogr. 2020, 1–20.
[CrossRef]

44. Gulzar, M.; Alghazzawi, D.; Dilawar, F.; Mateen, M.H. A note on complex fuzzy subfield. Indones. J. Electr. Comput. Sci. 2021, 21,
1048–1056. [CrossRef]

45. Gulzar, M.; Alghazzawi, D.; Mateen, M.H.; Premkumar, M. On some characterization of Q complex fuzzy subrings. J. Math.
Comput. Sci. 2021, 22, 295–305. [CrossRef]

46. Jana, C.; Senapati, T.; Shum, K.P.; Pal, M. Bipolar Fuzzy Soft Subalgebras and Ideals of BCK/BCI-algebras Based on Bipolar Fuzzy
Points. J. Intell. Fuzzy Syst. 2019, 37, 2785–2795. [CrossRef]

47. Li, C.; Xu, B.; Huang, H. Bipolar Fuzzy Abundant Semigroups with Applications. J. Intell. Fuzzy Syst. 2020, 39, 167–176. [CrossRef]
48. Pio, G.; Ceci, M.; Loglisci, C.; D’Elia, D.; Malerba, D. Hierarchical and Overlapping Co-Clustering of mRNA: MiRNA Interactions; IOS

Press: Clifton, VA, USA, 2012; pp. 654–659.
49. Kaufmann, J.; Asalone, K.; Corizzo, R.; Saldanha, C.; Bracht, J.; Japkowicz, N. One-Class Ensembles for Rare Genomic Sequences

Identification. In International Conference on Discovery Science; Springer: Cham, Swizerland, 2020; pp. 340–354.
50. Ali, Z.; Mahmood, T.; Ullah, K.; Khan, Q. Einstein Geometric Aggregation Operators using a Novel Complex Interval-valued

Pythagorean Fuzzy Setting with Application in Green Supplier Chain Management. Rep. Mech. Eng. 2021, 2, 105–134. [CrossRef]
51. Alosta, A.; Elmansuri, O.; Badi, I. Resolving a location selection problem by means of an integrated AHP-RAFSI approach. Rep.

Mech. Eng. 2021, 2, 135–142. [CrossRef]
52. Zeng, S.; Shoaib, M.; Ali, S.; Abbas, Q.; Nadeem, M.S. Complex Vague Graphs and Their Application in Decision-Making

Problems. IEEE Access 2020, 8, 174094–174104. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.3034626
http://dx.doi.org/10.1080/09720529.2020.1809777
http://dx.doi.org/10.11591/ijeecs.v21.i2.pp1048-1056
http://dx.doi.org/10.22436/jmcs.022.03.08
http://dx.doi.org/10.3233/JIFS-18877
http://dx.doi.org/10.3233/JIFS-190951
http://dx.doi.org/10.31181/rme2001020105t
http://dx.doi.org/10.31181/rme200102135a
http://dx.doi.org/10.1109/ACCESS.2020.3025974

	Introduction
	Preliminaries
	Fundamental Algebraic Properties of Bipolar Fuzzy Subrings
	Fundamental Theorems of Bipolar Fuzzy Homomorphism and Bipolar Fuzzy Isomorphism of Bipolar Fuzzy Subrings
	Conclusions
	References

