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Abstract: In this paper, we propose the extended Boussinesq–Whitham–Broer–Kaup (BWBK)-type
equations with variable coefficients and fractional order. We consider the fractional BWBK equations,
the fractional Whitham–Broer–Kaup (WBK) equations and the fractional Boussinesq equations with
variable coefficients by setting proper smooth functions that are derived from the proposed equation.
We obtain uniformly coupled fractional traveling wave solutions of the considered equations by
employing the improved system method, and subsequently their asymmetric behaviors are visualized
graphically. The result shows that the improved system method is effective and powerful to find
explicit traveling wave solutions of the fractional nonlinear evolution equations.

Keywords: BWBK-type equations; fractional derivatives; traveling wave variable; improved system

1. Introduction

Nonlinear partial differential equations (NPDEs) play an important role to describe
nonlinear physical phenomena that can be described by the solutions of NPDEs rising in
physics, biology, chemistry, mechanics and mathematical engineering. Moreover, the frac-
tional NPDEs may model physical phenomena better than the general NPDEs. Recently,
many powerful techniques have been proposed to obtain explicit wave solutions of nonlin-
ear evolution equations as follows: Khan and Akbar used an enhanced (G′/G)-expansion
method to find explicit solutions of the Variant Boussinesq equations [1–5] by the varia-
tional principle; Tian and Qiu a used direct method to obtain explicit solutions of WBK
equations, which describe the propagation of shallow water waves, with different dis-
persion relations [6]; Z. Zhang et al. obtained exact solutions and symmetry reductions
for calculating symmetry and exact solutions [7]; Mohyud-Din et al. discussed traveling
wave solutions of WBK equations by a homotopy perturbation method [8]; a hyperbolic
function method was applied to find solitary wave solution for WBK equations [9]; the
Adomian Decomposition Method was used to find exact and numerical solutions of WBK
equations [10], and so on. As a result, explicit wave solutions of the fractional nonlinear
evolution equations have great significance to reveal internal mechanisms of physical
phenomena as fractional orders. Moreover, the closed-form solutions of the fractional non-
linear evolution equations could assist numerical researchers to evaluate the correctness of
their results by comparison and help them in stability analysis.

X. F. Yang et al. suggested the variant BWBK-type equations as follows;{
vt + (v f (u))x + (g(ux))xx + (h(u))x − βvxx = 0,
ut + (r(v))x + (

∫
f (u)du)x + βuxx = 0,

(1)

where f , g, h, r are smooth functions, and β is a constant [11].

Symmetry 2021, 13, 1396. https://doi.org/10.3390/sym13081396 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym13081396
https://doi.org/10.3390/sym13081396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13081396
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13081396?type=check_update&version=1


Symmetry 2021, 13, 1396 2 of 17

The present paper is based on Equation (1), and we propose the extended BWBK-type
equations with variable coefficients and fractional order as follows:

∂αV
∂tα + ∂α

∂xα [V f (U)] + a(t) ∂2α

∂x2α

[
g
(

∂αU
∂xα

)]
− b(t) ∂2αV

∂x2α = 0,
∂αU
∂tα + ∂α

∂xα [r(V) +
∫

f (U)dU] + ∂2α

∂x2α

[
b(t)(U − h(U)) + c(t) ∂αU

∂tα

]
= 0,

(2)

where f (U), g(∂αU/∂xα) and r(V) are smooth functions, and a(t), b(t) and c(t) are inte-
grable functions on t.

The remainder of this paper is organized as follows: in Section 2, we define the
conformable fractional derivative and describe the improved system for obtaining explicit
traveling wave solutions of NPDEs in detail. In Section 3, we present the coupled fractional
traveling wave solutions of the fractional BWBK equations, the fractional WBK equations
and the fractional Boussinesq equations with variable coefficients by using a mathematical
computation method and show several dynamical behaviors of the coupled fractional
traveling wave solutions that contain exponential-type wave solutions based on suitable
values of physical parameters. Some conclusions are given in the end.

2. Prelimiraries

In this section, we introduce the conformable fractional derivative to convert the
fractional NPDEs into the nonlinear ordinary differential equations (ODEs) [12,13]. We
also introduce the steps of finding the fractional traveling wave solutions of the fractional
NPDEs by the improved system method.

2.1. The Basic Definition

Now we define the conformable fractional derivative as follows [14,15]:

Definition 1. Given a function f : (0,+∞)→ R, then the conformable fractional derivative of a
function f is defined by

tDα f (t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

,

where t > 0 and α ∈ (0, 1].

The conformable fractional derivatives for some familiar functions give important
rules as follows:

tDαtr = rtr−α, r ∈ R,

tDα( f (t)g(t)) = f (t)tDαg(t) + g(t)tDα f (t),

tDα(( f ◦ g)(t)) = t1−αg′(t) f ′(g(t)),

tDα

(
f (t)
g(t)

)
=

g(t)tDα f (t)− f (t)tDαg(t)
g2(t)

.

2.2. The Improved System Method with Parameter Functions

We provide a short description of the improved system method with parameter
functions for constructing the explicit solutions of the fractional NPDEs. Consider the
fractional NPDEs with respect to independent variables t, x by

P (U, Dα
t U, Dα

xU, D2α
t U, D2α

x U, · · · ) = 0, (3)

where Dα
t U, Dα

xU, D2α
t U, D2α

x U, . . ., are the fractional partial derivatives of U = U(t, x) as
defined above. Furthermore, P represents a polynomial in U and its various fractional
partial derivatives, which the linear derivative terms and the nonlinear terms are involved.
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Let us consider the following steps to obtain the fractional traveling wave solutions of
Equation (3).

Step 1. Substituting the unknown functions are U(x, t) = u(ζ) by using the fractional
traveling wave variable as

ζ = k
xα

α
−
∫ T

0
ω(τ)dτ, T =

tα

α
, (4)

where k is an arbitrary constant and α ∈ (0, 1], we have the nonlinear ODEs for
u = u(ζ) as follows:

Q(u, u′, u′′, u′′′, . . .) = 0, (5)

where u′ = du/dζ, u′′ = d2u/dζ2, u′′′ = d3u/dζ3, and so on.

Step 2. Consider the improved system with time-dependent parameters as follows [16–20]:{
ψ′(ζ) = p(t) ψ(ζ),
φ′(ζ) = p(t) ψ(ζ) + q(t)φ(ζ),

(6)

where p(t), q(t) are integrable parameters depending on t. Equation (6) permits
the ansätz [21] [

ψ(ζ)

φ(ζ)

]
=

p(t)− q(t)
p(t)− q(t) exp{−(p(t)− q(t))ζ} , (7)

where p(t), q(t) are nonzero integrable functions with p(t) 6= q(t). On the other
hand, when p(t) = q(t), we have the ansätz[

ψ(ζ)

φ(ζ)

]
=

1
1 + ζ

. (8)

By using the homogeneous balancing principle [22,23], we have the M-order pole
solution u of Equation (5), explicitly, that the explicit solutions of Equation (5) can
be expressed by a polynomial in [ψ(ζ)/φ(ζ)] as follows:

u(ζ) =
M

∑
i=0

Ai(t)
[

ψ(ζ)

φ(ζ)

]i
, (9)

where [ψ(ζ)/φ(ζ)] is the ansätz and AM(t), · · · , A0(t) can be determined later
with AM(t) 6= 0.

Step 3. By substituting (9) into Equation (5), collecting all terms with the same order
of [ψ(ζ)/φ(ζ)] together, the left-hand sides of Equation (5) are converted into
another polynomial in terms of [ψ(ζ)/φ(ζ)]. Equating each coefficient of these
polynomials to zero, we produce a set of algebraic equations for the coefficients
AM(t), AM−1(t), · · · , A0(t) and the speed function ω(t).

Step 4. All coefficients AM(t), · · · , A0(t) and ω(t) can be obtained by solving the algebraic
equations in Step 3, and then, by substituting AM(t), · · · , A0(t) and ω(t) into (9)
with transforming the traveling wave variable (4), we can obtain new fractional
traveling wave solutions of Equation (3).

3. The Fractional Traveling Wave Solutions of the Fractional NPDEs through
Equation (2)

In this section, we construct the coupled fractional traveling wave solutions for the fol-
lowing types equations derived from the extended BWBK-type Equation (2); the fractional
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BWBK equations, the fractional WBK equations and the fractional Boussinesq equations
with variable coefficients, by using mathematical computation method.

3.1. The Fractional BWBK Equations with Variable Coefficients

By setting f (U) = U, g(Uα
x ) = Uα

x , r(V) = V, a(t) = a(t), b(t) = b(t), c(t) = c(t) in
Equation (2), the fractional BWBK-type equations with variable coefficients are degenerated
as in the form {

∂αV
∂tα + ∂α

∂xα (VU) + a(t) ∂3αU
∂x3α − b(t) ∂3αV

∂x2α = 0,
∂αU
∂tα + ∂αV

∂xα + U ∂αU
∂xα + b(t) ∂2αU

∂x2α + c(t) ∂2α

∂x2α
∂αU
∂tα = 0.

(10)

Suppose that U(x, t) = u(ζ), V(x, t) = v(ζ) are the fractional traveling wave solu-
tions of Equation (10) where we applied the transformation given in Equation (4). Then
Equation (10) can be written by{

−ω(T)v′ + kv′u+ kvu′ + k3a(t)u′′′ − k2b(t)v′′ = 0,
−ω(T)u′ + kv′ + kuu′k2 + b(t)u′′ − k2ω(T)c(t)u′′′ = 0,

(11)

where u′ = du/dζ, u′′′ = d3u/dζ3, v′ = dv/dζ.
Integrating Equations (11) with respect to ζ once, we have{

−ω(T)v+ kvu+ k3a(t)u′′ − k2b(t)v′ = 0,
−ω(T)u+ kv+ 1

2 ku2 + k2b(t)u′ − k2ω(T)c(t)u′′ = 0,
(12)

3.1.1. The Integrability of Equation (10) via the Painlevé Test

Let us apply the Painlevé test to verify the integrability of Equation (12). From the
second equation of Equations (12), we have

v =
ω(T)

k
u− 1

2
u2 − kb(t)u′ + kω(T)c(t)u′′. (13)

Substituting (13) into the first equation of Equation (12), we reduce Equation (12) to a
single equation as follows:

−ω2(T)u+
3
2

kω(T)u2 − 1
2

k2u3 −
(

k2ω2(T)c(t)− k4a(t)− k4b2(t)
)
u′′

+k3ω(T)c(t)uu′′ − k4ω(T)b(t)c(t)u′′′ = 0 (14)

and then we test the inegrability of this nonlinear differential Equation (14) by the Painlevé
test [24,25]. Firstly, we find the pole order of the solution expansion of Equation (14) by
taking the leading members of Equation (14) as follows:

−1
2

k2u3 −
(

k2ω2(T)c(t)− k4a(t)− k4b2(t)
)
u′′ = 0. (15)

Substituting u = d−r(t)/zr into Equation (15) [24,25], we have

r = 1, d−1(t) = ±2
√

k2(a(t) + b2(t))−ω2(T)c(t), T =
tα

α
, (16)

where k2(a(t) + b2(t)
)
− ω2(T)c(t) > 0. So, we obtain the first member of the solution

expansion in the Laurent series in the form

u(ζ) ' ±2
√

k2(a(t) + b2(t))−ω2(T)c(t)
ζ

+ · · · . (17)
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At the next step of investigation we should find the Fuchs indices by substituting

u(ζ) ' ±2
√

k2(a(t) + b2(t))−ω2(T)c(t)
ζ

+ dr(t)ζr−1 (18)

into Equation (15) again and equate the expressions at the first order of dr(t). We obtain
the Fuchs indices for a solution of Equation (14) as follows:

r1 = −1, r2 = 4. (19)

Therefore, Equation (14) passes the Painlevé test because we have the integer values
for the Fuchs indices.

We can continue the Painlevé test for Equation (14) because there is a positive Fuchs
index r2 = 4, and we can expect that coefficient d4(t) in the Laurent series can be an
arbitrary function. Thus, we can check the conjecture about integrability by substituting
the Laurent series for the general solution in the form of

u(ζ) ' ±2
√

k2(a(t) + b2(t))−ω2(T)c(t)
ζ

+ d1(t) + d2(t)ζ + d3(t)ζ2 + d4(t)ζ3, (20)

where d4(t) is an arbitrary function corresponding to r2 = 4. We substitute the Laurent
series (20) into Equation (14) and equating coefficients at different powers of ζ to zero, we
get the following relations on coefficients and parameter functions of Equation (20):

d1(t) = 0, (21)

d2(t) = ∓
2
√

k2(a(t) + b2(t))−ω2(T)c(t)
k2c(t)

, (22)

d3(t) =
9k2(a(t) + b2(t)

)
− 11c(t)ω2(T)

8k3c2(t)ω(T)
, (23)

−24b(t)c(t)k4ω(T)
√

k2(a(t) + b2(t))−ω2(T)c(t)

+16c(t)k3ω(T)
(

k2
(

a(t) + b2(t)
)
−ω2(T)c(t)

)
= 0, (24)

where ω(T), a(t), b(t), c(t) are arbitrary functions, while k is an arbitrary constant, and
T = tα/α. Now, we have the compatibility condition at the Fuchs index r2 = 4 such as

−24b(t)c(t)k4ω(T)
√

k2(a(t) + b2(t))−ω2(T)c(t)

+16c(t)k3ω(T)
(

k2
(

a(t) + b2(t)
)
−ω2(T)c(t)

)
= 0, (25)

Therefore, we know that Equation (14) passes the Painlevé test when the constraint (25)
holds. Finally, the solution expansion u(ζ) can be written in the form of

u(ζ) ' ±2
√

k2(a(t) + b2(t))−ω2(T)c(t)
ζ

± 2
√

k2(a(t) + b2(t))−ω2(T)c(t)
k2c(t)

ζ

+
9k2(a(t) + b2(t)

)
− 11ω2(T)c(t)

8k3c2(t)ω(T)
ζ2 + d4(t)ζ3, (26)

where ζ = kxα/α +
∫ T

0 ω(T)dτ, T = tα/α, and ω(T), a(t), c(t) and d4(t) are arbitrary
functions, and k is arbitrary constant.
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In addition, by the compatibility condition (25), Equation (26) is rewritten in the form of

u(ζ) ' ±3
√

k2b2(t)
ζ

± 9
√

k2b2(t)
4k2c(t)

ζ

∓
k2(a(t)− 91b2(t)

)
16k3c2(t)

√
k2

c(t)

(
a(t)− 5

4 b2(t)
) ζ2 + d4(t)ζ3, (27)

where ζ = k xα

α ±
∫ T

0

√
k2

c(τ)

(
a(τ)− 5

4 b2(τ)
)
dτ, τ = [αs]1/αT = tα

α , and a(t), b(t), c(t) are
arbitrary functions, while k is an arbitrary constant.

3.1.2. The Coupled Fractional Traveling Wave Solutions of Equation (10)

Next, we find the coupled fractional traveling wave solutions of Equation (10) through
Equation (14). By the homogeneous balancing principle, we take the highest-order non-
linear term u3 and the highest-order linear term u′′ in Equation (14) for balancing, and we
obtain the balanced order M = 1, which satisfies 3M = M + 2. Then, Equation (14) has the
first-order pole solution u(ζ)

u(ζ) = A0(t) + A1(t)
[

ψ(ζ)

φ(ζ)

]
, (28)

and the solution v(ζ) is simplified in the second equation of Equation (12) as follows:

v(ζ) =
ω(T)

k
u(ζ)− 1

2
u2(ζ)− kb(t)u′(ζ) + kω(T)c(t)u′′(ζ), (29)

where [
ψ(ζ)

φ(ζ)

]
=

p(t)− q(t)
p(t)− q(t) exp{−(p(t)− q(t))ζ} .

and ζ = ζ(x, t) = kxα/α−
∫ T

0 ω(τ)dτ, τ = [αs]1/α, T = tα/α.
Substituting Expression (28) in Equation (14) and using improved System (6), we

can obtain the algebraic equations by equating each coefficient of this polynomial in
[ψ(ζ)/φ(ζ)] to zero and solving the algebraic system by the help of Maple 2016, and we
can find six nontrivial sets of coefficients for the traveling wave solution u as follows:

b(t) = ±2
√

−a(t)
9k2c(t)p2(t)−5 , q(t) = 1

2 p(t), ω(t) = ± 3k2a(s)p(s)

(9k2c(s)p2(s)−5)
√

−a(s)
9k2c(s)p2(s)−5

, s = [tα]1/α,

A0(t) = ± 3ka(t)p(t)

(9k2c(t)p2(t)−5)
√

−a(t)
9k2c(t)p2(t)−5

, A1(t) = ±6kp(t)
√

−a(t)
9k2c(t)p2(t)−5 ,

(30)


b(t) = ±2

√
a(t)

9k2c(t)p2(t)+5 , q(t) = 1
2 p(t), ω(t) = ± 3k2a(s)p(s)

(9k2c(s)p2(s)+5)
√

a(s)
9k2c(s)p2(s)+5

, s = [tα]1/α,

A0(t) = ± 3ka(t)p(t)

(9k2c(t)p2(t)+5)
√

a(t)
9k2c(t)p2(t)+5

, A1(t) = ±6kp(t)
√

a(t)
9k2c(t)p2(t)+5 ,

(31)


b(t) = ±2

√
−a(t)

36k2c(t)p2(t)−5 , q(t) = 2p(t), ω(t) = ± 6k2a(s)p(s)

(36k2c(s)p2(s)−5)
√

−a(s)
36k2c(s)p2(s)−5

, s = [tα]1/α,

A0(t) = 0, A1(t) = ±6kp(t)
√

−a(t)
36k2c(t)p2(t)−5 ,

(32)
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b(t) = ±2

√
a(t)

36k2c(t)p2(t)+5 , q(t) = 2p(t), ω(t) = ± 6k2a(s)p(s)

(36k2c(s)p2(s)+5)
√

a(s)
36k2c(s)p2(s)+5

, s = [tα]1/α,

A0(t) = ± 12ka(t)p(t)

(36k2c(t)p2(t)+5)
√

a(t)
36k2c(t)p2(t)+5

, A1(t) = ±6kp(t)
√

a(t)
36k2c(t)p2(t)+5 ,

(33)

{
b(t) = ± 2

5

√
5a(t), q(t) = −p(t), ω(t) = ± 6

5 k2 p(s)
√

5a(s), s = [tα]1/α,
A0(t) = 0, A1(t) = ± 6

5 kp(t)
√

5a(t),
(34)

{
b(t) = ± 2

5

√
5a(t), q(t) = −p(t), ω(t) = ± 6

5 k2 p(s)
√

5a(s), s = [tα]1/α,
A0(t) = ± 12

5 kp(t)
√

5a(t), A1(t) = ± 6
5 kp(t)

√
5a(t),

(35)

We can construct six coupled fractional traveling wave solutions by nontirivial co-

efficient sets (30)–(34) as follows. With the relations of b(t) = ±2
√

−a(t)
9k2c(t)p2(t)−5 and

q(t) = 1
2 p(t), based on a coefficient set (30), the first coupled fractional traveling wave

solutions of Equation (10) are expressed by

U1(x, t) = ± 3ka(t)p(t)

(9k2c(t)p2(t)−5)
√

−a(t)
9k2c(t)p2(t)−5

±
6kp(t)

√
−a(t)

9k2c(t)p2(t)−5

2−exp{− 1
2 p(t)ζ1(x,t)} ,

V1(x, t) = − 9k2a(t)p2(t)

2(5−9k2c(t)p2(t))(2 exp{ 1
2 p(t)ζ1(x,t)}−1)

2 ±
3k2b(t)p2(t)

√
−a(t)

9k2c(t)p2(t)−5
exp{− 1

2 p(t)ζ1(x,t)}

(2−exp{− 1
2 p(t)ζ1(x,t)})

2

±
3p(t)

√
−a(t)

9k2c(t)p2(t)−5
v11(t)ω(t)

2(−1+2 exp{ 1
2 p(t)ζ1(x,t)})

3 ,

v11(t) = 2 + (k2c(t)p2(t)− 8) exp{ 1
2 p(t)ζ1(x, t)}+ 2(k2c(t)p2(t) + 4) exp{p(t)ζ1(x, t)},

ω(t) = ± 3k2a(s)p(s)

(9k2c(s)p2(s)−5)
√

−a(s)
9k2c(s)p2(s)−5

, s = [αt]1/α,

(36)

where ζ1(x, t) = kxα

α ∓
∫ T

0
3k2a(s)p(s)

(9k2c(s)p2(s)−5)
√

−a(s)
9k2c(s)p2(s)−5

dτ, s = [ατ]1/α, and T = tα

α .

With the relations of b(t) = ±2
√

a(t)
9k2c(t)p2(t)+5 and q(t) = 1

2 p(t), based on a coeffi-

cient set (31), the second coupled fractional traveling wave solutions of Equation (10) are
written as

U2(x, t) = ± 3ka(t)p(t)

(9k2c(t)p2(t)+5)
√

a(t)
9k2c(t)p2(t)+5

±
6kp(t)

√
a(t)

9k2c(t)p2(t)+5

2−exp{− 1
2 p(t)ζ2(x,t)} ,

V2(x, t) = − 9k2a(t)p2(t)(4 exp{ 1
2 p(t)ζ2(x,t)}−1)

2

2(5+9k2c(t)p2(t))(2 exp{ 1
2 p(t)ζ2(x,t)}−1)

2 ±
3k2b(t)p2(t)

√
a(t)

9k2c(t)p2(t)+5
exp{− 1

2 p(t)ζ2(x,t)}

(2−exp{− 1
2 p(t)ζ2(x,t)})

2

±
3p(t)

√
a(t)

9k2c(t)p2(t)+5
v21(t)ω(t)

2(−1+2 exp{ 1
2 p(t)ζ2(x,t)})

3 ,

v21(t) = −2 + (k2c(t)p2(t) + 16) exp{ 1
2 p(t)ζ2(x, t)}

+ 2(k2c(t)p2(t)− 20) exp{p(t)ζ2(x, t)}+ 32 exp{ 3
2 p(t)ζ2(x, t)},

ω(t) = ± 3k2a(s)p(s)

(9k2c(s)p2(s)+5)
√

a(s)
9k2c(s)p2(s)+5

, s = [αt]1/α,

(37)
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where ζ2(x, t) = kxα

α ∓
∫ T

0
3k2a(s)p(s)

(9k2c(s)p2(s)+5)
√

a(s)
9k2c(s)p2(s)+5

dτ, s = [ατ]1/α, and T = tα

α .

With the relations of b(t) = ±2
√

−a(t)
36k2c(t)p2(t)−5 and q(t) = 2p(t), based on a coefficient

set (32), the third coupled fractional traveling wave solutions of Equation (10) are written as

U3(x, t) = ∓
6kp(t)

√
−a(t)

36k2c(t)p2(t)−5

1−2 exp{p(t)ζ3(x,t)} ,

V3(x, t) = − 18k2a(t)p2(t)
(5−36k2c(t)p2(t))(1−2 exp{p(t)ζ3(x,t)})2 ±

12k2b(t)p2(t)
√

−a(t)
36k2c(t)p2(t)−5

exp{p(t)ζ3(x,t)}

(1−2 exp{p(t)ζ3(x,t)})2

±
6p(t)

√
−a(t)

36k2c(t)p2(t)−5
v31(t)ω(t)

2(−1+2 exp{p(t)ζ3(x,t)})3 ,

v31(t) = 1 + 2(k2c(t)p2(t)− 2) exp{p(t)ζ3(x, t)}+ 4(k2c(t)p2(t) + 1) exp{2p(t)ζ3(x, t)}
ω(t) = ± 6k2a(s)p(s)

(36k2c(s)p2(s)−5)
√

−a(s)
36k2c(s)p2(s)−5

, s = [αt]1/α,

(38)

where ζ3(x, t) = kxα

α ∓
∫ T

0
6k2a(s)p(s)

(36k2c(s)p2(s)−5)
√

−a(s)
36k2c(s)p2(s)−5

dτ, s = [ατ]1/α, and T = tα

α .

With the relations of b(t) = ±2
√

a(t)
36k2c(t)p2(t)+5 and q(t) = 2p(t), based on a coeffi-

cient set (33), the fourth coupled fractional traveling wave solutions of Equation (10) are
written as

U4(x, t) = ± 12ka(t)p(t)

(36k2c(t)p2(t)+5)
√

a(t)
36k2c(t)p2(t)+5

∓
6kp(t)

√
a(t)

36k2c(t)p2(t)+5

1−2 exp{p(t)ζ3(x,t)} ,

V4(x, t) = − 18k2a(t)p2(t)(4 exp{p(t)ζ4(x,t)}−1)2

(5+36k2c(t)p2(t))(2 exp{p(t)ζ4(x,t)}−1)2 ±
12k2b(t)p2(t)

√
a(t)

36k2c(t)p2(t)+5
exp{p(t)ζ4(x,t)}

(1−2 exp{p(t)ζ4(x,t)})2

±
6p(t)

√
a(t)

36k2c(t)p2(t)+5
v41(t)ω(t)

2(−1+2 exp{p(t)ζ3(x,t)})3 ,

v41(t) = −1 + 2(k2c(t)p2(t) + 4) exp{p(t)ζ4(x, t)}
+ 4(k2c(t)p2(t)− 5) exp{2p(t)ζ4(x, t)}+ 16 exp{3p(t)ζ4(x, t)},

ω(t) = ± 6k2a(s)p(s)

(36k2c(s)p2(s)+5)
√

a(s)
36k2c(s)p2(s)+5

, s = [αt]1/α,

(39)

where ζ4(x, t) = kxα

α ∓
∫ T

0
6k2a(s)p(s)

(36k2c(s)p2(s)+5)
√

a(s)
36k2c(s)p2(s)+5

dτ, s = [ατ]1/α, and T = tα

α .

With the relations of b(t) = ± 2
5

√
5a(t) and q(t) = −p(t), based on a coefficient

set (34), the fifth coupled fractional traveling wave solutions of Equation (10) are given by

U5(x, t) = ± 12k2 p(t)
√

5a(t)
5(1+exp{−2p(t)ζ5(x,t)}) ,

V5(x, t) = − 72k2a(t)p2(t)
5(1+exp{−2p(t)ζ5(x,t)})2 ∓

24k2b(t)p2(t)
√

5a(t) exp{−2p(t)ζ5(x,t)}
5(1+exp{−2p(t)ζ5(x,t)})2

± 12p(t)
√

5a(t) exp{2p(t)ζ5(x,t)}v51(t)ω(t)
5(1+exp{2p(t)ζ5(x,t)})3 ,

v51(t) = 1 + 4k2c(t)p2(t) + (2− 4k2c(t)p2(t)) exp{2p(t)ζ5(x, t)}+ exp{4p(t)ζ5(x, t)},
ω(t) = ± 6

5 k2 p(s)
√

5a(s), s = [αt]1/α,

(40)

where ζ5(x, t) = kxα

α ∓
∫ T

0
6
5 k2 p(s)

√
5a(s)dτ, s = [ατ]1/α, and T = tα

α .
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With the relations of b(t) = ± 2
5

√
5a(t) and q(t) = −p(t), based on a coefficient

set (34), the last coupled explicit solutions of Equation (10) are given by

U6(x, t) = ± 12
5 kp(t)

√
5a(t)± 12k2 p(t)

√
5a(t)

5(1+exp{−2p(t)ζ6(x,t)}) ,

V6(x, t) = − 72k4a(t)p2(t)
5(1+exp{−2p(t)ζ5(x,t)})2 ∓

24k2b(t)p2(t)
√

5a(t) exp{−2p(t)ζ5(x,t)}
5(1+exp{−2p(t)ζ6(x,t)})2

± 12p(t)
√

5a(t) exp{2p(t)ζ6(x,t)}v61(t)ω(t)
5(1+exp{2p(t)ζ6(x,t)})3 ,

v61(t) = 1 + 4(1 + k2c(t)p2(t)) exp{2p(t)ζ6(x, t)}
+ (5− 4k2c(t)p2(t)) exp{4p(t)ζ6(x, t)}+ 2 exp{6p(t)ζ6(x, t)},

ω(t) = ± 6
5 k2 p(s)

√
5a(s), s = [αt]1/α,

(41)

where ζ6(x, t) = kxα

α ∓
∫ T

0
6
5 k2 p(s)

√
5a(s)dτ, s = [ατ]1/α, and T = tα

α .
We can present the dynamics of the coupled fractional traveling wave solutions with

fractional orders as follows; Figures 1–3 represent the behaviors of the asymmetric fractional
traveling wave solutions U6(x, t) and V6(x, t) of (41) with fractional orders α = 0.3, 0.8, 1.0,
under k = 0.1, p(t) = 2, a(t) = sin2(0.3t) and c(t) = 1; Figures 1 and 2 present the periodic
traveling wave behaviors on space variable x and time variable t. Figure 3 represents
the periodic traveling wave behaviors of U6(x, t) and the periodic solitons-like behavors
of V6(x, t).

Figure 1. Profiles of the periodic traveling wave solutions U6(x, t) and V6(x, t) of (41) when α = 0.3,
under k = 0.1, p(t) = 2, a(t) = sin2(0.3t) and c(t) = 1.

Figure 2. Profiles of the periodic traveling wave solutions U6(x, t) and V6(x, t) of (41) when α = 0.8,
under k = 0.1, p(t) = 2, a(t) = sin2(0.3t) and c(t) = 1.

Figure 3. Profiles of the periodic traveling wave solution U6(x, t) and the solitons-like traveling wave
solution V6(x, t) of (41) when α = 1.0, under k = 0.1, p(t) = 2, a(t) = sin2(0.3t) and c(t) = 1.
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3.2. The Fractional WBK Equations with Variable Coefficients

Taking f (U) = U, g(Uα
x ) = Uα

x , r(V) = V, a(t) = a(t), b(t) = b(t), c(t) = 0, we
consider the fractional WBK equations with variable coefficients from Equation (2) in
the form {

∂αV
∂tα + ∂α

∂xα (VU) + a(t) ∂3αU
∂x3α − b(t) ∂2αV

∂x2α = 0,
∂αU
∂tα + ∂αV

∂xα + U ∂αU
∂xα + b(t) ∂2αU

∂x2α = 0.
(42)

Suppose that U(x, t) = u(ζ), V(x, t) = v(ζ) are the fractional traveling wave solutions
of Equation (42) where we applied the transformation given in Equation (4). With the use
of traveling wave transformation (4), Equation (42) can be expressed by{

−ω(T)v′ + kv′u+ kvu′ + k3a(t)u′′′ − k2b(t)v′′ = 0,
−ω(T)u′ + kv′ + kuu′ + k2b(t)u′′ = 0,

(43)

where u′ = du/dζ, u′′′ = d3u/dζ3, v′ = dv/dζ, v′′ = d2v/dζ2.
Integrating Equation (43) with respect to ζ once, we have{

−ω(T)v+ kvu+ k3a(t)u′′ − k2b(t)v′ = 0,
−ω(T)u+ kv+ 1

2 ku2 + k2b(t)u′ = 0,
(44)

From the second equation of Equation (44), we have

v =
ω(T)

k
u− 1

2
u2 − kb(t)u′. (45)

Substituting (45) into the first equation of Equation (44), we reduce Equation (44) to a
single equation as follows:

−ω2(T)u+
3
2

kω(T)u2 − 1
2

k2u3 + k4
(

a(t) + b2(t)
)
u′′ = 0. (46)

By the homogeneous balancing principle, we take the highest-order nonlinear term
u3 and the highest-order linear term u′′ in Equation (46) for balancing, and we obtain the
balanced order M = 1, which satisfies 3M = M + 2. Then, Equation (46) has the first-order
pole solution u(ζ) as follows:

u(ζ) = A0(t) + A1(t)
[

ψ(ζ)

φ(ζ)

]
, (47)

and the solution v(ζ) is simplifying in the second equation of Equation (44) as follows;

v(ζ) =
ω(T)

k
u(ζ)− 1

2
u2(ζ)− kb(t)u′(ζ), (48)

where [
ψ(ζ)

φ(ζ)

]
=

p(t)− q(t)
p(t)− q(t) exp{−(p(t)− q(t))ζ} .

and ζ = ζ(x, t) = kxα/α)−
∫ T

0 ω(τ)dτ, τ = [αs]1/α, T = tα/α.
Substituting Expression (47) in Equation (46) and using improved System (6), we

can obtain the algebraic equations by equating each coefficient of this polynomial in
[ψ(ζ)/φ(ζ)] to zero and solving the algebraic system by the help of Maple 2016, and we
can find five nontrival sets of coefficients for the traveling wave solution u as follows:{

ω(t) = ±2k2 p(s)
√

a(s) + b2(s), s = [tα]1/α, q(t) = −p(t),
A0(t) = 0, A1(t) = ±2kp(t)

√
a(t) + b2(t),

(49)
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{
ω(t) = ±2k2 p(s)

√
a(s) + b2(s), s = [tα]1/α, q(t) = −p(t),

A0(t) = ±4kp(t)
√

a(t) + b2(t), A1(t) = ±2kp(t)
√

a(t) + b2(t),
(50)

{
ω(t) = ±2k2 p(s)

√
a(s) + b2(s), s = [tα]1/α, q(t) = 2p(t),

A0(t) = 0, A1(t) = ±2kp(t)
√

a(t) + b2(t),
(51)

{
ω(t) = ±2k2 p(s)

√
a(s) + b2(s), s = [tα]1/α, q(t) = 2p(t),

A0(t) = ±4kp(t)
√

a(t) + b2(t), A1(t) = ±2kp(t)
√

a(t) + b2(t),
(52)

{
ω(t) = ±k2 p(s)

√
a(s) + b2(s), s = [tα]1/α, q(t) = 1

2 p(t),
A0(t) = ±kp(t)

√
a(t) + b2(t), A1(t) = ±2kp(t)

√
a(t) + b2(t),

(53)

We can construct five coupled fractional traveling wave solutions by nontirivial coeffi-
cient sets (49)–(53) as follows. With a relation of q(t) = −p(t), based on a coefficient set (49),
the first coupled fractional traveling wave solutions of Equation (42) are expressed by

U1(x, t) = ± 4kp(t)
√

a(t)+b2(t)
1+exp{−2p(t)ζ1(x,t)} ,

V1(x, t) = − 8k2 p2(t)(a(t)+b2(t))
(1+exp{−2p(t)ζ1(x,t)})2 ∓

8k2 p2(t)b(t)
√

a(t)+b2(t) exp{−2p(t)ζ1(x,t)}
(1+exp{−2p(t)ζ1(x,t)})2 ± 4p(t)ω(t)

√
a(t)+b2(t)

1+exp{−2p(t)ζ1(x,t)} ,

ω(t) = ±2k2 p(s)
√

a(s) + b2(s), s = [αt]1/α,

(54)

where ζ1(x, t) = kxα/α∓
∫ T

0 2k2 p(s)
√

a(s) + b2(s)dτ, s = [ατ]1/α, and T = tα/α. With
a relation of q(t) = −p(t), based on a coefficient set (50), the second coupled fractional
traveling wave solutions of Equation (42) are written as

U2(x, t) = ±4kp(t)
√

a(t) + b2(t)± 4kp(t)
√

a(t)+b2(t)
1+exp{−2p(t)ζ2(x,t)} ,

V2(x, t) = ∓ 8k2 p2(t)b(t) exp{2p(t)ζ2(x,t)}
(1+exp{−2p(t)ζ2(x,t)})2 − 1

2

(
±4kp(t)

√
a(t) + b2(t)± 4kp(t)

√
a(t)+b2(t)

1+exp{−2p(t)ζ2(x,t)}

)2

+ ω(t)
k

(
±4kp(t)

√
a(t) + b2(t)± 4kp(t)

√
a(t)+b2(t)

1+exp{−2p(t)ζ2(x,t)}

)
,

ω(t) = ±2k2 p(s)
√

a(s) + b2(s), s = [αt]1/α,

(55)

where ζ2(x, t) = kxα/α∓
∫ T

0 2k2 p(s)
√

a(s) + b2(s)dτ, s = [ατ]1/α, and T = tα/α. With a
relation of q(t) = 2p(t), based on a coefficient set (51), the third coupled fractional traveling
wave solutions of Equation (42) are written as

U3(x, t) = ∓ 2kp(t)
√

a(t)+b2(t)
1−2 exp{p(t)ζ3(x,t)} ,

V3(x, t) = − 2k2 p2(t)(a(t)+b2(t))
(1−2 exp{p(t)ζ3(x,t)})2 ∓

4k2 p2(t)b(t)
√

a(t)+b2(t)exp{p(t)ζ3(x,t)}
(1−2exp{p(t)ζ3(x,t)})2 ± 2p(t)ω(t)

√
a(t)+b2(t)

1−2 exp{p(t)ζ3(x,t)} ,

ω(t) = ±2k2 p(s)
√

a(s) + b2(s), s = [αt]1/α,

(56)

where ζ3(x, t) = kxα/α∓
∫ T

0 2k2 p(s)
√

a(s) + b2(s)dτ, s = [ατ]1/α, and T = tα/α. With
a relation of q(t) = 2p(t), based on a coefficient set (52), the fourth coupled fractional
traveling wave solutions of Equation (42) are expressed by
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U4(x, t) = ±4kp(t)
√

a(t) + b2(t)∓ 2kp(t)
√

a(t)+b2(t)
1−2 exp{p(t)ζ4(x,t)} ,

V4(x, t) = ∓ 4k2 p2(t)b(t) exp{p(t)ζ4(x,t)}
(1−2 exp{p(t)ζ4(x,t)})2 − 1

2

(
±4kp(t)

√
a(t) + b2(t)∓ 2kp(t)

√
a(t)+b2(t)

1−2 exp{p(t)ζ4(x,t)}

)2

+ ω(t)
k

(
±4kp(t)

√
a(t) + b2(t)∓ 2kp(t)

√
a(t)+b2(t)

1−2 exp{p(t)ζ4(x,t)}

)
,

ω(t) = ±2k2 p(s)
√

a(s) + b2(s), s = [αt]1/α,

(57)

where ζ4(x, t) = kxα/α∓
∫ T

0 2k2 p(s)
√

a(s) + b2(s)dτ, s = [ατ]1/α, and T = tα/α. With a
relation of q(t) = 1

2 p(t), based on a coefficient set (53), the last coupled fractional traveling
wave solutions of Equation (42) are given by

U5(x, t) = ±kp(t)
√

a(t) + b2(t)± 2kp(t)
√

a(t)+b2(t)
2−exp{− 1

2 p(t)ζ5(x,t)} ,

V5(x, t) = ∓ k2 p2(t)b(t) exp{− 1
2 p(t)ζ5(x,t)}

2(2−exp{− 1
2 p(t)ζ5(x,t)})

2 − 1
2

(
±kp(t)

√
a(t) + b2(t)± 2kp(t)

√
a(t)+b2(t)

2−exp{− 1
2 p(t)ζ5(x,t)}

)2

+ ω(t)
k

(
±kp(t)

√
a(t) + b2(t)± 2kp(t)

√
a(t)+b2(t)

2−exp{− 1
2 p(t)ζ5(x,t)}

)
,

ω(t) = ±k2 p(s)
√

a(s) + b2(s), s = [αt]1/α,

(58)

where ζ5(x, t) = kxα/α∓
∫ T

0 k2 p(s)
√

a(s) + b2(s)dτ, s = [ατ]1/α, and T = tα/α.
We represent the dynamics of the coupled fractional traveling wave solution (4) with

fractional orders as follows; Figures 4–6 represent the periodic traveling wave behaviors of
the fractional traveling wave solutions U5(x, t) and V5(x, t) of (58) with fractional orders
α = 0.3, 0.8, 1.0, under k = 0.1, p(t) = 1.2, a(t) = sin(0.5t) and b(t) = 1.

Figure 4. Profiles of the periodic traveling wave solutions U5(x, t) and V5(x, t) of (58) when α = 0.3,
under k = 0.1, p(t) = 1.2, a(t) = sin(0.5t) and b(t) = 1.

Figure 5. Profiles of the periodic traveling wave solutions U5(x, t) and V5(x, t) of (58) when α = 0.8,
under k = 0.1, p(t) = 1.2, a(t) = sin(0.5t) and b(t) = 1.

Figure 6. Profiles of the periodic traveling wave solutions U5(x, t) and V5(x, t) of (58) when α = 1.0,
under k = 0.1, p(t) = 1.2, a(t) = sin(0.5t) and b(t) = 1.
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Remark 1. For the integral order α = 1, if A(t) = a and B(t) = b are constants, Equation (42)
gives the WBK equations as follows:{

vt + (uv)x + auxxx − bvxx = 0,
ut + vx + uux + buxx = 0,

(59)

where u(x, t) and v(x, t) are described as the dispersive long-wave in shallow water waves, as
u(x, t) is the field of horizontal velocity and v(x, t) represents the height that deviates from the
equilibrium position of liquid, and a and b represent different diffusion powers [6,26,27]. Especially,
if we take a = 0 and b 6= 0, Equation (59) has five coupled traveling wave solutions of the classic
long wave equations as follows:u1(x, t) = ± 4kp(t)|b|

1+exp{−2p(t)ζ(x,t)} ,

v1(x, t) = 8k2 p2(t)[b(b∓|b|)] exp{2p(t)ζ(x,t)}
(1+exp{2p(t)ζ(x,t)})2 ,

(60)

u2(x, t) = ±4kp(t)|b| ± 4kp(t)|b|
1+exp{−2p(t)ζ(x,t)} ,

v2(x, t) = − 8k2 p2(t)[b2±b|b|+2b2 exp{2p(t)ζ(x,t)}] exp{2p(t)ζ(x,t)}
(1+exp{2p(t)ζ(x,t)})2 ,

(61)

u3(x, t) = ∓ 2kp(t)|b|
1−2 exp{p(t)ζ(x,t)} ,

v3(x, t) =
2kp2(t)[b2(3−4 exp{p(t)ζ(x,t)})∓2b|b| exp{p(t)ζ(x,t)}]

(1−2 exp{p(t)ζ(x,t)})2 ,
(62)

u4(x, t) = ±4kp(t)|b| ∓ 2kp(t)|b|
1−2 exp{p(t)ζ(x,t)} ,

v4(x, t) =
2k2 p2(t)[b2−(4b2±2b|b|) exp{p(t)ζ(x,t)}]

(1−2 exp{p(t)ζ(x,t)})2 ,
(63)

where ζ(x, t) = kx∓
∫ t

0 2k2 p(s)|b|ds,
u5(x, t) = ±kp(t)|b| ± 2kp(t)|b|

2−exp{− 1
2 p(t)ζ5(x,t)} ,

v5(x, t) =
k2 p2(t)[b2(1−4 exp{ 1

2 p(t)ζ5(x,t)})±2b|b| exp{ 1
2 p(t)ζ5(x,t)}]

2(1−2 exp{ 1
2 p(t)ζ5(x,t))

2 ,
(64)

where ζ5(x, t) = kx∓
∫ t

0 k2 p(s)|b|ds.

3.3. The Fractional Boussinesq Equations with Variable Coefficients

By setting f (U) = U, g(Uα
x ) = Uα

x , r(V) = V, a(t) = a(t), b(t) = 0, c(t) = 0 in
Equation (2), the fractional Boussinesq equations with variable coefficients are degenerated
as in the form [28] {

∂αV
∂tα + ∂α

∂xα (VU) + a(t) ∂3αu
∂x3α = 0,

∂αU
∂tα + ∂αV

∂xα + U ∂αU
∂xα = 0.

(65)

Suppose that U(x, t) = u(η), V(x, t) = v(η) are the fractional traveling wave solu-
tions of Equation (65) with the fractional traveling wave varaible η = kxα/α−

∫ T
0 ω(s)ds,

T = tα/α, where k is an arbitrary constant and α ∈ (0, 1]. Then, Equation (65) can be
written by {

−ω(T)v′ + kv′u+ kvu′ + k3a(t)u′′′ = 0,
−ω(T)u′ + kv′ + kuu′ = 0,

(66)
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where u′ = du/dζ, u′′′ = d3u/dζ3, v′ = dv/dζ.
Integrating Equation (66) with respect to ζ once, we have{

−ω(T)v+ kvu+ k3a(t)u′′ = 0,
−ω(T)u+ kv+ 1

2 ku2 = 0.
(67)

From the second equation of Equation (67), we have

v =
ω(T)

k
u− 1

2
u2. (68)

Substituting (68) into the first equation of Equation (67), we reduce Equation (67) to a
single equation as follows:

−ω2(T)u+
3
2

kω(T)u2 − 1
2

k2u3 + k4a(t)u′′ = 0. (69)

We know that Equation (69) has the first-order pole solution u(ζ) by the homogeneous
balancing principle. Then, we suppose that the solution of Equation (69) can be expressed
in the form

u(ζ) = A0(t) + A1(t)
p(t)− q(t)

p(t)− q(t) exp{−(p(t)− q(t))ζ} , (70)

and the solution v(ζ) is expressed by in the form

v(ζ) =
ω(T)

k
u(ζ)− 1

2
u2(ζ). (71)

We have the coupled fractional traveling wave solutions of Equation (65) as follows:
U1(x, t) = ± 4kp(t)

√
a(t)

1+exp{−2p(t)ζ1(x,t)} ,

V1(x, t) = − 8k2 p2(t)a(t)
(1+exp{−2p(t)ζ1(x,t)})2 ±

4p2(t)ω(t)
√

a(t)
1+exp{−2p(t)ζ1(x,t)} ,

ω(t) = ±2k2 p(s)
√

a(s), s = [αt]1/α,

(72)

where ζ1(x, t) = kxα/α∓
∫ T

0 2k2 p(s)
√

a(s)dτ, s = [ατ]1/α, and T = tα/α, with q(t) = −p(t),

U2(x, t) = ±4kp(t)
√

a(t)± 4kp(t)
√

a(t)
1+exp{−2p(t)ζ2(x,t)} ,

V2(x, t) = − 1
2

(
±4kp(t)

√
a(t)± 4kp(t)

√
a(t)

1+exp{−2p(t)ζ2(x,t)}

)2

+ ω(t)
k

(
±4kp(t)

√
a(t)± 4kp(t)

√
a(t)

1+exp{−2p(t)ζ2(x,t)}

)
,

ω(t) = ±2k2 p(s)
√

a(s), s = [αt]1/α,

(73)

where ζ2(x, t) = kxα/α∓
∫ T

0 2k2 p(s)
√

a(s)dτ, s = [ατ]1/α, and T = tα/α, with q(t) = −p(t),
U3(x, t) = ∓ 2kp(t)

√
a(t)

1−2 exp{p(t)ζ3(x,t)} ,

V3(x, t) = − 2k2 p2(t)a(t)
(1−2 exp{p(t)ζ3(x,t)})2 ∓

2p2(t)ω(t)
√

a(t)
1−2 exp{p(t)ζ3(x,t)} ,

ω(t) = ±2k2 p(s)
√

a(s), s = [αt]1/α,

(74)
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where ζ3(x, t) = kxα/α∓
∫ T

0 2k2 p(s)
√

a(s)dτ, s = [ατ]1/α, and T = tα/α, with q(t) = 2p(t),

U4(x, t) = ±4kp(t)
√

a(t)∓ 2kp(t)
√

a(t)
1−2 exp{p(t)ζ4(x,t)} ,

V4(x, t) = − 1
2

(
±4kp(t)

√
a(t)∓ 2kp(t)

√
a(t)

1−2 exp{p(t)ζ4(x,t)}

)2

+ ω(t)
k

(
±4kp(t)

√
a(t)∓ 2kp(t)

√
a(t)

1−2 exp{p(t)ζ4(x,t)}

)
,

ω(t) = ±2k2 p(s)
√

a(s), s = [αt]1/α,

(75)

where ζ4(x, t) = kxα/α∓
∫ T

0 2k2 p(s)
√

a(s)dτ, s = [ατ]1/α, and T = tα/α, with q(t) = 2p(t),

U5(x, t) = ±kp(t)
√

a(t)± 2kp(t)
√

a(t)
2−exp{− 1

2 p(t)ζ5(x,t)} ,

V5(x, t) = − 1
2

(
±kp(t)

√
a(t)± 2kp(t)

√
a(t)

2−exp{− 1
2 p(t)ζ5(x,t)}

)2

+ ω(t)
k

(
±kp(t)

√
a(t)± 2kp(t)

√
a(t)

2−exp{− 1
2 p(t)ζ5(x,t)}

)
,

ω(t) = ±k2 p(s)
√

a(s), s = [αt]1/α,

(76)

where ζ5(x, t) = kxα/α∓
∫ T

0 k2 p(s)
√

a(s)dτ, s = [ατ]1/α, and T = tα/α, with q(t) = p(t)/2.
We illustrate the dynamics of the coupled fractional traveling wave solution (76)

with fractional orders as follows: Figures 7–9 represent the solitary wave behaviors of
the fractional traveling wave solutions U5(x, t) and V5(x, t) of (76) with fractional orders
α = 0.3, 0.8, 1.0, under k = 0.25, p(t) = exp(−t/3), a(t) = sin2(0.5t): for fractional orders
α = 0.3, 0.8, 1.0, the fractional traveling wave solutions U5(x, t) and V5(x, t) of (76) converge
to 0 as time variable t increases for all space variable x.

Figure 7. Profiles of the solitary wave solution U5(x, t) and the dark solitary wave solution V5(x, t)
of (76) when α = 0.3, under k = 0.25, p(t) = exp(−t/3), a(t) = sin2(0.5t).

Figure 8. Profiles of the solitary wave solution U5(x, t) and the dark solitary wave solution V5(x, t)
of (76) when α = 0.8, under k = 0.25, p(t) = exp(−t/3), a(t) = sin2(0.5t).

Figure 9. Profiles of the solitary wave solution U5(x, t) and the dark solitary wave solution V5(x, t)
of (76) when α = 1.0, under k = 0.25, p(t) = exp(−t/3), a(t) = sin2(0.5t).
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Remark 2. When we take the interger order α = 1 and a(t) = 1, the version of Equation (65) is
expressed by {

vt + (uv)x + uxxx = 0,
ut + vx + uux = 0,

(77)

which is called the Boussinesq I equations [29,30]. By employing mathematical computation method,
we obtain the coupled traveling wave solutions of Equation (77) as follows:u1(x, t) = ± 4kp(t)

1+exp{−2p(t)ζ(x,t)} ,

v1(x, t) = − 8k2 p2(t) exp{2p(t)ζ(x,t)}
(1+exp{2p(t)ζ(x,t)})2 ,

(78)

u2(x, t) = ±4kp(t)± 4kp(t)
1+exp{−2p(t)ζ(x,t)} ,

v2(x, t) = 8kp2(t) exp{2p(t)ζ(x,t)}
(1+exp{2p(t)ζ(x,t)})2 ,

(79)

u3(x, t) = ∓ 2kp(t)
1−2 exp{p(t)ζ(x,t)} ,

v3(x, t) = 2k2 p2(t)(1−4 exp{p(t)ζ(x,t)})
(1−2 exp{p(t)ζ(x,t)})2 ,

(80)

u4(x, t) = ±4kp(t)∓ 2kp(t)
1−2 exp{p(t)ζ(x,t)} ,

v4(x, t) = 2k2 p2(t)(1−4 exp{p(t)ζ(x,t)})
(1−2 exp{p(t)ζ(x,t)})2 ,

(81)

where ζ(x, t) = kx∓
∫ t

0 2k2 p(s)ds,
u5(x, t) = ±kp(t)± 2kp(t)

2−exp{− 1
2 p(t)ζ5(x,t)} ,

v5(x, t) =
k2 p2(t)(1−4 exp{ 1

2 p(t)ζ5(x,t)})
2(1−2 exp{ 1

2 p(t)ζ5(x,t)})
2 ,

(82)

where ζ5(x, t) = kx∓
∫ t

0 k2 p(s)ds.

4. Conclusions

In this paper, we obtained new coupled fractional traveling wave solutions of the
fractional BWBK equations, the fractional WBK equations and the fractional Boussinesq
equations with variable coefficients by using the improved system method. We have
successfully applied the improved system method to find new coupled fractional traveling
wave solutions of the fractional NPDEs. We presented the dynamics of new coupled
fractional traveling wave solutions of the considered equations under suitable physical
parameters. We believe that the improved system method is simple and powerful to find
the explicit traveling wave solutions of NPDEs.
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