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Abstract: We consider the solutions of two integrodifferential equations in this work. These equations
describe the ultra-low frequency waves in the dipol-like model of the magnetosphere in the gyroki-
netic framework. The first one is reduced to the homogeneous, second kind Fredholm equation. This
equation describes the structure of the parallel component of the magnetic field of drift-compression
waves along the Earth’s magnetic field. The second equation is reduced to the inhomogeneous,
second kind Fredholm equation. This equation describes the field-aligned structure of the parallel
electric field potential of Alfvén waves. Both integral equations are solved numerically.

Keywords: second kind Fredholm equation; plasma kinetics; ultra-low-frequency waves;
magnetosphere

1. Introduction

The logic of our (material) world is described by differential equations. Indeed, the
movement of the single-particle is governed by Newton’s second law:

m
d2~r
dt2 = ~F(~r,~v) (1)

where~r is the particle’s radius-vector, ~v = d~r/dt is the particle’s velocity, and ~F is the force.
When particles are numerous, this equation as itself becomes useless, but the medium can
be described by the kinetic approach with the help of the Boltzmann equation. In particular,
in the collisionless plasma (such as the Earth’s magnetosphere plasma) this equation takes
the following form:

∂ f
∂t

+~v
∂ f
∂~r

+
~F
m

∂ f
∂~v

= 0, (2)

where f is the distribution function (showing how many particles fit in the six-dimensional
cube with the volume d~rd~v in the phase space). Again, this is a differential equation as well.
Knowing the distribution function, one can calculate the charge and current density, as
follows:

n = ∑
∫

f d~v, ~j = ∑
∫

f~vd~v. (3)

Here, the summation is applied to all sort of the charged particles in plasma, such
as electrons, protons, etc. Then, one can substitute n and ~j into yet another set of the
differential equations—Maxwell’s equations—and obtain the spatio-temporal behavior of
the electric and magnetic fields ~E,~B, that is, obtain all possible knowledge of the plasma
system. Thus, the world is governed by differential equations!

However, this program works only in theory. In practice, to solve the set of New-
ton, Boltzmann, and Maxwell’s equations for the non-trivial system (such as the Earth’s
magnetosphere) one faces insurmountable difficulties, and one has to apply various ap-
proximations. One of them works in the solution of Equation (3) in plasma physics. It is
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called the integration along the particle trajectories. Let us remind that in the dipole-like
magnetic field (such as the Earth’s magnetic field), the motion of a charged particle can be
divided into three types: moving around a magnetic field line with the cyclotron frequency
or gyrofrequency ωc; moving between “mirror points” or bounce-motion with bounce
frequency ωb; and moving around the Earth with drift frequency ωd [1]. As a result, the
Boltzmann equation is reduced to an integral equation, which is much easier to solve
than the original Equation (3). Therefore, the differential equations give a correct and
complete description of the world but in some situations they are useless, as they are
almost impossible to solve, and one has to appeal for the help of the integral equation,
which is not so exact but truly works. It is the situation that those who study plasma have
to deal with.

Then, many phenomena in the magnetosphere flow rather slow, compared with the
movement around a field line. An example is the so-called ultra-low-frequency (ULF) waves.
These are the plasma perturbations with the wavelength of the same order as the field line
itself (several of Earth’s radii). These waves are widely observed in the magnetosphere and
are responsible for the auroral intensifications in the polar regions [2–4] and transport and
acceleration of radiation belt electrons [5–7], and thus represent an important factor of space
weather. For studying such slow phenomena, one has to average the particle motion over
the cyclotron frequency, which reduces the wave equation to an even simpler form—but
they still remain the integral equations! Such formalism is called gyrokinetics and was
developed in papers [8–10]. This paper aims to review some results in the studies of the
ULF waves in the Earth’s magnetosphere obtained with the integral equations [11,12].

2. Coordinate System and Governing Equations

To construct an adequate model of wave propagation in the inner magnetosphere, we
use a dipole-like model of the magnetosphere. This model takes into account the curvature
of the magnetic field lines and the inhomogeneity of the magnetic field. In addition, in
such a model, we can take into account the gradients of the background plasma across the
magnetic shells. We use an orthogonal curvilinear coordinate system, where the coordinates
x1 and x2 represent the radial and azimuthal coordinates, and the x3 coordinate marks
a point on a particular field line [13]. The increment of physical length along a field line
is dl‖ =

√
g3dx3, where g3 is the metric tensor component. Similarly, for the transverse

direction, we have dl1 =
√

g1dx1, and dl2 =
√

g2dx2.
The equilibrium condition of plasma can be written as follows:

β

2P
∂P
∂l1

+
1
B

∂B
∂l1

+
1
R

= 0, (4)

where B and P are the equilibrium magnetic field and plasma pressure, respectively, R is
the field line curvature radius, and β = 8πP/B2 is the plasma to magnetic pressure ratio.

“Let us consider the low (but finite) pressure plasma, 0 < β � 1. The plasma is
assumed to be composed of core cold particles and an admixture of hot protons and
electrons. The hot protons make the main contribution to plasma pressure, βp � βe. We
will use the Maxwellian distribution for the hot particles:

Fj =
nj

(2πε0j)
3/2 e

−ε/ε0j , (5)

where n is the number density, ε = v2/2 is the particle energy per unit mass, v is particle
velocity, and ε0j is the temperature. Hereinafter, the index j indicates the belonging to the
protons (p) or the electrons (e), respectively ” [12].
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The modes with high azimuthal wave numbers (m� 1) are considered, which allows
description in the transverse WKB approximation [13]. In this case, all perturbed values
can be written as the following:

exp (−iωt + i
∫

k1dx1 + ik2x2), (6)

where ω is the wave’s frequency, k1 and k2 are the wave-vector’s radial and azimuthal
components, respectively. If the coordinate x2 is represented by the azimuthal angle, then
k2 equals the azimuthal wave number m.

The ULF waves are characterized by the frequencies ω much lower than the gyrofre-
quency ωc. Such modes are conventionally considered in the gyrokinetics framework,
where the wave’s electromagnetic field is described by three variables: “φ is the electro-
static potential, b‖ is the parallel magnetic field, and ψ is the potential related to the parallel
vector potential, as A‖ = −(ic/ω)∂ψ/∂l‖” [12]. In this case, the transverse and parallel
electric fields of the wave are the following, respectively:

~E⊥ = −∇⊥ψ, (7)

~E‖ = −∇‖(φ− ψ) = −∇‖φ‖, (8)

The gyrokinetics equations system describing electromagnetic waves in a plasma can
be written, using the following three variables [10]:

L̂Aψ + L̂AMb‖ + L̂AEφ‖ = 0, (9)

L̂MAψ + L̂Mb‖ + L̂MEφ‖ = 0, (10)

L̂EAψ + L̂EMb‖ + L̂Eφ‖ = 0. (11)

Here, (9) represents the perpendicular Ampere’s law: (10)—the parallel Ampere’s
law or vorticity equation; and (11)—the quasi-neutrality condition. In these equations, L̂i
are integral or integro-differential operators defined in [10] (see their Equations (12)–(14),
respectively). Next, we will consider a few simplified cases because this system is too
complex to be solved without simplifications.

3. The Alfvén Mode Equation and Compressional Component of the Alfvén Wave

In the first case, we consider the system (9)–(11) neglecting the parallel electric field
of the wave: ~E‖ = 0. This is a plausible situation since the admixture of cold electrons in
the plasma should short-out the parallel electric fields [14]. “In this case, we can consider
the perpendicular Ampere’s law Equation (9) and vorticity Equation (10) independent of
the quasi-neutrality condition (11)” [12]. To simplify, we neglect the contribution of hot
electrons since βp � βe. In this case, the system (9) and (10) is written in the following
simplified form:

L̂Aψ + L̂AMb‖ = 0 (12)

L̂MAψ + L̂Mb‖ = 0, (13)

where L̂A and L̂M are the Alfvén and compressional mode operators, and L̂AM and L̂MA
are the coupling operators defined below.

“The Alfvén mode operator is as follows:

L̂Aψ =

(
k2

1
g1

L̂T +
k2

2
g2

L̂P

)
ψ +

k2
2

g2
4πP′

B2

(
B′
B −

√
g1

R

)
ψ+

+ 4πq2

mpc2

〈
Q̂Fp

ω−ωd
ωd(ωdψ)

〉
,

(14)
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where
〈...〉 = 4π

∫
(...)

B
|v‖|

dµdε (15)

is the integral over velocity space,

(...) =
2
τb

l0∫
−l0

(...)
dl‖
|v‖|

(16)

is an average for a bounce period τb,

τb = 2
l0∫
−l0

dl‖
|v‖|

, (17)

where ±l0 are reflection points of a magnetically trapped particles with energy ε and
magnetic moment µ = v2

⊥/(2B), q is the particle charge, mp is the proton mass, c is the
velocity of light, v‖ and v⊥ is the parallel and transverse components of particles velocity
relative to the Earth’s magnetic field, respectively:

ωdj
=

k2

ωcj

√
g2

(
1
√

g1

B′

2B
v2
⊥ −

v2
‖

R

)
(18)

is the drift frequency,

Q̂ = ω
∂

∂ε
+

k2

ωc
√

g⊥

∂

∂x1 , (19)

where ωc is the gyrofrequency, g⊥ = g1g2” [12]. The operators L̂T define the toroidal
operator as follows:

L̂T = ∂3
g2√

g
∂3 +

√
g

g1

ω2

v2
A

(20)

and L̂P defines the poloidal operator for cold plasma as follows:

L̂P = ∂3
g1√

g
∂3 +

√
g

g2

ω2

v2
A

, (21)

where vA = B/
√

4πρ is the Alfvén speed, and ρ is the equilibrium mass density. The
compressional mode operator is defined by its action on the b‖ function as follows:

L̂Mb‖ =
4πmpω

c

〈
Q̂Fp

ω−ωd
µ(µb‖)

〉
− ω

c
b‖. (22)

The operators L̂AM and L̂MA define the mode coupling as follows:

L̂AMb‖ =
k2√
g2

4πP′
√

g1B2
ω

c
b‖ +

4πqω

c2

〈
Q̂Fp

ω−ωd
ωd(µb‖)

〉
, (23)

L̂MAψ =
k2√
g2

4πP′
√

g1B2 ψ +
4πq

c

〈
Q̂Fp

ω−ωd
µ(ωdψ)

〉
. (24)

Let us assume that both wave and drift frequencies of protons are much larger than
the bounce frequency. Then, Equation (12) is reduced to the following form [15]:

b‖ '
ck2

ω
√

g2

(
4πP′
√

g1B2 +
β

1 + β

3
2R

)
ψ. (25)
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This means that in the dipolar geometry, the Alfvén mode (the ψ variable) is al-
ways accompanied by the parallel magnetic field (the b‖ variable). Substituting b‖ into
Equation (13), we yield the single Alfvén mode equation:

1
√

g

[
k2

1 L̂T + k2
2 L̂∗P

]
ψ = 0. (26)

Here, L̂∗P is a modified poloidal Alfvénic operator determined in the limit ω � ωdp,e , ωbp as
the following:

L̂∗P(ω) = ∂3
g1√

g
∂3 +

√
g

g2

ω2

v2
A
− 1

R

(
8πP′
√

g1B2 +
7
2

β

R
− 9

4R
β2

1 + β

)
. (27)

The solution of Equation (26) gives a profile for ψ. We need the obtained results
further.

4. Drift-Compressional Modes

Some of the observed magnetospheric ULF waves are coined as the compressional
waves characterized by the variation of the parallel component of the wave magnetic
field [16–18]. In the magnetohydrodynamics framework, these waves can be identified
with fast or slow MHD modes [19]. To describe such waves in the kinetics, we consider the
situation of compression resonance, as in [11]. Consider the second term of Equation (13):

L̂Mb‖ =
4πmpω

c

〈
Q̂Fp

ω−ωd
µ(µb‖)

〉
− ω

c b‖ =

4πmpω4π
c

∞∫
0

dε

ε/B(l‖)∫
0

dµ
B(l‖)
|v‖(l‖)|

Q̂Fp
ω−ωd

µ2 2
τb

l0∫
−l0

b(l′‖)
|v‖(l′‖)|

dl′‖ − ω
c b‖(l′‖).

(28)

“Changing the order of integration, we obtain the following:

L̂Mb‖ =
l0∫
−l0

ΛK(l‖, l′‖)
ω

c
b‖(l

′
‖)dl′‖ −

ω

c
b‖(l

′
‖), (29)

where ΛK(l‖, l′‖) is the function that is obtained as a result of changes in the order of
integration, while Λ does not depend on l‖ and l′‖.

Equation (13) can formally be considered an inhomogenous Fredholm integral equa-
tion of the second kind:

b(l‖) = Λ
lI∫
−lI

K(l‖, l′‖)b(l
′
‖)dl′‖ + L̂MAψ, (30)

where K(l‖, l′‖) is the kernel of the integral equation, Λ is a parameter, lI is the distance
from the equator to the ionosphere along the field line and b = (ω/c)b‖” [11]. The solution
of Equation (30) is the following:

b(l‖) = L̂MAψ + Λ
∞

∑
N=1

bN
ΛN −Λ

lI∫
−lI

bN L̂MAψdl‖, (31)

where Λ and bN are the eigenvalues and eigenfunctions of the homogeneous equation as
follows:

L̂MbN = 0, (32)
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N is the wavenumber of the harmonic. The eigenfunctions are orthogonal to each other.
The normalization condition is the following:

lI∫
−lI

bNbN′dl‖ = δNN′ , (33)

where δNN′ is the Kronecker delta.
In case Λ→ ΛN , b is proportional to the corresponding eigenfunctions of the homo-

geneous equation bN as follows:

b(l‖) ≈ Λ
bN

ΛN −Λ

lI∫
−lI

bN L̂MAψdl‖. (34)

Thus, when Λ matches to one of the eigenvalues ΛN , the field-aligned structure of b‖
is defined by the eigenfunction bN and its absolute value goes to infinity, b‖ → ∞. We call
this situation the compressional resonance. In this case, to find the parallel structure of the
wave magnetic field, we will find the solution of homogeneous Equation (32). To do this,
we can change the integration variables µ to λ and reduce Equation (32) to the canonical
form, as in [11]:

b(l) =

Bo/B(l)∫
0

dλ

lo(λ)∫
0

dl′
B(l)
B0

λ2Λ(ω, λ)

u(l, λ)u(l′, λ)
b(l′), (35)

where λ = sin2α = µB0/ε, α is the pitch angle, B0 is the magnetic field value in the
equatorial plane. Here and below, we use l instead of l‖. We introduce the following
notations:

u(l, λ) =
√

1− λB(l)/B0, (36)

Λ(ω, λ) =
8π

mp

1
Lb

∞∫
0

dε
Q̂Fp

ω−ωd

√
2ε, (37)

Lb = vτb = 4

l0(λ)∫
0

u(l, λ)−1dl (38)

which is the particle path length over bounce period.
As shown in [1] for the dipole magnetic field the bounce averaged magnetic drift

frequency and Lb weakly depend on λ: ωd(ε0/ε) ∼ 0.35 + 0.15
√

λ and Lb ∼ 1.3− 0.56
√

λ.
Therefore we can assume that Λ(λ, ω) is independent of λ. Changing the order of integra-
tion in (35), we obtain the following integral equation:

b(l) = Λ
∞∫

0

K(l, l′)b(l′)dl′ (39)

with the kernel

K(l, l′) = θ(l − l′)
B(l)
B0

B0/B(l)∫
0

λ2dλ

u(l, λ)u(l′, λ)
+ θ(l′ − l)

B(l)
B0

B0/B(l′)∫
0

λ2dλ

u(l, λ)u(l′, λ)
. (40)

For convenience, Figure 1 shows the integration area. Since K decreases rapidly away
from the equator, we expand the limit of integration to infinity. Then, we reduce the
kernel of Equation (39) to a symmetric form K̃(l, l′) = K(l, l′)

√
B(l′)/B(l). As a result, we
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obtain the second kind Fredholm integral equation with a real symmetric nondegenerate
positive-definite kernel:

b̃(l) = Λ
∞∫

0

˜K(l, l′) ˜b(l′)dl′, (41)

where b̃(l) = b
√

B0/B(l) and the following holds:

K̃(l, l′) =
B2

0
B(l)B(l′)

[
3
8

(
2
8
+

B(l′)
B(l)

+
B(l)
B(l′)

)
ln

∣∣∣∣∣
√

B(l) +
√

B(l′)√
B(l)−

√
B(l′)

∣∣∣∣∣− 3
4

(√
B(l′)
B(l)

+

√
B(l)
B(l′)

)]
. (42)

Figure 1. The integration area.

Therefore, the Equation (41) has an infinite set of real eigenfunctions bN and positive
real eigenvalues ΛN , with Λ1 ≤ Λ2 ≤ ... ≤ ΛN ≤ ... and lim

N→∞
ΛN = ∞.

“As can be seen from Equation (41), the scale of solution b along the field line is
determined by the scale of kernel K. Since K rapidly decreases away from the equator, the
eigenfunctions bN are localized in the equator area. In further calculations, we will use the
quadratic approximation for the magnetic field” [11]:

B = B0

(
1 +

1
2

l2

r2
0

)
, (43)

where

r =
1
B0

∂2B
∂l2

∣∣∣∣
l=0

. (44)

Equation (41) is solved numerically to obtain the first three eigenfunctions bN =
b̃N
√

B/B0. The corresponding eigenvalues are Λ1 = 0.5/r0, Λ2 = 1.5/r0 and Λ3 = 2.5/r0.
The eigenfunctions bN are strongly localized on the geomagnetic equator (Figure 2). It
agrees with the observations of the compressional ULF waves in the magnetosphere [16,20].
Other wave parameters (eigenfrequency, increments) can be found by substituting the
observed parameters in Λ.
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Figure 2. Field-aligned structure of the first three eigenfunctions bN of the drift-compressional
resonant mod.

5. The Parallel Electric Field of the Alfvén Wave

Another problem when solving, by which an integral equation is obtained, is the
determination of the Alfvén wave parallel electric field, E‖. This field is believed to
energize the electrons responsible for the aurora [3]. “Since in the standard MHD approach,
the Alfvén wave parallel electric field is assumed to be zero, E‖ = 0, the kinetic effects
must be taken into account” [12]. Most of the previous works consider hybrid models. In
such models, the MHD approximation is used to calculate the frequency and eigenmode
structure of the Alfvén waves in a given magnetic field. Then, the kinetic equation for
electrons is solved for a given parallel electric current profile. As a result, the parallel
electric field of the wave is calculated, which is necessary to maintain a given current [2,21].
The effects of plasma pressure and the wave’s parallel magnetic field are usually neglected.
In contrast to previous works, we obtain all equations describing the parallel electric field
exclusively from the kinetic approach [12].

To obtain an equation governing the parallel electric field of the Alfvén mode, we
will make some simplifications: (1) the anisotropy of the particles thermal velocities is
ignored; (2) the Larmor radius is small k⊥ρ � 1; and (3) the waves’ eigenfrequency is
much higher than the frequency of the diamagnetic drift and the protons’ bounce-frequency
(ω � ωdp,e , ωbp ). In this case, the Equation (11) is the following:

∑
p,e

q2

m

〈
∂F
∂ε

(φ‖ + ψ)− Q̂F
ω

ψ +
m
q

δks

〉
= 0, (45)

where q is the particle charge, m is the particle mass, c is the speed of light and δks is
distribution function perturbation due to the wave–particle interaction. The designation
δks is defined by Equation (3) in [10]. This term is different for electrons and protons. Due
to their lightness, electrons are assumed to reflect many times between the mirror points
during the wave period. On the contrary, protons, as relatively heavy particles, can be
considered sedentary along the magnetic field lines during the wave period [15]. Therefore,
we will average the motion by the bounce period only for electrons:

δkse =
|q|
m

Q̂Fe

ω

(
φ‖ +

ωde

ω
ψ +

me

qe
µb‖

)
(46)
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(see Equation (16) in [10]). δks for protons is as follows:

δksp = − |q|
mp

Q̂Fp

ω

(
φ‖ +

ωdp

ω
ψ +

mp

|q| µb‖

)
. (47)

Equations (9) and (10) are solved under the assumption of the smallness of the parallel
electric potential φ‖ � ψ, b‖, as described above.

Taking into account Equation (25), Equations (45)–(47) are reduced after some algebra
to the following form:

1
me

〈
Q̂Fe

ω
φ‖

〉
+

ne

me

1
ε0e

(
1−

ω∗ne

ω

)
φ‖ =

=
np

mp

k2

ωωcp
√

g⊥
ηpς1(l)ψ−

1
me

〈
Q̂Fe

ω

(
k2

ωωce
√

g⊥

[
µBς2(l)− 2

√
g1

R
ε

]
ψ

)〉
, (48)

where

ς1(l) =
4πP′

B2 +
B′

B
+

√
g1

R

(
−1 +

3
2

β

1 + β

)
, (49)

ς2(l) =
4πP′

B2 +
B′

B
+

√
g1

R

(
2 +

3
2

β

1 + β

)
, (50)

ηp = 1−
ω∗np

ω
−

ω∗εp

ω
(51)

and

ω∗nj
=

k2

ωcj

√
g⊥

ε0j

n′j
nj

, ω∗ε j
=

k2

ωcj

√
g⊥

ε0j

ε′0j

ε0j

(52)

are the diamagnetic frequencies due to the radial gradients of density and temperature.
As we did above, we change the integration variable µ → λ, where λ = µB0/ε.

Additionally, we take into account the symmetry of the magnetic line relative to the
geomagnetic equator and the ideal conductivity of the ionosphere. Ignoring the terms
ω∗nj

/ω and ω∗ε j
/ω, we obtain an inhomogeneous second kind Fredholm integral equation

(for more details see [12]):

φ‖ −
1

2L

lI∫
0

K(l, l′)φ‖(l
′)dl′ =

k2

ωce
√

g⊥ω
ε0e

−ς1(l)ψ +
3

4L

lI∫
0

K̃(l, l′)ψ(l′)dl′

 (53)

with kernels

K(l, l′) = θ(l − l′)
B(l)
B0

B0/B(l)∫
B0/BI

dλ

u(l, λ)u(l′, λ)
+ θ(l′ − l)

B(l)
B0

B0/B(l′)∫
B0/BI

dλ

u(l, λ)u(l′, λ)
(54)

and

K̃(l, l′) = θ(l − l′) B(l)
B0

(
B(l′)

B0
ς2(l′)

B0/B(l)∫
B0/BI

λdλ
u(l,λ)u(l′ ,λ) − ς3(l′)

B0/B(l)∫
B0/BI

dλ
u(l,λ)u(l′ ,λ)

)

+θ(l′ − l) B(l)
B0

(
B(l′)

B0
ς2(l′)

B0/B(l′)∫
B0/BI

λdλ
u(l,λ)u(l′ ,λ) − ς3(l′)

B0/B(l′)∫
B0/BI

dλ
u(l,λ)u(l′ ,λ)

)
.

(55)

“Here, ς3(l) = 2
√

g1/R, lI is the reflection point at the ionosphere, BI is the magnetic
field value at the ionosphere boundary. For particles with energies of the order of keV, we
can consider Lb ∼ 4L, where L is the distance from the center of the Earth to the middle of
the magnetic field line on the selected L-shell [1]. If we assume that the value β is small
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(β� 1) and take into account the plasma equilibrium condition (4), then we can represent
the following” [12]:

ς1(l) ≈ −2
√

g1

R
(56)

and

ς2(l) ≈
√

g1

R
. (57)

After integrating the kernels (54) and (55) and changing the integration variable l → θ, in
Equation (53), where θ is the magnetic latitude, we have the following:

φ‖ −
1
2

θI∫
0

√
B(θ)
B(θ′)

fln(θ, θ′) fl(θ
′)φ‖(θ

′)dθ′ =

=
ωde0

ω

 fR(θ)ψ(θ)−
3
8

θ′I∫
0

[
B̃I(θ, θ′) + fB(θ, θ′) fln(θ, θ′)

]
fR(θ

′) fl(θ
′)ψ(θ′)dθ′

, (58)

where fl(θ
′) = cos θ′

√
1 + 3 sin θ′,

fR(θ) =
cos2 θ(1 + sin2 θ)

(1 + 3 sin2 θ)2
, (59)

fB(θ, θ′) =
3
4

√
B(θ)
B(θ′)

− 1
2

√
B(θ′)
B(θ)

, (60)

ωde0
=

k2

ωce
√

g⊥

6
L

ε0e (61)

is the value of electron magnetic drift frequency in the equatorial plane. The new coordinate
system is schematically represented in Figure 3A, where θI = arccos

√
RI/L, RI is the

ionosphere boundary and RE is the Earth’s radius.
To produce a numerical solution of the system (26) and (58) in the poloidal wave case

(k1 � k2), we use the parameters: “vA = 1550 km/s is the Alfvén speed in the equator,
Ea = 10 mV/m is the azimuthal component of the electric field, m = 50 is the azimuthal
wave number, np = ne ' 3 sm−3 is the particle concentration, β = 0.4, B0 = 0.34 G,
RE = 6371 km, L = 6.6 RE, RI = RE + 1500 km. In this case, the average energy of the hot
protons is Tp = 5 keV, and the average energy of the hot electrons is Te = 1 keV” [12].

On the first step, we numerically solve Equation (26), obtaining the parallel struc-
ture of the Alfvén mode’s transverse electric field ψ (Figure 3B) and the corresponding
eigenfrequencies, the principal of which has a frequency ω = 19.02 mHz.

On the next step, we perform a numerical solution of Equation (58) to obtain the
parallel potential φ‖. The result is shown in Figure 3C. The obtained results are in good
agreement with the observations [4].
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Figure 3. “Coordinate system after change of variables from l to magnetic latitude θ (A). Distribution
of parallel φ‖ (B) and transverse φ (C) Alfvén wave electric potentials along the magnetic field line.
See the text for numerical parameters” [12].

6. Conclusions and Discussion

In the paper, we considered two cases where the solution of the kinetic equations set
(9)–(11) was obtained, using integral equations. Both solutions are special cases that show
only a qualitative view of the physical processes in the magnetosphere. Further research
will use fewer different approximations to obtain a more accurate physical processes
description. One of them is adopting a three-dimensional model of the magnetosphere,
which allows one to take into account the day–night asymmetry of the circumterrestrial
plasma [22–24]. Using the kinetic approach will lead to more complex integral equations.

The kinetic approach is also applicable to the solar atmosphere physics. In addition,
a similar theory is used to solve problems of controlled thermonuclear fusion. In this
approach, the magnetosphere and outer space act as a natural laboratory for high-energy
plasma physics. Therefore, further theoretical research is very important.
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