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1. Introduction

The problem of studying the differences of positive linear operators was formulated
firstly by Lupaş [1]. In particular, he was interested in the commutator (A, B) := AB− BA,
due to its property of antisymmetry. Generally speaking, there are two approaches to
estimate the difference of two positive linear operators. In this context, there are two
approaches to estimate the difference of two operators. One of them deals with operators
that have the same moments up to a certain order. For detailed historical background, we
refer to the work of Acu et al. [2] and the references therein. The other approach considers
those operators that have the same fundamental functions and different functionals in their
construction (see [2,3]). In the second perspective, the discrete operator associated with an
integral operator has important role in the study. Raşa [4] noticed the advantages of the
discrete operators associated with certain integral operators in this area. In this sense, it is
helpful to mention the work of Heilmann et al. [5] from which the notion of discrete operator
is reproduced below [2]:

Let I ⊂ R denote an interval and H be a subspace of C(I) containing the monomials
ei(x) = xi, i = 0, 1, 2. Consider a positive linear operator L : H → C(I) satisfying
Le0 = e0 given by

L f :=
∞

∑
k=0

Fk( f )pk,

where Fk : H → R are positive linear functionals satisfying Fk(e0) = 1, and pk ∈ C(I) are

the fundamental functions such that pk ≥ 0 and
∞
∑

k=0
pk = e0. The discrete operator

associated with L is denoted by D and defined as

D : H → C(I), D f :=
∞

∑
k=0

f
(

bFk
)

pk,
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where bFk := Fk(e1). Namely, the functional in the construction of the discrete operator is
the point evaluation at bk, which is obviously simpler than the functional Fk of the corre-
sponding operator L. Therefore, it is easier to work with the discrete operator associated
with L. In [3], some useful estimates for the differences of certain positive linear operators
with the same fundamental functions were studied.

In the present note, we study the difference of positive linear operators, with the same
fundamental functions, by obtaining Voronovskaja-type quantitative estimates.

2. Preliminaries

Throughout the paper, we shall adopt the same notation of [3]. Thus, E(I) will denote
a space of real valued and continuous functions defined on I containing the polynomials,
and Eb(I) will denote the space of all functions f from E(I) having

‖ f ‖ := sup
x∈I
| f (x)| < ∞.

For a positive linear functional F satisfying F(e0) = 1, the following expressions will
be used:

bF := F(e1) and µF
i := F

(
e1 − bFe0

)i
, i ∈ N. (1)

Obviously, we have µF
0 = 1, µF

1 = 0 and µF
2 = F(e2) −

(
bF)2 ≥ 0. Moreover, for

convenience, we adopt the notation

µF
i (x) := F(e1 − xe0)

i, x ∈ I. (2)

Thus, since the functional F is linear, one has

µF
2 (x) = F(e2)− 2xF(e1) + x2

= F(e2)− (F(e1))
2 + (F(e1))

2 − 2xF(e1) + x2

= µF
2 +

(
bF − x

)2
. (3)

Recall that the remainder R2
(

f ; bF, .
)

of Taylor’s formula is given by

R2

(
f ; bF, x

)
= f (x)− f

(
bF
)
− f ′

(
bF
)(

x− bF
)
−

f ′′
(
bF)

2

(
x− bF

)2

=

(
x− bF)2

2

(
f ′′(ξ)− f ′′

(
bF
))

, (4)

where ξ is between x and bF. Therefore, since µF
1 = 0, one has

F( f )− f
(

bF
)
−

f ′′
(
bF)

2
µF

2 = F
(

R2

(
f ; bF, ·

))
. (5)

Using the fact that |ξ − bF| ≤ |x− bF|, we have

| f ′′(ξ)− f ′′(bF)| ≤ ω( f ′′, |x− bF|). (6)

Here ω( f , t) := sup{| f (x + h)− f (x)| : x, x + h ∈ [a, b], 0 ≤ h ≤ t}, f ∈ C[a, b],
t ≥ 0 is the modulus of continuity of f .
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Thus, for δ > 0, it follows that

∣∣∣R2

(
f ; bF, x

)∣∣∣ ≤ (x− bF)2

2
ω
(

f ′′,
∣∣∣e1 − bF

∣∣∣)
≤
(
(x− bF)2 +

(x− bF)4

δ2

)
ω( f ′′, δ)

2
.

Therefore,

∣∣∣F(R2

(
f ; bF, ·

))∣∣∣ ≤ F

((
e1 − bFe0

)2
+

(
e1 − bFe0

)4

δ2

)
ω( f ′′, δ)

2

=

(
µF

2 +
µF

4
δ2

)
ω( f ′′, δ)

2
. (7)

3. Main Result

As in [3], let K denote a set of non-negative integers and

pk ∈ C(I), pk ≥ 0, k ∈ K,

denote fundamental functions satisfying ∑
k∈K

pk = e0. Let Fk and Gk be two positive linear

functionals acting from E(I) into R such that Fk(e0) = Gk(e0) = 1 for each k ∈ K. Moreover,
let D(I) denote the set of all f ∈ E(I) such that ∑

k∈K
Fk( f )pk and ∑

k∈K
Gk( f )pk belong to the

space C(I). Now, we deal with the positive linear operators U and V, acting from D(I) to
C(I), given by

U( f ; x) = ∑
k∈K

Fk( f )pk(x) and V( f ; x) = ∑
k∈K

Gk( f )pk(x).

Let DU and DV denote the discrete operators associated with U and V, which are
given by

DU( f ; x) = ∑
k∈K

f
(

bFk
)

pk(x) and DV( f ; x) = ∑
k∈K

f
(

bGk
)

pk(x),

respectively. For future correspondence, we denote

σ(x) := ∑
k∈K

(
µ

Fk
2 + µ

Gk
2

)
pk(x), γ(x) := ∑

k∈K

(
µ

Fk
4 + µ

Gk
4

)
pk(x) (8)

and

δ(x) := ∑
k∈K

[(
bFk − x

)2
µ

Fk
2 (x) +

(
bGk − x

)2
µ

Gk
2 (x)

]
pk(x), x ∈ I. (9)

Moreover, from (2), the ith central moment of each operator can be written as

U
(
(e1 − xe0)

i; x
)
= ∑

k∈K
µ

Fk
i (x)pk(x),

V
(
(e1 − xe0)

i; x
)
= ∑

k∈K
µ

Gk
i (x)pk(x), i ∈ N.

In [3], the authors measured the distance |U( f ; x)−V( f ; x)| using properties of the
associated discrete operators. Specifically, they obtained the following result:

Theorem 1. Let f ∈ D(I) with f ′′ ∈ Eb(I). Then,

|(U −V)( f ; x)| ≤
∥∥ f ′′

∥∥σ(x) + ω( f , t),
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where σ(x) is given by (8) and t := sup
k∈K

∣∣bFk − bGk
∣∣ (see [3] [Theorem 3]).

A natural question arising here is to estimate the difference of positive linear operators
in the sense of Videnskiı̆ who stated the well-known result of Voronovskaja [6] for the
Bernstein operators in the following quantitative form.

Theorem 2 ([7]). If f ∈ C2[0, 1], then one has∣∣∣∣n[Bn( f ; x)− f (x)]− x(1− x)
2

f ′′(x)
∣∣∣∣ ≤ x(1− x)ω

(
f ′′,

2√
n

)
,

where ω( f ′′, .) is the modulus of continuity of f ′′.

In this context, we give an expression for the difference of a positive linear operator
and its discrete operator.

Lemma 1. Let x be an arbitrary point in I and f ′′ ∈ Eb(I). Then, we have

(U − DU)( f ; x)−
2

∑
p=1

f (p)(x)
p!

(U − DU)
(
(e1 − xe0)

p; x
)

= ∑
k∈K

{
F
(

R2

(
f ; bFk , ·

))
+

1
2

[
f ′′
(

bFk
)
− f ′′(x)

]
µ

Fk
2

}
pk(x),

where R2
(

f ; bF, ·
)

is the remainder of Taylor’s formula given by (4).

Proof. Let x ∈ I be a given point. Then, from (5), it readily follows that

(U − DU)( f ; x)−
2
∑

p=1

f (p)(x)
p! (U − DU)

(
(e1 − xe0)

p; x
)

= ∑
k∈K

{
Fk( f )− f ′(x)Fk(e1 − xe0)− f ′′(x)

2 Fk(e1 − xe0)
2

−
[

f
(
bFk
)
− f ′(x)

(
bFk − x

)
− f ′′(x)

2
(
bFk − x

)2
]}

pk(x)

= ∑
k∈K

Fk( f )− f
(
bFk
)
− f ′′(x)

2

(
Fk(e2)−

(
bFk
)2
)

pk(x)

= ∑
k∈K

{
Fk( f )− f

(
bFk
)
− f ′′(x)

2 µ
Fk
2

}
pk(x)

= ∑
k∈K

{
Fk
(

R2
(

f ; bFk , ·
))

+ 1
2
[

f ′′
(
bFk
)
− f ′′(x)

]
µ

Fk
2

}
pk(x).

(10)

Now we present a quantitative Voronovskaja-type theorem for the difference U −V.

Theorem 3. Let f ′′ ∈ Eb(I). Then, we have∣∣∣∣∣(U −V)( f ; x)−
2

∑
p=0

f (p)(x)
p!

(U −V)
(
(e1 − xe0)

p; x
)∣∣∣∣∣

≤
ω
(

f ′′,
√

γ(x)
)

2
[1 + σ(x)]

+
ω
(

f ′′,
√

δ(x)
)

2

[
1 + (U + V)

(
(e1 − xe0)

2; x
)]

,

where σ(x), γ(x), and δ(x) are given in (8) and (9), respectively.
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Proof. Let x be an arbitrary fixed point in I. Using (5), we obtain

(U −V)( f ; x)−
2

∑
p=1

f (p)(x)
p!

(U −V)
(
(e1 − xe0)

p; x
)

= ∑
k∈K

{
Fk( f )− Gk( f )−

2

∑
p=1

f (p)(x)
p!

(Fk − Gk)(e1 − xe0)
p

}
pk(x)

= ∑
k∈K

{[
Fk( f )− f

(
bFk
)]
−
[

Gk( f )− f
(

bGk
)]
−

2

∑
p=1

f (p)(x)
p!

(Fk − Gk)(e1 − xe0)
p

}
pk(x)

+ ∑
k∈K

[
f
(

bFk
)
− f

(
bGk
)]

pk(x).

The above formula can be expressed as

(U −V)( f ; x)−
2

∑
p=1

f (p)(x)
p!

(U −V)
(
(e1 − xe0)

p; x
)

= ∑
k∈K

{[
Fk( f )− f

(
bFk
)]
−
[

Gk( f )− f
(

bGk
)]}

pk(x)

+ ∑
k∈K

{[
f
(

bFk
)
− f (x)− f ′(x)Fk(e1 − xe0)−

f ′′(x)
2

Fk(e1 − xe0)
2
]

−
[

f
(

bGk
)
− f (x)− f ′(x)Gk(e1 − xe0)−

f ′′(x)
2

Gk(e1 − xe0)
2
]}

pk(x)

= ∑
k∈K

{[
Fk( f )− f

(
bFk
)]
−
[

Gk( f )− f
(

bGk
)]}

pk(x)

+ ∑
k∈K

{[
f
(

bFk
)
− f (x)− f ′(x)

(
bFk − x

)
− f ′′(x)

2
µ

Fk
2 (x)

]
−
[

f
(

bGk
)
− f (x)− f ′(x)

(
bGk − x

)
− f ′′(x)

2
µ

Gk
2 (x)

]}
pk(x).

By using (3), the last formula can be written as

(U −V)( f ; x)−
2
∑

p=1

f (p)(x)
p! (U −V)

(
(e1 − xe0)

p; x
)

= ∑
k∈K

{[
Fk( f )− f

(
bFk
)
− f ′′(x)

2 µ
Fk
2

]
−
[

Gk( f )− f
(
bGk
)
− f ′′(x)

2 µ
Gk
2

]}
pk(x)

+ ∑
k∈K

{[
f
(
bFk
)
− f (x)− f ′(x)

(
bFk − x

)
− f ′′(x)

2
(
bFk − x

)2
]

−
[

f
(
bGk
)
− f (x)− f ′(x)

(
bGk − x

)
− f ′′(x)

2
(
bGk − x

)2
]}

pk(x).

(11)

The term

f
(

bF
)
− f (x)− f ′(x)

(
bF − x

)
− f ′′(x)

2

(
bF − x

)2

in (11) is the remainder R2
(

f ; x, bF) of Taylor’s formula for x (fixed) and bF, given by

R2

(
f ; x, bF

)
=

(
bF − x

)2

2
(

f ′′(ξ)− f ′′(x)
)
,

where ξ is a point between x and bF. Therefore, we have

∣∣∣R2

(
f ; x, bF

)∣∣∣ ≤ (bF − x
)2

2
ω
(

f ′′,
∣∣∣bF − x

∣∣∣). (12)
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The formula (11) can be written as

(U −V)( f ; x)−
2

∑
p=1

f (p)(x)
p!

(U −V)
(
(e1 − xe0)

p; x
)

= ∑
k∈K

[
Fk

(
R2

(
f ; bFk , ·

))
− Gk

(
R2

(
f ; bGk , ·

))]
pk(x)

+
1
2 ∑

k∈K

[(
f ′′
(

bFk
)
− f ′′(x)

)
µ

Fk
2 −

(
f ′′
(

bGk
)
− f ′′(x)

)
µ

Gk
2

]
pk(x)

+ ∑
k∈K

[
R2

(
f ; x, bFk

)
− R2

(
f ; x, bGk

)]
pk(x).

Taking into account (6), (7), and (12), we obtain∣∣∣∣∣(U −V)( f ; x)−
2

∑
p=1

f (p)(x)
p!

(U −V)
(
(e1 − xe0)

p; x
)∣∣∣∣∣

≤ 1
2 ∑

k∈K

[(
µ

Fk
2 +

µ
Fk
4

γ(x)

)
+

(
µ

Gk
2 +

µ
Gk
4

γ(x)

)]
pk(x)ω( f ′′,

√
γ(x))

+
1
2 ∑

k∈K

[
µ

Fk
2 ω
(

f ′′,
∣∣∣bFk − x

∣∣∣)+ µ
Gk
2 ω

(
f ′′,
∣∣∣bGk − x

∣∣∣)]pk(x)

+
1
2 ∑

k∈K

[(
bFk − x

)2
ω
(

f ′′,
∣∣∣bFk − x

∣∣∣)+ (bGk − x
)2

ω
(

f ′′,
∣∣∣bGk − x

∣∣∣)]pk(x)

=
1
2 ∑

k∈K

[(
µ

Fk
2 +

µ
Fk
4

γ(x)

)
+

(
µ

Gk
2 +

µ
Gk
4

γ(x)

)]
pk(x)ω( f ′′,

√
γ(x))

+
1
2 ∑

k∈K

[
Fk(e1 − xe0)

2ω
(

f ′′,
∣∣∣bFk − x

∣∣∣)+ Gk(e1 − xe0)
2ω
(

f ′′,
∣∣∣bGk − x

∣∣∣)]pk(x).

Since

F(e1 − xe0)
2ω( f ′′, |bF − x|) ≤ µ

Fk
2 (x)

(
1 +

(bF − x)2

δ(x)

)
ω

(
f ′′,
√

δ(x)
)

,

we obtain∣∣∣∣∣(U −V)( f ; x)−
2

∑
p=1

f (p)(x)
p!

(U −V)
(
(e1 − xe0)

p; x
)∣∣∣∣∣

≤
ω
(

f ′′,
√

γ(x)
)

2 ∑
k∈K

[
µFk

2 + µGk
2 +

1
γ(x)

(
µFk

4 + µGk
4

)]
pk(x)

+
ω
(

f ′′,
√

δ(x)
)

2 ∑
k∈K

[
µFk

2 (x) + µGk
2 (x) +

(
bFk − x

)2
µFk

2 (x) +
(
bGk − x

)2
µGk

2 (x)
δ(x)

]
pk(x).

Using (8) and (9), the theorem is proved.

4. Examples
4.1. Quantitative Voronovskaja-Type Result for the Differences of Bernstein Operators and
Kantorovich Operators

The well-known Bernstein operators Bn : C[0, 1]→ C[0, 1], n ∈ N are given by

Bn( f ; x) =
n

∑
k=0

f
(

k
n

)
pn,k(x),
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where the fundamental functions pn,k(x) are

pn,k(x) =
(

n
k

)
xk(1− x)n−k, x ∈ [0, 1].

The Kantorovich operators Kn : L1[0, 1]→ C[0, 1], n ∈ N are defined as ([8])

Kn( f ; x) =
n

∑
k=0

(n + 1)

k+1
n+1∫
k

n+1

f (t)dt

pn,k(x).

In [3] [Proposition 8], as an application of Theorem 1, the authors expressed the
difference between Bernstein and its Kantorovich variant as

|(Kn − Bn)( f ; x)| ≤ 1

24(n + 1)2

∥∥ f ′′
∥∥+ ω

(
f ,

1
2(n + 1)

)
, f ′′ ∈ C[0, 1].

Now, we give an estimate of this difference with the help of Theorem 3.

Proposition 1. Let f ′′ ∈ C[0, 1]. Then, for Bernstein operators and Kantorovich operators we have∣∣∣∣∣(Kn − Bn)( f ; x)−
2

∑
p=1

f (p)(x)
p!

(Kn − Bn)
(
(e1 − xe0)

p; x
)∣∣∣∣∣

≤
ω
(

f ′′,
√

γ(x)
)

2

[
1 +

1

12(n + 1)2

]

+
ω
(

f ′′,
√

δ(x)
)

2

[
1 +

x(1− x)(2n2 + n + 1)
n(n + 1)2 +

1
3(n + 1)2

]
,

where
γ(x) =

1
80(n + 1)4 ,

and

δ(x) =
1

12(n + 1)4

{
36x2(1− x)2n2 + 5x(1− x)(48x2 − 48x + 11)n

+(1− 2x)2(3x2 − 3x + 1)
}

.

Proof. Denoting the functional of Bernstein operators by Fk( f ) := f
(

k
n

)
and Kantorovich

operators by Gk( f ) = (n + 1)

k+1
n+1∫
k

n+1

f (t)dt, we can express these operators as

Bn( f ; x) =
n

∑
k=0

Fk( f )pn,k(x)

and

Kn( f ; x) =
n

∑
k=0

Gk( f )pn,k(x).
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Thus, according to (1), (8), and (9), we obtain

bFk =
k
n

, µ
Fk
2 = 0, µ

Fk
4 = 0,

bGk =
2k + 1

2(n + 1)
, µ

Gk
2 =

1

12(n + 1)2 , µ
Gk
4 =

1
80(n + 1)4

σ(x) =
1

12(n + 1)2 , γ(x) =
1

80(n + 1)4 ,

and

δ(x) =
n

∑
k=0

[(
k
n
− x
)2

µ
Fk
2 (x) +

(
2k + 1

2(n + 1)
− x
)2

µ
Gk
2 (x)

]
pn,k(x)

=
1

12(n + 1)4

{
36x2(1− x)2n2 + 5x(1− x)(48x2 − 48x + 11)n

+(1− 2x)2(3x2 − 3x + 1)
}

.

Moreover, making use of the well-known second central moments of Bernstein and
Kantorovich operators given by

Bn

(
(e1 − xe0)

2; x
)
=

x(1− x)
n

, Kn

(
(e1 − xe0)

2; x
)
=

1

(n + 1)2

(
x(1− x)(n− 1) +

1
3

)
,

the proof follows from Theorem 3.

4.2. Quantitative Voronovskaja-Type Result for the Differences of Bernstein Operators and
Genuine Bernstein–Durrmeyer Operators

For f ∈ C[0, 1], the genuine Bernstein–Durrmeyer operators are defined as

Un( f ; x) = f (0)(1− x)n + f (1)xn +
n−1

∑
k=1

(n− 1)
1∫

0

f (t)pn−2,k−1(t)dt

pn,k(x).

In [3] [Proposition 4], as an application of Theorem 1, the authors expressed the
difference between Bernstein and Bernstein–Durrmeyer operators as

|(Un − Bn)( f ; x)| ≤ x(1− x)(n− 1)
2n(n + 1)

∥∥ f ′′
∥∥, f ′′ ∈ C[0, 1].

Below, we estimate this difference via the above quantitative Voronovskaja-type result.

Proposition 2. Let f ′′ ∈ C[0, 1]. Then, for Bernstein operators and genuine Bernstein–Durrmeyer
operators we have ∣∣∣∣∣(Un − Bn)( f ; x)−

2

∑
p=1

f (p)(x)
p!

(Un − Bn)
(
(e1 − xe0)

p; x
)∣∣∣∣∣

≤
ω
(

f ′′,
√

γ′(x)
)

2

[
1 +

x(1− x)(n− 1)
n(n + 1)

]

+
ω
(

f ′′,
√

δ(x)
)

2

[
1 +

x(1− x)(3n + 1)
n(n + 1)

]
,

where

γ(x) ≤ γ′(x) :=
x(1− x)3(n− 1)

4n(n + 1)2 ≤ 1
16

3
n + 1

,
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and

δ(x) =
2x(1− x)(2nx− 2nx2 + 5x2 − 5x + 1)

n2(n + 1)
,

in which γ(x) and δ(x) are given in (8) and (9), respectively.

Proof. As in the previous proposition, denoting the functional of Bernstein operators by
Fk( f ) := f

(
k
n

)
and genuine Bernstein–Durrmeyer operators by

Gk( f ) =


(n− 1)

1∫
0

f (t)pn−2,k−1(t)dt, 1 ≤ k ≤ n− 1

f (0), k = 0
f (1), k = 1

,

we have Bn( f ; x) =
n
∑

k=0
Fk( f )pn,k(x) and Un( f ; x) =

n
∑

k=0
Gk( f )pn,k(x). Hence, we obtain

bFk =
k
n

, µ
Fk
2 = µ

Fk
4 = 0,

bGk =
k
n

, µ
Gk
2 =

k(n− k)
n2(n + 1)

, µ
Gk
4 =

3k(k− n)
[
k(n− 6)(k− n)− 2n2]

n4(n + 1)(n + 2)(n + 3)
,

σ(x) =
x(1− x)(n− 1)

n(n + 1)
.

In order to obtain simpler upper bounds, we can majorize γ(x). For this, as in the
proof of [3] [Proposition 5], we obtain

µ
Gk
4 =

k
n

(
1− k

n

)[
3(n− 6) k

n

(
1− k

n

)
+ 6
]

(n + 1)(n + 2)(n + 3)

≤ 1
(n + 1)(n + 2)(n + 3)

k
n

(
1− k

n

)[
3
4
(n− 6) + 6

]
=

1
4(n + 1)

k
n

(
1− k

n

)
3n + 6

(n + 2)(n + 3)

=
3

4(n + 1)
k
n

(
1− k

n

)
1

n + 3

≤ 3

4(n + 1)2
k
n

(
1− k

n

)
.

Therefore, we obtain

γ(x) =
n

∑
k=0

(
µ

Fk
4 + µ

Gk
4

)
pk(x)

≤ 3

4(n + 1)2

n

∑
k=0

k
n

(
1− k

n

)
k
n

(
1− k

n

)
=

x(1− x)3(n− 1)

4n(n + 1)2 := γ′(x).

From (3), we obtain
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δ(x) =
n

∑
k=0

[(
bFk − x

)2
µ

Fk
2 (x) +

(
bGk − x

)2
µ

Gk
2 (x)

]
pn,k(x)

=
2x(1− x)(2nx− 2nx2 + 5x2 − 5x + 1)

n2(n + 1)
.

Again, making use of the second central moments of Bernstein and genuine Bernstein–
Durrmeyer operators given by

Bn

(
(e1 − xe0)

2; x
)
=

x(1− x)
n

, Un

(
(e1 − xe0)

2; x
)
=

2x(1− x)
n + 1

,

the proof follows from Theorem 3.

5. Conclusions

If we directly used the difference of the operators in the Voronovskaja setting, with-
out taking into account the corresponding discrete operators, then we would obtain the
following result.

Using the remainder of Taylor’s formula again for f ′′ ∈ C[0, 1], with fixed x and
t ∈ [0, 1], given by

R2( f ; x, t) = f (t)− f (x)− f ′(x)(t− x)− f ′′(x)
2

(t− x)2

=
(t− x)2

2
(

f ′′(ξ)− f ′′(x)
)
,

where ξ is a point between x and t, we obtain that∣∣∣∣∣(U −V)( f ; x)−
2

∑
p=1

f (p)(x)
p!

(U −V)
(
(e1 − xe0)

p; x
)∣∣∣∣∣

≤ (U + V)

(
(e1 − xe0)

2

2
ω

(
f ′′,
√
|e1 − xe0|

)
; x

)

(see, e.g., [9] [1.7]). Therefore, we obtain∣∣∣∣∣(U −V)( f ; x)−
2

∑
p=1

f (p)(x)
p!

(U −V)
(
(e1 − xe0)

p; x
)∣∣∣∣∣

≤ ω( f ′′, δ)

2

[
(U + V)

(
(e1 − xe0)

2; x
)
+

1
δ2 (U + V)

(
(e1 − xe0)

4; x
)]

,

from which, by choosing

δ2 = δ2(x) = (U + V)
(
(e1 − xe0)

4; x
)

(13)

it readily follows that

∣∣∣∣∣(U −V)( f ; x)−
2

∑
p=1

f (p)(x)
p!

(U −V)
(
(e1 − xe0)

p; x
)∣∣∣∣∣

≤ ω( f ′′, δ(x))
2

[
1 + (U + V)

(
(e1 − xe0)

2; x
)]

.
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From this point of view, the argument of the modulus of continuity appearing in
Theorem 3 is easier to evaluate than (13), since it is represented in terms of the point
evaluation functional of the corresponding discrete operators, whereas in (13), the forth
central moment of each operator must be calculated.

Differences of other pairs of operators will be considered in a forthcoming paper.
The special case of the commutator AB-BA will be considered, due to its property of
antisymmetry.
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