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Abstract: A residual (r) control chart of asymmetrical and non-normal binary response variable
with highly correlated explanatory variables is proposed in this research. To avoid multicollinearity
between multiple explanatory variables, we employ and compare a neural network regression model
and deep learning regression model using Bayesian variable selection (BVS), principal component
analysis (PCA), nonlinear PCA (NLPCA) or whole multiple explanatory variables. The advantage
of our r control chart is able to process both non-normal and correlated multivariate explanatory
variables by employing a neural network model and deep learning model. We prove that the deep
learning r control chart is relatively efficient to monitor the simulated and real binary response
asymmetric data compared with r control chart of the generalized linear model (GLM) with probit
and logit link functions and neural network r control chart.

Keywords: binary data; bayesian variable selection; PCA; nonlinear PCA; residual control chart

1. Introduction

The COVID-19 pandemic started at the end of the year 2019. It has dramatically
changed the social life of human activity since people fight against the spread of COVID-19
by covering their faces wearing masks and doing social distancing. Artificial intelligence
(AI) platform-based contact-free human activity has been more common in our society
since the occurrence of the COVID-19 pandemic. Therefore, deep learning and machine
learning methods for artificial intelligence have been exponentially developed by software
engineers recently. However, applying the deep learning method to the quality control
area has not been deeply considered yet even though AI-based products such as smart
glasses with optical head-mounted display have been developed in our society rapidly.

Quality improvement is an endless objective in manufacturing industries. To improve
the quality of a product, researchers try to reduce process variations by using the statistical
process control (SPC) which has been an essential statistical method to complete this
objective and monitor industrial processes among the quality control society. Walter A.
Shewhart developed this control chart in 1924 and has been named as Shewhart control
chart which is a graphical display of the quality characteristic used for the monitoring
of the process. The main creative idea by Shewhart is to consider the variability of a
production process in terms of statistical viewpoints and analyze the variation of a process
into common and special causes. Many variants of the SPC have been developed since then.
Many diverse control charts can be found in [1,2]. Now, we have too many SPCs available
so that the choice of the appropriate SPC considering symmetric or asymmetric data has
become a prime research question among professionals for quality control in manufacturing
industries. Asymmetric, big and highly correlated datasets have been produced in our
modern society, and those data have asymmetric and non-normal distributions. Therefore,
it is difficult for quality control researchers to handle highly correlated and asymmetric
data because the current available quality control charts can not handle asymmetrical data.
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Therefore, it is common to get inaccurate quality control information from the current
available control charts. Numerous multivariate control charts such as the Hotelling T2

distribution [3], mulvariate CUSUM [4] and multivariate EWMA [5] have been proposed
to monitor a process mean vector. But these multivariate control charts have a difficulty to
handle non-normal and asymmetric data because of the estimation issue of the unknown
covariance structure. Neural network-based approach to quality control research has
been popularly applied. Recently [6] proposed r control charts for binary asymmetrical
response variable with highly correlated multivariate covariates by using a single layer
neural network regression model.

In this research, we extend the single hidden layer neural network regression-based
r control charts for binary asymmetrical data to a deep learning regression model with
multiple hidden layers via Bayesian variable selection (BVS), principal component analysis
(PCA) and nonlinear PCA (NLPCA) so that our r control chart can solve a multicollinearity
problem among independent variables. Reference [7] also proposed Poisson, negative
binomial and COM-Poisson-based principal component regression-based r-control charts
for monitoring dispersed count data to avoid the multicollinearity problem.

Our research proves that our deep learning r control chart has better efficiency than
the current methods [6] while overcoming the multicollinearity issue of high-dimensional
correlated multivariate data. Our deep learning r control chart will be evaluated with
simulated data and Cleveland heart disease read data found in the UCI machine learning
repository.

2. Statistical Methods

This research presents deep learning regression-based r-control charts for binary
asymmetrical data with multicollinearity among independent variables. We also compare
deep learning regression-based r-control charts with whole data, which means it does not
apply one of BVS, PCA, and NLPCA to the whole data, with deep learning regression-based
r-control charts with dimension reduction data by applying one of BVS, PCA, and NLPCA
to the whole data. In addition, we compare our proposed control chart with the binary
response regression models (GLM with logit and probit, and neural network regression
model) proposed by [6].

2.1. Bayesian Variable Selection and Dimension Reduction by Principal Component Analysis

Before we apply the proposed control chart to a multivariate dataset, we employ the
Bayesian variable selection and PCA methods to avoid the multicollearity issue of the mul-
tivariate dataset. First, we introduce Objective Bayesian variable selection in linear models
proposed in [8]. We used GibbsBvs function with gZellner prior in BayesVarSel R package
and performed the number of iterations = 10,000 and the number of burninng = 100 in
the BayesVarSel R package [9] for applying the Bayesian variable selection method to a
simulated data and real data, the Cleveland heart disease data [10].

In this paper, the r control chart for binary response regression model with the im-
portant selected variables by the BVS is a new proposed SPC method which monitors the
binary response variable. The BVS method will be applied to GLM with probit, GLM with
logit, neural network and deep learning regression models with simulated and real data.
PCA is a statistical dimensional reduction method converting a multivariate data set of
correlated variables into a set of values of linearly uncorrelated variables called principal
components which account for the variation of the original data.

References [6,7,11] considered PCA method for SPCwith the multivariate highly
correlated data. Reference [12] proposed nonlinear principal component analysis (NLPCA)
as a kernel eigenvalue problem. Unlike linear PCA, the nonlinear kernel PCA (NLPCA)
method is a statistical method for performing a nonlinear form of principal component
analysis. To extract five principal components in high-dimensional feature spaces, using
kernel PCA, we used the ‘kernlab’ R package [13] which provides the most popular
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kernel functions. We used Gaussian Radial Basis kernel function with hyperparameter:
sigma = 0.2 which is inverse kernel width for the radial basis kernel function.

The r control chart for the binary response regression model with primary principal
components by PCA was introduced in [6]. But, in this paper, the r control chart for binary
response regression model with primary principal components by the NLPCA is a new
statistical process control which monitors the binary response variable as a function of
uncorrelated PCs, overcoming a multicollinearity issue among independent variables. The
new method will be applied to GLM with probit, GLM with logit, neural network and deep
learning regression models with simulated and real data.

2.2. Generalized Linear Model and Neural Network Model for Binary Response Data

The r control charts for binary response regression models, such as the GLM with
logit and probit, and neural network regression model were proposed by [6]. The GLM has
the following probability density distribution which comes from the exponential family:

f (y|λ, δ) = exp
[

yλ− a2(λ)

a1(δ)
+ a3(y, δ)

]
,

where we denote the response variable to be y, the location parameter to be λ, the dispersion
parameter to be δ, and arbitrary functions to be a1(·), a2(·), and a3(·). In particular, a1(δ)
is commonly of the form a1(δ) = δ or a1(δ) = δ/w with a known weight w, a2(λ) is a
cumulant function of λ, and a3(y, δ) is a function of y and δ: for various forms of the three
functions, we recommend to see Section 2.2.2 in [14].

We denote ζ = x′b to be the linear predictor for the response, y, so that ζ is a
linear combination of unknown parameters b = (b0, b1, · · · , bp)′ and input variables
x = (1, x1, · · · , xp)′. A link function g, such that E(y) = g−1(ζ), provides the relationship
between the linear predictor and the mean of the distribution function. The link function
g(·) specifies how to convert the expected value µ = E(y) to the linear predictor ζ: i.e.,

ζ = g(µ) = x′b. (1)

As an example, when the response variable y follows a Bernoulli distribution with
a success probability p, we have p = E(y) =µ. If in (1) we take a logit link function with
g(p) = Logit(p) = log{p/(1− p)}where p = P(y = 1|x), a logit model (or logistic model)
is given by

Logit[P(y = 1|x)] = x′b, (2)

where b is the column vector of the fixed-effects regression coefficients. For the (2), it can
be written as

P(y = 1|x) = 1
1 + e−x′b = p(x) (3)

The response probability distribution of the GLMs belongs to an exponential family of
distributions which employ methods analogous to normal linear methods for the normal
data [15,16]. Therefore, for asymmetrical (non-normal) distributed data, the GLM with
probit link function may not be the best model. That was the motivation that [6] proposed
a neural network model based on the r control chart for better predictive accuracy with the
non-normal data.

Artificial neural networks (ANNs) are the same as biological neural networks which
imitate human brain activity through computer simulations [17–19] The ANN uses the con-
cept of weight to select the highest probability of inhibiting all neurons [17–19]. The basic
formula of an ANN is a single layer feedforward type of connection among neurons. ANNs
have input layers and multiple hidden layers. Lastly, the hidden layers are connected to the
output layer, which produces the outputs. Reference [20] proposed a pattern recognition
for bivariate process mean shifts using feature-based ANN and [21] proposed a control
chart pattern recognition using radial basis function (RBF) neural networks. Recently,
Reference [22] proposed statistical process control with intelligence based on the deep
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learning model and reviewed the neural network-based statistical process control. In this
paper, we used the ’nnet’ R packge [23] for feed-forward neural networks with a single
hidden layer, and for the deep learning model, we used the ’deepnet’ R packge [24] with
the backpropagation (BP) algorithm for training feed-forward neural networks by using
the ’nn.predict’ command.

Based on the setup of [6], the r-control charts for binary response data use GLM
models with logit and probit link functions, and neural network models employ deviance
residuals being independent and asymptotically normally distributed with zero mean
and unit variance, i.e., ri∼N(0, 1) for i = 1, . . . , n. In this research, we chose a deviance
residual for the GLM models with logit and probit link functions and a neural network
model because the R packages for the GLM models with logit and probit link functions
and the neural network model have a command for producing the deviance residual. It is
easy to compare the residuals from both models, which are the GLM-based model, single
hidden layer neural network model and multiple hidden layers deep learning model.
Reference [25] proposed Shewhart control limits for the deviance residuals as follows:

E(ri)± k
√

Var(ri) ≈ ± k, (4)

where k is defined by the false alarm probability, α = 1/ARL0, and ARL0 is the average
run length (ARL) under the process in-control. The ARL is a measure of the performance
of control charts for monitoring a process.

2.3. New Binary Response Statistical Process Control Procedure

Our r control chart for binary response uses the following statistical process control
procedures for the deviance residuals:

1. Apply the BVS, PCS and NLPCS to input variables X and obtain the important selected
variables or principal components.

2. Fit the binary response regression model by using the binary response variable y
and the important selected variables or the principal components through probit link
function, logit link function, and neural network or deep learning regression models,
respectively.

3. Obtain the deviance residuals from each model.
4. Set the k value and obtain the lower and upper control limits of the r-charts using (4).

3. Illustrated Examples

With the proposed method in Section 2, we perform the efficiency comparison among
the proposed methods with simulated data and real data.

3.1. Simulation Study

With high correlated and non-normal simulated data, we want to compare the r
control charts for binary response regression models introduced in the Section 2. So we
need to generate high correlated and non-normal simulated data denoting X as input
variables.

Because of relaxing the assumptions of normality, linearity and independence, copulas
have been popular in the research areas of biostatics, econometrics, finance and statistics
over the last three decades. A copula is a statistical method to find the dependence structure
of multivariate data. By using the copula, we can have the marginal behavior of a random
variable and the joint dependence of two random variables. Every joint distribution can
be expressed by as FXY(x, y) = C(FX(x), FY(y)) = C(u, v) where u = FX and v = FY are
marginal distributions.

A bivariate copula is a function C : [0, 1]2 → [0, 1], whose domain is the entire unit
square with the following three properties:

(i) C(u, 0) = C(0, v) = 0, ∀u, v ∈ [0, 1];
(ii) C(u, 1) = C(1, u) = u, ∀u ∈ [0, 1];
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(iii) C(u1, v1) − C(u1, v2) − C(u2, v1) + C(u2, v2) ≥ 0, ∀u1, u2, v1, v2 ∈ [0, 1] such that
u1 ≤ u2 and v1 ≤ v2 where ui = FXi (xi) and vi = FYi (xi), i = 1, 2.

See [26,27] for the definitions of the copula in detail. To construct a highly correlated
dependence structure of input variables, we employed two Archimedean copula functions.
One is the Clayton copula with a dependence parameter equalling to 3 and the number of
dimensions equal to 30, and the other is the Gumbel copula with a dependence parameter
equal to 30 and the number of dimensions equalling to 30.

The reason of choosing the Clayton and the Gumbel copulas for generating simulated
data in this research is that the Clayton copula is an asymmetric Archimedean copula,
exhibiting greater dependence in the negative tail than in the positive and the Gumbel
copula is an asymmetric Archimedean copula, exhibiting greater dependence in the positive
tail than in the negative.

We generate a random sample of 1000 observations from each copula. The random
sample is assigned to X as input variables. With each simulated random sample data
X, we define the coefficients of parameters (β’s) to be β0 = −0.17186, β1 = −0.47606,
β2 = 0.15747, β3 = −0.96697, β4 = 0.42469, β5 = 0.90749, β6 = 0.33934, β7 = 1.10366,
β8 = −0.33125, β9 = −0.10993, β10 = −0.81525, β11 = 0.16434, β12 = 0.13478, β13 =
0.56175, β14 = −0.53524, β15 = −0.80218, β16 = 0.17433, β17 = −0.32668, β18 = −0.47729,
β19 = 0.67109, β20 = 0.37587, β21 = −0.06678, β22 = 0.38838, β23 = −0.43394, β24 =
0.04385, β25 = 0.22217, β26 = −0.78461, β27 = −0.32422, β28 = 0.10109, β29 = 0.23819,
β30 = 0.65768 so that P(y = 1) = 1

1+exp(−β0−∑30
i=1 βixi))

which passes through an inverse

logit function. Then, we generate the response variable y randomly by using the Bernoulli
distribution with the probability P(y = 1) with sample size 1000.

For the one (‘1’) inflated case of binary response data, we added 0.1 to the probability
P(y = 1), such as P(y = 1) + 0.1, and for the zero (‘0’) inflated case of binary response
data, we subtracted 0.1 from the probability P(y = 1), such as P(y = 1)− 0.1. Additionally,
P(y = 1) is used for the in-control dispersion case.

In each setup, we perform 1000 different replications of sample size of 1000. Table 1
shows the simulation results. With the simulated data, 70% of data were assigned to the
training data and 30% of data were assigned to the test data.

We apply the BVS, PCS, and NLPCS to input variables X and then we fit the binary
response regression model by using the binary response variable y and the important
selected variables or the principal components or the whole data through the probit link
function, logit link function, and neural network or deep learning regression models,
respectively. We used the ‘nnet’ R packge [23] for feed-forward neural networks with a
single hidden layer with 30 neurons by using ‘predict’ command, and for the deep learning
model, we used the ‘deepnet’ R packge [24] with the backpropagation (BP) algorithm for
training feed-forward neural networks with double hidden layers and (15, 15) neurons by
using the ‘nn.predict’ command.

Root MSE =

√
∑n

i=1(xi − x̂i)

n
, (5)

where Root MSE = root mean squared error, i = variablei, n = number of observations,
xi = actual observation, and x̂i = predicted value of xi observations.

By using the Root MSE Formula (5), we performed the Root MSE of each simulated
in-control data of sample size 1000 with 1000 repetitions in Table 1. It is a surprising result
that the r-chart based on the deep learning models with BVS, PCS, NLPCS and whole data
for both the Clayton and the Gumbel copulas show a superiority to all other cases in Table 1
in terms of the accuracy and precision by mean, median, and interquartile range (IQR).
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Table 1. Root MSE of simulated in-control data with 1000 Repetitions.

Clayton Copula Model Q1 MEDIAN MEAN Q3 IQR

Whole Data Nnet 0.7898 0.824 0.827 0.858 0.068
BVS Nnet 0.4949 0.499 0.5 0.504 0.009
PCA Nnet 0.5348 0.544 0.546 0.555 0.02

NLPCA Nnet 0.5255 0.533 0.534 0.542 0.017
Whole Data DL 0.4993 0.5 0.501 0.502 0.003

BVS DL 0.4991 0.5 0.501 0.502 0.003
PCA DL 0.4993 0.5 0.501 0.502 0.003

NLPCA DL 0.4993 0.5 0.501 0.502 0.003
PCA Logit 0.7288 0.766 0.767 0.803 0.074
PCA Probit 0.7045 0.731 0.732 0.757 0.053

NLPCA Logit 0.7207 0.754 0.755 0.791 0.071
NLPCA Probit 0.7042 0.729 0.73 0.757 0.053

Gumbel Copula Model Q1 MEDIAN MEAN Q3 IQR

Whole Data Nnet 0.7372 0.769 0.771 0.799 0.062
BVS Nnet 0.4996 0.503 0.503 0.507 0.007
PCA Nnet 0.537 0.546 0.547 0.556 0.019

NLPCA Nnet 0.5309 0.539 0.541 0.549 0.018
Whole Data DL 0.4998 0.5 0.501 0.502 0.002

BVS DL 0.4998 0.5 0.501 0.502 0.002
PCA DL 0.4998 0.501 0.501 0.502 0.002

NLPCA DL 0.4998 0.501 0.501 0.502 0.002
PCA Logit 0.6643 0.691 0.694 0.723 0.059
PCA Probit 0.6751 0.697 0.698 0.721 0.046

NLPCA Logit 0.6656 0.693 0.696 0.728 0.062
NLPCA Probit 0.6748 0.697 0.698 0.721 0.046

From Figures 1 and 2 in cases of the in-control, over dispersion and under dispersion,
we can observe that the residuals of deep learning regression models with BVS, PCS,
NLPCS, and whole data for both the Clayton and Gumbel copulas show a superiority over
the neural network regression models with BVS, PCS, NLPCS, and whole data in Table 1 in
terms of the precision by a measure of spread, IQR.

Figure 1. Cont.
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Figure 1. Violin plots of RMSE with Clayton Copula simulated data.

Figure 2. Cont.
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Figure 2. Violin plots of RMSE with Gumbel Copula simulated data.

With three cases of the in-control, over dispersion, and under dispersion in Tables 2–7,
we apply the BVS, PCS, and NLPCS to input variables X and then we fit the binary
response regression model by using the binary response variable y and the important
selected variables or the principal components through neural network or deep learning
regression models, respectively. By using the deviance residuals for each model and (4)
for k = 1, 2, 3, we compute the lower control limit (LCL) and upper control limit (UCL) for
the process. The expected length of the confidence interval is computed by the average
of the length of control limits. The coverage probability is the proportion of the deviance
residuals contained in the control limits. The lower control limit and the upper control
limit value for the r-chart are calculated by means of y minus and plus its one, two, and
three standard deviations.
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Table 2. ARLs of simulated data by Clayton Copula.

Clayton Copula Whole Data Nnet DL

1σ 2σ 3σ 1σ 2σ 3σ

In-Control ARL 3.334 20.71 112.746 2.02 NA NA
CL 0 0 0 0.002 0.002 0.002

LCL −0.821 −1.642 −2.464 −0.498 −0.998 −1.498
UCL 0.822 1.643 2.464 0.501 1.001 1.501

CI Length 1.643 3.285 4.928 1 1.999 2.999
Coverage 0.7 0.955 0.994 0.55 1 1

Over-dispersion ARL 3.292 22.289 106.563 2.695 NA NA
CL 0.002 0.002 0.002 −0.002 −0.002 −0.002

LCL −0.81 −1.621 −2.432 −0.495 −0.988 −1.481
UCL 0.813 1.624 2.435 0.491 0.983 1.476

CI Length 1.622 3.245 4.867 0.986 1.971 2.957
Coverage 0.699 0.956 0.994 0.585 1 1

Under-dispersion ARL 3.261 22.502 112.493 2.561 NA NA
CL −0.001 −0.002 −0.001 0.001 0.001 0.002

LCL −0.801 −1.601 −2.4 −0.485 −0.971 −1.457
UCL 0.799 1.598 2.398 0.487 0.974 1.46

CI Length 1.6 3.199 4.798 0.972 1.945 2.917
Coverage 0.699 0.956 0.995 0.617 1 1

Clayton Copula BVS Nnet DL

1σ 2σ 3σ 1σ 2σ 3σ

In-Control ARL 2.264 138.234 130.333 2.111 NA NA
CL 0.001 0.001 0.001 0.001 0.001 0.001

LCL −0.504 −1.009 −1.513 −0.498 −0.998 −1.498
UCL 0.506 1.01 1.515 0.501 1.001 1.501

CI Length 1.009 2.019 3.028 1 1.999 2.999
Coverage 0.548 0.999 1 0.543 1 1

Over-dispersion ARL 2.476 111.384 146.131 2.534 NA NA
CL 0 0 0 0 0 0

LCL −0.513 −1.026 −1.54 −0.493 −0.986 −1.479
UCL 0.513 1.027 1.54 0.493 0.986 1.479

CI Length 1.026 2.053 3.079 0.986 1.972 2.957
Coverage 0.587 0.995 1 0.584 1 1

Under-dispersion ARL 2.486 149.789 181.353 2.623 NA NA
CL −0.002 −0.002 −0.002 −0.001 −0.001 −0.001

LCL −0.494 −0.986 −1.478 −0.488 −0.974 −1.46
UCL 0.49 0.982 1.474 0.485 0.971 1.457

CI Length 0.984 1.968 2.952 0.973 1.945 2.917
Coverage 0.597 0.999 1 0.616 1 1

Mainly, we compare the results for the deep learning regression model and neural
network regression model based on BVS, PCA, NLPCA, and whole data because [6] showed
that the neural network regression model (Nnet) outperformed the GLMs with probit and
logit link functions based on PCA. We found that, for the in-control case, the one-inflated
case, and zero-inflated case, the expected lengths of the confidence interval on the deep
learning regression model (DL) based on BVS, PCA, NLPCA, and whole data are shorter
than in all other cases of Nnet in Tables 2–5 while, in terms of the coverage probability,
the DL is keeping overall higher than the neural network regression model (nnet).
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Table 3. ARLs of Simulated Data by Clayton Copula.

Clayton Copula PCA Nnet DL

1σ 2σ 3σ 1σ 2σ 3σ

In-Control ARL 2.585 82.355 132.437 2.135 NA NA
CL −0.001 −0.001 −0.001 −0.002 −0.002 −0.002

LCL −0.545 −1.088 −1.632 −0.502 −1.002 −1.501
UCL 0.543 1.086 1.63 0.498 0.997 1.497

CI Length 1.087 2.175 3.262 1 1.999 2.998
Coverage 0.61 0.99 0.999 0.549 1 1

Over-dispersion ARL 2.727 73.39 147.581 2.365 NA NA
CL 0.001 0.001 0.001 −0.001 −0.001 −0.001

LCL −0.537 −1.074 −1.611 −0.493 −0.986 −1.479
UCL 0.538 1.076 1.613 0.492 0.985 1.477

CI Length 1.075 2.15 3.225 0.985 1.971 2.956
Coverage 0.613 0.988 0.999 0.586 1 1

Under-dispersion ARL 2.597 71.143 143.474 2.593 NA NA
CL 0.003 0.003 0.003 0.004 0.004 0.004

LCL −0.528 −1.06 −1.591 −0.483 −0.97 −1.457
UCL 0.534 1.065 1.597 0.491 0.978 1.465

CI Length 1.063 2.125 3.188 0.974 1.948 2.922
Coverage 0.614 0.987 0.999 0.613 1 1

Clayton Copula NLPCA Nnet DL

1σ 2σ 3σ 1σ 2σ 3σ

In-Control ARL 2.448 105.494 143.163 2.135 NA NA
CL −0.001 −0.001 −0.001 −0.002 −0.002 −0.002

LCL −0.536 −1.071 −1.605 −0.502 −1.002 −1.501
UCL 0.533 1.068 1.603 0.498 0.997 1.497

CI Length 1.069 2.139 3.208 1 1.999 2.998
Coverage 0.592 0.994 1 0.549 1 1

Over-dispersion ARL 2.478 95.062 135.056 2.365 NA NA
CL 0 0 0 −0.001 −0.001 −0.001

LCL −0.528 −1.056 −1.584 −0.493 −0.986 −1.479
UCL 0.528 1.056 1.584 0.492 0.985 1.477

CI Length 1.056 2.112 3.168 0.985 1.971 2.956
Coverage 0.596 0.992 1 0.586 1 1

Under-dispersion ARL 2.574 90.481 141.241 2.593 NA NA
CL 0.004 0.004 0.004 0.004 0.004 0.004

LCL −0.517 −1.038 −1.559 −0.483 −0.97 −1.457
UCL 0.525 1.046 1.567 0.491 0.978 1.465

CI Length 1.042 2.084 3.126 0.974 1.948 2.922
Coverage 0.603 0.992 1 0.613 1 1

In terms of the ARLs, the coverage probability and the expected length of the confi-
dence interval, we note that the r-chart based on the DL based on whole data for moni-
toring observations is about the same as the r-chart based on the DL based on BVS, PCA,
and NLPCA.
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Table 4. ARLs of simulated data by Gumbel Copula.

Gumbel Copula Whole Data Nnet DL

1σ 2σ 3σ 1σ 2σ 3σ

In-Control ARL 3.397 21.495 108.616 2.113 NA NA
CL 0.002 0.002 0.002 0.001 0.001 0.001

LCL −0.793 −1.588 −2.383 −0.499 −0.999 −1.498
UCL 0.797 1.592 2.386 0.501 1.001 1.500

CI Length 1.590 3.179 4.769 1.000 1.999 2.999
Coverage 0.716 0.955 0.994 0.549 1.000 1.000

Over-dispersion ARL 3.336 21.692 109.006 2.484 NA NA
CL 0.004 0.004 0.004 −0.001 −0.001 −0.001

LCL −0.778 −1.559 −2.340 −0.493 −0.986 −1.479
UCL 0.785 1.566 2.347 0.492 0.985 1.478

CI Length 1.562 3.124 4.687 0.986 1.971 2.957
Coverage 0.712 0.954 0.994 0.585 1.000 1.000

Under-dispersion ARL 3.684 21.393 110.314 2.582 NA NA
CL −0.004 −0.004 −0.004 0.001 0.001 0.001

LCL −0.772 −1.540 −2.308 −0.486 −0.973 −1.459
UCL 0.765 1.533 2.301 0.487 0.974 1.460

CI Length 1.536 3.073 4.609 0.973 1.946 2.919
Coverage 0.712 0.955 0.994 0.615 1.000 1.000

Gumbel Copula BVS Nnet DL

1σ 2σ 3σ 1σ 2σ 3σ

In-Control ARL 2.217 129.387 156.500 2.088 NA NA
CL 0.002 0.002 0.002 0.001 0.001 0.001

LCL −0.504 −1.010 −1.515 −0.499 −0.998 −1.498
UCL 0.507 1.013 1.518 0.501 1.001 1.500

CI Length 1.011 2.022 3.033 0.999 1.999 2.998
Coverage 0.547 0.999 1.000 0.543 1.000 1.000

Over-dispersion ARL 2.350 137.165 157.292 2.316 NA NA
CL 0.000 0.000 0.000 0.001 0.001 0.001

LCL −0.499 −0.998 −1.497 −0.492 −0.985 −1.478
UCL 0.499 0.997 1.496 0.493 0.986 1.479

CI Length 0.998 1.995 2.993 0.986 1.971 2.957
Coverage 0.572 0.999 1.000 0.585 1.000 1.000

Under-dispersion ARL 2.504 129.826 119.947 2.592 NA NA
CL 0.000 0.000 0.000 0.001 0.001 0.001

LCL −0.494 −0.987 −1.480 −0.486 −0.972 −1.459
UCL 0.493 0.986 1.479 0.487 0.974 1.460

CI Length 0.986 1.973 2.959 0.973 1.946 2.919
Coverage 0.599 0.999 1.000 0.615 1.000 1.000

3.2. Real Data Analysis

For the real data application, we used Wisconsin breast cancer data in the R package
‘mlbench’ [23]. The objective of collecting the data was to identify a number of benign or
malignant classes. Samples arrive periodically as Dr. Wolberg reports his clinical cases.
The database, therefore, reflects this chronological grouping of the data. This grouping
information appears immediately below, having been removed from the data itself. Each
variable except for the first was converted into 11 primitive numerical attributes with values
ranging from 0 through 10. There are 16 missing attribute values. A data frame contained
11 variables ((1) Id (Sample code number), (2) Cl.thickness (Clump Thickness), (3) Cell.size
(Uniformity of Cell Size), (4) Cell.shape (Uniformity of Cell Shape), (5) Marg.adhesion
(Marginal Adhesion), (6) Epith.c.size (Single Epithelial Cell Size), (7) Bare.nuclei (Bare
Nuclei), (8) Bl.cromatin (Bland Chromatin), (9) Normal.nucleoli (Normal Nucleoli), (10)
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Mitoses, (11) Class), one being a character variable, 9 being ordered or nominal, and 1
target class.

Table 5. ARLs of simulated data by Gumbel Copula.

Gumbel Copula PCA Nnet DL

1σ 2σ 3σ 1σ 2σ 3σ

In-Control ARL 2.640 87.182 153.242 2.153 NA NA
CL 0.001 0.001 0.001 0.001 0.001 0.001

LCL −0.540 −1.081 −1.622 −0.499 −0.998 −1.498
UCL 0.543 1.084 1.625 0.501 1.001 1.500

CI Length 1.082 2.165 3.247 1.000 1.999 2.999
Coverage 0.607 0.990 0.999 0.546 1.000 1.000

Over-dispersion ARL 2.522 83.406 146.587 2.231 NA NA
CL −0.001 −0.001 −0.001 −0.001 −0.001 −0.001

LCL −0.536 −1.070 −1.605 −0.493 −0.986 −1.479
UCL 0.534 1.068 1.603 0.492 0.985 1.478

CI Length 1.069 2.139 3.208 0.986 1.971 2.957
Coverage 0.607 0.989 0.999 0.585 1.000 1.000

Under-dispersion ARL 2.428 76.504 142.214 2.440 NA NA
CL −0.002 −0.002 −0.002 −0.001 −0.001 −0.001

LCL −0.527 −1.053 −1.578 −0.487 −0.973 −1.460
UCL 0.524 1.050 1.575 0.485 0.971 1.458

CI Length 1.051 2.103 3.154 0.972 1.945 2.917
Coverage 0.612 0.988 0.999 0.616 1.000 1.000

Gumbel Copula NLPCA Nnet DL

1σ 2σ 3σ 1σ 2σ 3σ

In-Control ARL 2.519 104.428 145.605 2.153 NA NA
CL 0.002 0.002 0.002 0.001 0.001 0.001

LCL −0.534 −1.069 −1.605 −0.499 −0.998 −1.498
UCL 0.537 1.072 1.608 0.501 1.001 1.500

CI Length 1.071 2.142 3.213 1.000 1.999 2.999
Coverage 0.595 0.994 1.000 0.546 1.000 1.000

Over-dispersion ARL 2.371 96.315 151.893 2.231 NA NA
CL −0.001 −0.001 −0.001 −0.001 −0.001 −0.001

LCL −0.530 −1.058 −1.587 −0.493 −0.986 −1.479
UCL 0.528 1.057 1.586 0.492 0.985 1.478

CI Length 1.058 2.115 3.173 0.986 1.971 2.957
Coverage 0.598 0.992 1.000 0.585 1.000 1.000

Under-dispersion ARL 2.480 93.172 135.882 2.440 NA NA
CL −0.002 −0.002 −0.002 −0.001 −0.001 −0.001

LCL −0.523 −1.045 −1.566 −0.487 −0.973 −1.460
UCL 0.519 1.041 1.562 0.485 0.971 1.458

CI Length 1.043 2.085 3.128 0.972 1.945 2.917
Coverage 0.606 0.991 1.000 0.616 1.000 1.000

By using the R package ’missForest’ [28], we imputed the missing data in the Wisconsin
breast cancer data. We set the target variable (y) to be Class (“malignant” = 0, “benign” = 1)
and 9 input variables except for Id and Class variables in the Wisconsin breast cancer data.
We also used the ’nnet’ R packge [23] with a single hidden layer with 30 neurons by using
’predict’ command, and for deep learning model, we used the R packge ’deepnet’ [24] with
double hidden layers and (15, 15) neurons by using ’nn.predict’ command on the Wisconsin
breast cancer data. By using the Root MSE formula (5), we performed Root MSE of each
random sample data of sample size 478(= 0.683× 0.7) out of the total number of data (683)
with 1000 repetitions in Table 6. It confirms that the r-chart based on the DL models with



Symmetry 2021, 13, 1389 13 of 15

BVS, PCS, NLPCS and whole data show a superiority to all other cases in Nnet models in
Table 6 in terms of the accuracy and precision by mean and interquartile range (IQR).

The expected lengths of the confidence interval on the DL-based on BVS, PCA, NLPCA,
and whole real data are shorter than in all other cases of Nnet in Table 7 while, in terms of
the coverage probability, DL is overall keeping higher than the Nnet. In terms of the ARLs,
the coverage probability and the expected length of the confidence interval, we note that
the r-chart based on the DL based on whole real data is about the same as the r-chart based
on the DL based on BVS, PCA, and NLPCA.

Therefore, from the simulation study and real data analysis, we confirmed that the
DL based r control chart for binary response data on BVS, PCA, NLPCA, and whole real
data are superior to the Nnet-based r control chart for binary response data on BVS, PCA,
NLPCA, and whole data in terms of the accuracy, precision, coverage probability, and
expected length of the confidence interval.

Table 6. RMSE with Cleveland heart disease data.

Q1 MEDIAN MEAN Q3 IQR

Whole Data Nnet 0.3908 0.421 0.637 0.461 0.071
BVS Nnet 0.3727 0.408 2.372 0.498 0.125
PCA Nnet 0.6272 0.671 0.673 0.716 0.089

NLPCA Nnet 0.499 0.527 1.223 1.339 0.84
Whole Data DL 0.4977 0.5 0.5018 0.5041 0.0064

BVS DL 0.4977 0.4999 0.5018 0.5039 0.0062
PCA DL 0.4976 0.5 0.5016 0.5039 0.0063

NLPCA DL 0.4979 0.5003 0.502 0.5042 0.0063

Table 7. ARLs, CIs, and coverage with Cleveland heart disease Data.

Nnet DL

Whole Data 1σ 2σ 3σ 1σ 2σ 3σ

ARL 8.644 17.071 43.735 2.220 NA NA
CL −0.119 −0.119 −0.119 0.006 0.006 0.006

LCL −2.481 −4.842 −7.204 −0.494 −0.993 −1.492
UCL 2.243 4.604 6.966 0.505 1.004 1.503

CI Length 4.723 9.446 14.169 0.998 1.997 2.995
Coverage 0.769 0.918 0.996 0.549 1.000 1.000

Nnet DL

BVS 1σ 2σ 3σ 1σ 2σ 3σ

ARL 10.099 22.687 21.988 2.165 NA NA
CL 0.105 0.105 0.105 0.002 0.002 0.002

LCL −1.111 −2.326 −3.542 −0.497 −0.996 −1.495
UCL 1.321 2.537 3.753 0.501 1.001 1.500

CI Length 2.432 4.863 7.295 0.998 1.996 2.995
Coverage 0.756 0.987 0.990 0.550 1.000 1.000

Nnet DL

PCA 1σ 2σ 3σ 1σ 2σ 3σ

ARL 7.253 16.202 53.460 2.157 NA NA
CL −0.012 −0.012 −0.012 0.005 0.005 0.005

LCL −0.646 −1.281 −1.915 −0.494 −0.993 −1.493
UCL 0.623 1.257 1.891 0.504 1.003 1.502

CI Length 1.269 2.538 3.807 0.998 1.996 2.995
Coverage 0.765 0.906 0.998 0.549 1.000 1.000
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Table 7. Cont.

Nnet DL

NLPCA 1σ 2σ 3σ 1σ 2σ 3σ

ARL 3.227 19.832 44.864 2.179 NA NA
CL −0.003 −0.003 −0.003 0.003 0.003 0.003

LCL −0.676 −1.348 −2.020 −0.496 −0.995 −1.494
UCL 0.669 1.341 2.013 0.501 1.000 1.499

CI Length 1.345 2.689 4.034 0.998 1.995 2.993
Coverage 0.703 0.949 0.994 0.551 1.000 1.000

4. Conclusions

In this research, we have presented the binary response DL regression model-based
statistical process control r-charts for dispersed binary asymmetrical data with multi-
collinearity among input variables. We have demonstrated the proposed DL method in
terms of the model flexibility and performance by running simulations for various circum-
stances: in-control, one inflated-, or zero inflated-dispersion data. With both simulated
data and real data, our DL proposed methods based on BVS, PCA, NLPCA, and whole
data have shown a superiority of performance compared with the binary response re-
gression model-based statistical control r-charts with the GLM with probit and logit link
function models and Nnet based on BVS, PCA, NLPCA and whole data. We also showed
that the binary response DL regression model-based statistical process control r-charts for
dispersed binary asymmetrical data with multicollinearity among input variables does not
need dimension reduction methods such as BVS, PCA, and NLPCA because the results
with the dimension reduction methods, such as BVS, PCA, and NLPCA are the same as
the results without the dimension reduction methods. Our proposed approach by deep
learning is superior in handling cases of dispersed binary asymmetrical data with multi-
collinearity among explanatory variables. The conclusion in this research is that for the
high-dimensional correlated multivariate covariate data, the binary control chart by DL is
a good statistical process control method. Our proposed binary control chart by DL can be
applied to improve the quality control of visual fault detection medical equipment devices
such a full-body X-ray scanner or brain functional magnetic resonance imaging scanner
or a computed tomography (CT) scanner for detecting cancers. Our future research will
be the general version of DL-based SPC for categorical data or continuous data or mixed
data for categorical and continuous data. We will also apply our proposed method to a
multi-stage SPC for binary outcome variables given the covariates.
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