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Abstract: This paper deals with the existence of various types of dual generalized inverses of dual
matrices. New and foundational results on the necessary and sufficient conditions for various types
of dual generalized inverses to exist are obtained. It is shown that unlike real matrices, dual matrices
may not have {1}-dual generalized inverses. A necessary and sufficient condition for a dual matrix to
have a {1}-dual generalized inverse is obtained. It is shown that a dual matrix always has a {1}-, {1,3}-,
{1,4}-, {1,2,3}-, {1,2,4}-dual generalized inverse if and only if it has a {1}-dual generalized inverse and
that every dual matrix has a {2}- and a {2,4}-dual generalized inverse. Explicit expressions, which
have not been reported to date in the literature, for all these dual inverses are provided. It is shown
that the Moore–Penrose dual generalized inverse of a dual matrix exists if and only if the dual matrix
has a {1}-dual generalized inverse; an explicit expression for this dual inverse, when it exists, is
obtained irrespective of the rank of its real part. Explicit expressions for the Moore–Penrose dual
inverse of a dual matrix, in terms of {1}-dual generalized inverses of products, are also obtained.
Several new results related to the determination of dual Moore-Penrose inverses using less restrictive
dual inverses are also provided.

Keywords: dual matrices; dual generalized inverses; necessary and sufficient conditions for existence
of dual generalized inverses; explicit expressions for various types of dual generalized inverses;
explicit expressions for the dual generalized Moore–Penrose inverse using less restrictive dual
generalized inverses

1. Introduction

The use of dual matrices has become common in various areas of science and engineer-
ing, such as the kinematic analysis and synthesis of machines and mechanisms, robotics
and machine vision (see, for example, [1–3]). Over the last two decades, their use in science
and engineering has increased significantly. In many forward and inverse problems in
these areas, dual generalized inverses of dual matrices are sought and used. Because of
familiarity with real matrices, many of the scientific and engineering communities that
use dual matrices presuppose that generalized inverses of dual matrices always exist. It
is only recently that the question of the existence of the Moore–Penrose dual generalized
inverse has been raised and, in reference [4], it is shown that unlike the assured existence of
a Moore–Penrose inverse of a real matrix, all dual matrices may not have Moore–Penrose
(MP) dual inverses. This is demonstrated by the construction of an uncountably infinite set
of dual matrices that are guaranteed to have no Moore–Penrose dual inverses. Reference [4]
also shows that such dual matrices arise in practical inverse problems in kinematics and
can lead to erroneous results when dealing with both experimental and simulated data. A
recent finding shows that the reason why the Moore–Penrose dual generalized inverses of
the dual matrices constructed in reference [4] do not exist is that these dual matrices do not
have a {1}-dual generalized inverse [5].

Finding the generalized inverses of dual matrices is important for many problems that
arise in various areas of science and engineering, where a dual matrix Â often satisfies a
given linear system of dual equations of the form ÂP̂ = Q̂ (see reference [5] for examples).
Such linear systems are used in the so-called forward problems, in which the dual operator
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Â and the dual matrix P̂ are assumed to be sufficiently well known and the dual matrix
Q̂ is estimated, and in inverse problems, where the dual matrices P̂ and Q̂ are obtained
from experiments and/or simulated data and the dual matrix operator Â is required to
be estimated. One can also envisage a variety of problems in which Â and Q̂ are given,
but with one or both of them corrupted by measurement noise and a “good” approximate
estimate of the solution P̂ required. Various dual generalized matrices are useful for solving
the analogs of the least-squares solutions of systems of real equations, minimum-norm
solutions and minimum-norm least-squares solutions.

This paper investigates the existence of various types of dual generalized inverses
that commonly arise in science and engineering. An m-by-n dual matrix Â = A + εB is
considered, where ε is the hypercomplex unit basis, where ε2 = 0 with ε 6= 0 for this unique
nilpotent element, and the matrices A and B are real m-by-n matrices. The matrices A and
B are called the real (or primal) part and the dual part, respectively, of the matrix Â. We
denote real matrices throughout by capital letters and hats on top of capital letters denote
dual matrices. The four dual relations

ÂĜÂ = Â (1)

ĜÂĜ = Ĝ (2)

ÂĜ = (ÂĜ)
T (3)

ĜÂ = (ĜÂ)
T (4)

in which the dual matrix Ĝ = G + εR is n-by-m, will be of central importance in this paper.
These four successive relations will be referred to, respectively, as the first, second, third
and fourth, Moore–Penrose (MP) dual conditions. When B = 0, then Â = A and Ĝ = G
in Equations (1)–(4) and we obtain the well-known standard Moore–Penrose conditions
for real matrices. Using the notation commonly followed for real matrices, we define a
dual matrix Ĝ that satisfies the first MP dual condition (Equation (1)) to be the {1}-dual
generalized inverse of the dual matrix Â and denote it by Â{1}. If Ĝ satisfies the first three
MP dual conditions (Equations (1)–(3)), it is called a {1,2,3}-dual generalized inverse of Â
and it is denoted by Â{1,2,3}, and so on. We refer to the {1,2,3,4}-dual generalized inverse of
Â by Â{1,2,3,4}; it is also called the Moore–Penrose dual generalized inverse (MPDGI) of Â.

While the apparent similarity between the conditions for dual matrices and real
matrices is striking—one simply removes all the hats in Equations (1)–(4) to obtain their
counterparts for real matrices—there are, however, significant differences. The most
important of these is that while every real m-by-n matrix A has all kinds of generalized
inverses, such as a {1}-, {1,2,3}-, {1,3,4}, {1,2,4}-, {1,2,3,4}-generalized inverse, for an m-by-n
dual matrix none of these dual generalized inverses may exist.

The intent and scope of this paper is the development of new and foundational results
on generalized inverses of dual matrices that would be of use in science and engineering
with an eye to providing results that have analytical and especially computational value.
The necessary and sufficient conditions for various types of dual generalized inverses to
exist are obtained and, when these necessary and sufficient conditions are satisfied, explicit
formulae for the dual generalized inverses are provided. While the interest from a science
and engineering standpoint is often in {1,3}- and {1,4}-dual inverses (the counterparts of
the least-squares inverses for real matrices and minimum norm solutions of real matrix
equations) and in the {1,2,3,4}-dual inverse (the counterpart of the Moore–Penrose inverse
for real matrices), getting to the necessary and sufficient conditions for the existence of
these dual inverses requires us to first obtain the corresponding conditions for other dual
inverses to exist. These results are then systematically used to build-up the necessary
and sufficient conditions for the existence of {1,3}-, {1,4}- and {1,2,3,4}-dual inverses and
other dual inverses as well. Several new properties of dual generalized inverses are
obtained along the way, for example, formulae for the determination of the {1,2,3,4}-dual
generalized inverse of a matrix, in terms of less restrictive inverses, such as {1,3}- and
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{1,4}-dual generalized inverses. Throughout the paper the quintessential nature of {1}-dual
generalized inverses in the context of the theory of dual generalized inverses developed
here becomes apparent.

In Section 2 of the paper, some well-known preliminaries are given, which set the
notation to be used throughout. The contributions of this paper to science and engineering
are all presented in Section 3. Section 3.1 focuses on the existence of {1}- and {2}-dual
generalized inverses of Â and obtains the necessary and sufficient conditions for a {1}-dual
generalized inverse to exist; it is shown that all dual matrices have {2}-dual generalized
inverses. In Section 3.2, the existence of {1,3}- and {1,4}-dual generalized inverses is
considered; Section 3.3 studies the existence of {2,4}-dual generalized inverses; Section 3.4
provides results for {1,2,3}- and {1,2,4}-dual generalized inverses; Section 3.5 is concerned
with the Moore–Penrose dual generalized inverse. Here, a new simple expression for
the MPDGI of a dual matrix, irrespective of the rank of its real part, is obtained. In
Section 3.6, somewhat remarkably, it is shown that explicit expressions for the Moore
Penrose dual inverse of a dual matrix can be obtained in terms of only {1}-dual generalized
inverses of its symmetric products. Several other new properties of dual generalized
inverses and results, such as the formulae for the Moore–Penrose dual inverse in terms
of {1,3}- and {1,4}-dual generalized inverses, which are far less restrictive inverses, are
obtained. The central importance of the {1}-dual generalized inverse in the development is
highlighted. A more general existence proof than that given in reference [5] is presented,
which gives as its byproduct the entire set of {1}-dual generalized inverses of a dual matrix.
Throughout, for each type of dual generalized inverse investigated, the necessary and
sufficient conditions for its existence are obtained along with explicit expressions for each
type of dual generalized inverse. Section 4 provides the conclusions.

2. Some Preliminaries

This section establishes notation and provides several results that are well-known.
They are placed together in this section because they are used in what follows.

We begin with finding the relations between the real matrices A, B, G, and R, so that
for a given dual m-by-n matrix Â = A + εB, the dual matrix Ĝ = G + εR satisfies the
different Moore–Penrose (MP) dual conditions stated in Equations (1)–(4).

Lemma 1. The four MP dual conditions given in Equations (1)–(4) become the following.

(a) The first MP dual condition is equivalent to

AGA = A (5)

B = BGA + ARA + AGB (6)

(b) The second MP dual condition is equivalent to

GAG = G, (7)

R = RAG + GBG + GAR (8)

(c) The third MP dual condition is equivalent to

AG = (AG)T (9)

BG + AR = (BG + AR)T (10)

(d) The fourth MP dual condition is equivalent to

GA = (GA)T (11)

RA + GB = (RA + GB)T (12)
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Proof. By substituting Â = A + εB and Ĝ = G + εR in each of the MP dual conditions
(1)–(4) and carrying out the computations, noting that ε2 = 0, these results follow [4]. �

As mentioned before, a {1}-dual generalized inverse of Â is defined as a dual matrix Ĝ
that satisfies the first MP dual condition given in Equation (1) (or Equations (5) and (6)); a
{2,3}-dual generalized inverse of Â is defined as a dual matrix Ĝ that satisfies the second
and third MP dual conditions given in Equations (1) and (3) (or Equations (7)–(10)), and so on.

Lemma 2. A dual generalized inverse of Â = A + εB, if it exists, has the form Â{∗} = A{∗}+ εR,
where “*” is any distinct sequence of the numbers 1,2,3,4 and A{∗} is the generalized inverse of the
real part, A, of the dual matrix Â.

Proof. Seeing Equations (5), (7), (9) and (11) and removing the hats in Equations (1)–(4),
so that we are dealing with real matrices now, the result is obvious. �

Lemma 2 says that given a dual matrix Â = A + εB, the real part G of, say, its {1}-dual
generalized inverse Â{1}, if such an inverse exists, is simply a {1}-inverse of the real part,
A, of Â. Similarly, Â{1,3} must have the form Â{1,3} = A{1,3} + εR1, A{1,4} = A{1,4} + εR2,
Â{1,2,3,4} = A{1,2,3,4} + εR3 and so on, if these dual generalized inverses exist. Thus, the
real part of the {*}-dual generalized inverse of Â, if it exists, is simply A{∗}. Then, the main
issue in finding a {*}-dual generalized inverse of a dual matrix Â, if it exists, is finding
its dual part, R, since its real part is simply obtained by taking the real part, A, of Â and
finding its {*}-generalized inverse, which always exists and which we know how to obtain
for any real matrix [6–9].

Lemma 3. To set our notation, we consider the singular value decomposition of a real m-by-n
matrix A of rank r given by

A = UΣVT = [U1 | U2 ]

 r×r︷︸︸︷
Λ

r×(n−r)︷︸︸︷
0

0 0

[V1 | V2 ]
T = U1ΛVT

1 (13)

where U and V are, respectively, m-by-m and n-by-n orthogonal matrices and Λ is an r-by-r
dimensional positive definite diagonal matrix. The matrices U1 and V1 are m-by-r and n-
by-r, respectively. Note that the submatrices U1 and V1 have columns that are orthonormal,
so that the r-by-r matrices UT

1 U1 = VT
1 V1 = Ir. U1(V1) is the orthogonal complement

of U2(V2).

Throughout this paper we will use the notation given in Equation (13) for the matrices
Λ, U, V, and Ui, Vi,i = 1, 2, to refer to the singular value decomposition of the real part, A,
of the dual matrix Â = A + εB.

Using this notation, various generalized inverses of A are obtained using the n-by-m matrix:

H = [V1 | V2 ]


r×r︷︸︸︷

Λ−1

r×(m−r)︷︸︸︷
K

L︸︷︷︸
(n−r)×r

M︸︷︷︸
(n−r)×(m−r)

[U1 | U2 ]
T (14)

where the submatrices K, L and M are of the dimensions shown and the matrices Ui, Vi, i = 1, 2,
come from the singular value decomposition of A that is shown in Equation (13).

(1) To satisfy the first MP condition, the submatrices K, L and M, can be any arbitrary
matrices. Thus, every real matrix A has at least one {1}-generalized inverse A{1} = H,
with K, L and M arbitrary. As seen, this dual generalized inverse is not unique.



Symmetry 2021, 13, 1386 5 of 28

(2) To satisfy the second MP condition, we require that the submatrix M = LΛK and
K and L can be any arbitrary matrices. Thus, A{2} = H with K and L arbitrary
and M = LΛK.

(3) To satisfy the third MP condition, we require that the submatrix K = 0 and the matrices
L and M can be arbitrary. Hence, A{3} = H with L and M arbitrary and K = 0.

(4) To satisfy the fourth MP condition, we require that the submatrix L = 0 and the
matrices K and M can be arbitrary. Hence, A{4} = H with K and M arbitrary and L = 0.

The four above-mentioned items can be used to obtain any desired {*}-generalized
inverse of a real matrix A. For example, the {1,3}-generalized inverse of A must be both a
{1}- and {3}-generalized inverse; therefore, it is given by:

A{1,3} = [V1 | V2 ]

[
Λ−1 0
L M

]
[U1 | U2 ]

T (15)

in which L and M are arbitrary matrices. Similarly,

A{1,4} = [V1 | V2 ]

[
Λ−1 K
0 M

]
[U1 | U2 ]

T (16)

in which K and M are arbitrary,

A{2,4} = [V1 | V2 ]

[
Λ−1 K
0 0

]
[U1 | U2 ]

T (17)

in which K is arbitrary, and

A{1,2,3,4} := A+ = [V1 | V2 ]

[
Λ−1 0
0 0

]
[U1 | U2 ]

T = V1Λ−1UT
1 (18)

and so on.
Every real matrix A has, in general, a non-unique A{1}, A{2}, A{1,3}, A{1,4}, A{1,2,3},

etc., and a unique A{1,2,3,4}. We will denote A{1,2,3,4} by A+, for short; it is also called the
Moore–Penrose inverse of the real matrix A and it is given by Equation (18). When m = n
and the matrix A is nonsingular, then A{1,2,3,4} = A−1. It should be noted that the set of
matrices A{2} (and A{2,4}) provided in items (2) (and (4)) above give a subset of all the real
matrices that satisfy only the second (and fourth) Moore–Penrose condition(s).

Proof. These results are well known (e.g., see [6,7]) and they are easy to prove. �

As in Lemma 2, throughout this paper, we will refer to A{∗} as the {*}-inverse of the
real part, A, of the dual matrix Â = A + εB.

Lemma 4. Consider the matrix equation AXB = C, in which all the matrices are real. A solution,
X, to this equation exists if and only if

AA+CB+B = C (19)

and the solution X to the matrix equation is explicitly given by

X = A+CB+ + Z− A+AZBB+ (20)

where the matrix Z is arbitrary.

Proof. See for example [8,9]. �



Symmetry 2021, 13, 1386 6 of 28

3. Main Results

In this section we obtain the necessary and sufficient conditions for various types of
dual generalized inverses of an m-by-n dual matrix Â to exist and we also provide explicit
expressions for them. These various dual generalized inverses are then used to obtain
the necessary and sufficient conditions for the Moore–Penrose dual inverse to exist. It is
shown that {2}- and {2,4}-dual generalized inverses of a dual matrices always exist. Special
attention is given to Moore–Penrose dual generalized inverses in Sections 3.5 and 3.6. In
Section 3.6, the Moore–Penrose generalized inverse of a dual matrix Â is obtained through
the use of less restrictive dual generalized inverses. To the best of the author’s knowledge,
the results obtained here have not appeared before in the literature.

3.1. On the Existence and Determination of a {1}- and {2}-Dual Generalized Inverses of an m-by-n
Dual Matrix Â

From Lemma 2, we know that the {1}-dual inverse of the m-by-n matrix Â = A + εB,
if it exists, must have the form

Â{1} = A{1} + εR (21)

where A{1} is a {1}-generalized inverse of the real part, A, of the dual matrix Â. The matrix
A{1} satisfies the condition given in Equation (5), i.e., AA{1}A = A, and every real matrix
A has a {1}-generalized inverse, which is not unique, as seen in Lemma 3. Our aim is to
determine the necessary and sufficient conditions for an n-by-m matrix R to exist, so that it
satisfies Equation (6).

The result proved here is more general than that given in reference [5] and it gives the
entire set of matrices R that yield the {1}-dual generalized inverse, which is an important
generalization that is absent in reference [5]. Of similar importance, Equation (26) below
lays down the notation that will be used in the several results that follow.

Result 1. The necessary and sufficient condition for an m-by-n dual matrix Â = A + εB to have a
{1}-dual generalized inverse is that

UT
2 BV2 = 0 (22)

where the matrices U2 and V2 are obtained from the singular value decomposition of the
real part, A, of Â, using the notation established in Lemma 3 (see Equation (13)).

Proof. If Â{1} = G + εR exists, then Â{1} satisfies the first MP dual condition given
in Lemma 1, i.e., Equations (5) and (6). By Lemma 2, G = A{1}, which always exists.
Therefore, the necessary and sufficient condition for Â{1} to exist is that

B = BA{1}A + ARA + AA{1}B (23)

Substituting the expressions for A and A{1} given in Lemma 3, we obtain, from
Equation (23), the relation

B = BV
[

I 0
LΛ 0

]
VT + U

[
T 0
0 0

]
VT + U

[
I ΛK
0 0

]
UT B (24)

where T := ΛVT
1 RU1Λ. Note that K, L and M are arbitrary matrices (see Lemma 3) and

the matrix M does not show up in Equation (24).
Pre-multiplying both sides of Equation (24) by the orthogonal matrix UT and post-

multiplying both sides by the orthogonal matrix V give

UT BV = UT BV
[

I 0
LΛ 0

]
+

[
T 0
0 0

]
+

[
I ΛK
0 0

]
UT BV (25)
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Note that going from Equation (24) to Equation (25) is a reversible step. Since,

UT BV =

[
UT

1 B
UT

2 B

]
[V1 V2] =


P︷ ︸︸ ︷

UT
1 BV1

Q︷ ︸︸ ︷
UT

1 BV2
UT

2 BV1︸ ︷︷ ︸
S

UT
2 BV2︸ ︷︷ ︸

W

 :=


r×r︷︸︸︷
P

r×(n−r)︷︸︸︷
Q

S︸︷︷︸
(m−r)×r

W︸︷︷︸
(m−r)×(n−r)

 (26)

Equation (25) reduces to[
T 0
0 0

]
=

[
−Y −ΛKW
−WLΛ W

]
(27)

where the r-by-r matrix Y = P + QLΛ + ΛKS. Equating the block sub-matrices on both
sides gives

W = UT
2 BV2 = 0 (28)

VT
1 RU1 = −Λ−1YΛ−1 = −Λ−1(P + QLΛ + ΛKS)Λ−1 := C1 (29)

Since each of the steps from Equation (23) to Equations (28) and (29) are reversible,
we showed that the satisfaction of Equation (23) is equivalent to the two conditions given
in Equations (28) and (29). Alternatively, the necessary and sufficient condition for Â{1}

to exist stated in Equation (23) is the same as that given in Equation (27). Hence, the two
conditions in Equations (28) and (29) are then the necessary and sufficient conditions that
must be satisfied for the matrix Â to have a {1}-dual generalized inverse.

The first of these conditions places a constraint on the matrix B, the dual part of Â;
the second necessary and sufficient condition informs us that the matrix R must satisfy
the equation VT

1 RU1 = C1, for all matrices L and K (see Lemma 3). The question now is
whether such a matrix R always exists.

We next show that such a matrix R that satisfies Equation (29) always exists. To ensure
this, we need to simply show that VT

1 RU1 = C1 is consistent for any r-by-r matrix C1.
The necessary and sufficient condition for this equation to be consistent (see Lemma 4,
Equation (19)) is

VT
1 (VT

1 )
+

C1(U1)
+(U1) = C1 (30)

where X+ stands for the Moore–Penrose inverse (which always exists) of the real ma-
trix X. However, Equation (30) is always true, because the submatrices V1 and U1 have
columns that are orthonormal; therefore, V+

1 = VT
1 and U+

1 =UT
1 . It then follows that

VT
1 (VT

1 )
+

= VT
1 (V+

1 )
T
= VT

1 V1 = Ir and U+
1 U1 = UT

1 U1 = Ir so that the left-hand side
always computes to C1. Hence, consistency of Equation (29) is assured and the explicit
solution for R is then (see Lemma 4, Equation (20))

R = V1C1UT
1 + Z−V1VT

1 ZU1UT
1 (31)

where Z is an arbitrary n-by-m matrix.
Thus, since a matrix R that satisfies Equation (29) can always be found, the necessary

and sufficient condition for Â{1} to exist is that given in Equation (28), UT
2 BV2 = 0. �

Result 2. The set of {1}-dual generalized inverses, Â{1}, of the m-by-n dual matrix Â = A + εB
exists if and only if the condition UT

2 BV2 = 0 is satisfied and it is explicitly given by

Â{1} = A{1} + ε(V1C1UT
1 + Z−V1VT

1 ZU1UT
1 ) (32)

where C1 = −(Λ−1PΛ−1 + Λ−1QL + KSΛ−1) and Z is an arbitrary n-by-m matrix. The
matrices Ui, Vi, i = 1, 2 and Λ are obtained from the singular value decomposition of A
(Equation (13)), given in Lemma 3. The matrices P = UT

1 BV1, Q = UT
1 BV2 and S = UT

2 BV1
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are shown in Equation (26). The set of matrices A{1} is explicitly given by the right-hand
side of Equation (14) in which K, L and M are arbitrary matrices (see Lemma 3).

Proof. Using Equations (21) and (31) the result follows. We note, from Equation (32), that
for a given dual matrix Â, neither the real nor the dual part of Â{1} is unique. Furthermore,
for each L and K matrix chosen to obtain A{1} (see Lemma 3), there is an infinite set of
matrices R. When UT

2 BV2 = 0, Equation (32) gives the entire set of {1}-dual generalized
inverse matrices of Â. �

Remark 1. Setting Z = 0 in Equation (32), a subset of {1}-dual generalized inverses of Â is given by

Â{1} = A{1} − εV1(Λ−1PΛ−1 + Λ−1QL + KSΛ−1)UT
1 (33)

Furthermore, since the matrices K, L and M on the right-hand side of Equation (14)
are arbitrary, they can be chosen to be zero to yield a {1}-dual generalized inverse of Â as

Â{1} = A+ − εA+BA+ (34)

This follows from Equation (33), because

Â{1} = A+ − εV1(Λ−1PΛ−1)UT
1 = A+ − εV1Λ−1UT

1︸ ︷︷ ︸
A+

BV1Λ−1UT
1︸ ︷︷ ︸

A+

(35)

The bracketed terms follow from Equation (18) in Lemma 3. Thus, Equation (34) pro-
vides a simple, easy-to-compute expression that can be used to obtain a {1}-dual generalized
inverse of a dual matrix Â.

Remark 2. When the real part, A, of the m-by-n dual matrix Â = A + εB has either full row rank
or full column rank, the condition UT

2 BV2 = 0 is always satisfied. This is because when the rank of
A is m, then U2 = 0, and when the rank of A is n, then V2 = 0. Hence, when the real part of the
dual matrix Â has full row rank or full column rank, Â{1} always exists. The m-by-n matrices A
and B of the dual matrix Â can be independent of each other.

It is only when A is rank deficient—rank(A) = r < m, n—that the dual matrix Â{1}

might not exist. In that case, for Â{1} to exist, the matrices A and B cannot be independently
chosen. This is because UT

2 BV2 must equal the zero matrix.
A geometrical interpretation of the condition, UT

2 BV2 = 0, for the {1}-dual inverse of a
matrix Â to exist is that the matrix B must map the subspace orthogonal to V1 (which is V2)
to the subspace U1 (which is orthogonal to U2).

An alternative geometrical meaning of this condition that is perhaps easier to state,
since it concerns only the null and column space (range) of A, is as follows. The condition
demands that B must map the null space of A,N (A)—which is the column space of V2—so
that it is perpendicular to the column space of U2. However, U⊥2 = U1 and the column
space of U1 is the column space of A, namely,R(A). Hence, the necessary and sufficient
condition UT

2 BV2 = 0 demands that B : N (A)→ R(A) , that is, the matrix B, which is the
dual part of Â, must map the null space of A to the range of A. This interpretation has the
advantage of simplicity and can often be checked more easily.

Remark 3. The necessary and sufficient condition UT
2 BV2 = 0 for a {1}-dual generalized inverse

to exist requires that the matrix B must always be expressible as (see Lemma 4, Equation (20))

B = Z− (U2UT
2 )Z(V2VT

2 ) (36)

for some m-by-n matrix Z. As before, the matrices U2 and V2 come from the singular value
decomposition of the real part, A, of the m-by-n dual matrix Â (see Lemma 3, Equation (13)).



Symmetry 2021, 13, 1386 9 of 28

The homogeneous matrix equation UT
2 BV2 = 0 is obviously consistent and its solution is

explicitly given by Equation (36), since (UT
2 )

+
= U2 and (VT

2 )
+
= V2.

As stated in the previous remark, Equation (36) shows that, if either U2 = 0 or V2 = 0,
then the dual part, B, of the matrix Â can be any arbitrary matrix. However, if neither U2
nor V2 is zero, then B cannot be an arbitrary matrix that is independent of the real part,
A, of Â in order for Â{1} to exist. In that case, the set of matrices B are given explicitly in
Equation (36), for any arbitrary matrix Z.

Remark 4. If the {1}-dual generalized inverse Â{1} = G + εR of the m-by-n matrix Â = A + εB

exists, then the {1}-dual generalized inverse (ÂT)
{1} of the matrix ÂT = AT + εBT also exists.

Since the {1}-inverse of Â must satisfy Equations (5) and (6), we have

AGA = A⇒ ATGT AT = AT

B = BGA + ARA + AGB⇒ BT = BTGT AT + AT RT AT + ATGT BT

But the two implications above, that follow from Equations (5) and (6), are exactly the
two relations required for GT + εRT to be a {1}-dual generalized inverse of ÂT = AT + εBT. In

short, if Â{1} = G+ εR is a {1}-dual generalized inverse of Â = A+ εB, then (ÂT)
{1}=GT + εRT

is a {1}-dual generalized inverse of ÂT = AT + εBT .
As an alternative proof, for finding the {1}-dual generalized inverse of ÂT = AT + εBT ,

we need to find the singular value decomposition of its real part, AT , which is given by
AT = V1ΛUT

1 (see Lemma 3). From Result 1, ÂT has a {1}-dual generalized inverse if
and only if VT

2 BTU2 = 0⇒ UT
2 BV2 = 0 . Therefore, the necessary and sufficient condition

for ÂT to have a {1}-dual inverse is the same as that for Â to have a {1}-dual generalized
inverse! Hence, if the {1}-dual generalized inverse of Â exists, then the {1}-dual generalized
inverse of ÂT also exists and vice-versa. The previous proof has the advantage of giving us

that (ÂT)
{1}

= (Â{1})
T

, where Â{1} is given in Equation (32).
We next turn to finding the {2}-inverse of an m-by-n matrix Â. We show that a {2}-

generalized inverse of a dual matrix always exists and provide an explicit equation for it.

Result 3. Every dual matrix Â = A + εB always has a {2}-dual generalized inverse. In the
notation of Lemma 3 (Equation (13), a set of {2}-dual inverses of Â is explicitly given by

A{2} = A+ − ε(V1Λ−1PΛ−1UT
1 − Z + V1VT

1 ZU1UT
1 + V2VT

2 ZU2UT
2 ) (37)

in which Z is an arbitrary n-by-m matrix and P = UT
1 BV1. The matrices Ui, Vi, i = 1, 2, are

obtained from the singular value decomposition (see Lemma 3) of the real part, A, of Â
and A+ is the Moore–Penrose inverse of A.

Proof. We know from Lemma 2 that Â{2} = G + εR = A{2} + εR. The necessary and
sufficient condition (see Lemma 1) for Â{2} to exist is that the matrix R must satisfy the
second MP dual condition (Equation (8)), so that

R = RAA{2} + A{2}BA{2} + A{2}AR (38)

From Lemma 2, A{2} is obtained from the right-hand side of Equation (14) with the
matrices L and K arbitrary and M = LΛK. In addition, using the singular value decomposi-
tion of A given in Equation (13), after some simplification, the MP dual condition becomes:

R = RU
[

I ΛK
0 0

]
UT + V

[
Λ−1 K
L M

][
P Q
S W

][
Λ−1 K
L M

]
UT + V

[
I 0
LΛ 0

]
VT R (39)
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where we denoted UT BV by the right-hand side of Equation (26).
Denoting

VT RU =

[
VT

1 RU1 VT
1 RU2

VT
2 RU1 VT

2 RU2

]
:=
[

P1 Q1
S1 W1

]
(40)

and pre-multiplying Equation (39) by VT and post-multiplying it by U, we obtain the relation[
P1 Q1
S1 W1

]
=

[
P1 P1ΛK
S1 S1ΛK

]
+

[
J1 J2
J3 J4

]
+

[
P1 Q1
LΛP1 LΛQ1

]
(41)

where (M = LΛK)

J1 := (Λ−1P + KS)Λ−1 + (Λ−1Q + KW)L, J2 = J1ΛK := (Λ−1P + KS)K + (Λ−1Q + KW)M
J3 = LΛJ1 := (LP + MS)Λ−1 + (LQ + MW)L, J4 := (LP + MS)K + (LQ + MW)M.

Equating the upper corner block submatrices and the lower corner block submatrices
on both sides of Equation (41), we obtain the two independent equations (M = LΛK):

P1 := VT
1 RU1 = −J1 (42)

W1 := VT
2 RU2 = S1ΛK + LΛQ1 + J4 := C2 (43)

that must be satisfied, so that a {2}-dual generalized inverse exists. Equating the off-
diagonal block submatrices on both sides of Equation (41) does not lead to new equations.
Notice that, in Equation (43), the matrices S1 and Q1 given in Equation (40) also depend on R.

As before, the steps from Equation (38) to Equations (42) and (43) are reversible;
therefore, the necessary and sufficient conditions for a {2}-dual generalized inverse to
exist are that Equations (42) and (43) be satisfied. However, as we shall now show, these
equations can always be satisfied by a suitable matrix R.

To show that solution matrices, R, of these two equations always exist, we can set the ar-
bitrary matrices K and L equal to zero, so that M = 0. This makes A{2} = A+ (see Equation (18),
Lemma 3), J1 = Λ−1PΛ−1, J4 = 0 and C2 = 0. Then, Equations (42) and (43) become

VT
1 RU1 = −Λ−1PΛ−1 (44)

From Lemma 4, the second equation above has the solution R = Z1 −V2VT
2 Z1U2UT

2 ,
which, when substituted in the first equation, gives VT

1 Z1U1 = −Λ−1PΛ−1, since
VT

1 V2 = 0. Again, using Lemma 4, the solution of this equation is given by
Z1 = −V1(Λ−1PΛ−1)UT

1 + Z − V1VT
1 ZU1UT

1 , where Z is an arbitrary n-by-m matrix.
Substituting for Z1 in the expression for R that we just obtained and noting VT

2 V1 = 0, the
result follows. �

3.2. On the Existence of a {1,3}- and {1,4}-Dual Generalized Inverses of an m-by-n Dual Matrix Â

A {1, 3}-dual generalized inverse, Ĝ = G + εR, of an m-by-n matrix Â, if it exists, is
defined as a dual matrix that satisfies the first and third MP dual conditions ÂGÂ = Â and
ÂĜ = (ÂĜ)

T . These two relations are equivalent to the relation

ÂT ÂĜ = ÂT (45)

Clearly if the two relations are satisfied then Â = ÂĜÂ = (ÂĜ)
T Â = ĜT ÂT Â.

Taking the transpose of this relation yields Equation (45). Conversely, if Equation (45) is
true then taking its transpose we obtain Â = (ÂĜ)

T Â and post multiplying both sides by Ĝ
shows that ÂĜ is symmetric and ÂĜ = (ÂĜ)

T . Substituting this relation in Â = (ÂĜ)
T Â

gives ÂĜÂ = Â.
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A {1,4}-dual generalized inverse, Ĝ = G + εR, of Â, if it exists, is defined as a dual
matrix that satisfies the two MP dual conditions ÂĜÂ = Â and ĜÂ = (ĜÂ)

T . It can be
shown in a similar manner that these two relations are equivalent to the relation

ÂÂTĜT = Â (46)

when dealing with real matrices one simply removes the hats everywhere in the above
discussion to find that the first and third MP conditions AGA = A and AG = (AG)T

are equivalent to the relation AT AG = AT . Thus, a matrix A{1,3} is a {1,3}-generalized
inverse of a real matrix A if and only if AT AA{1,3} = AT . Similarly, the first and fourth MP
conditions AGA = A and GA = (GA)T are equivalent to the relation AATGT = A. Thus, a

matrix A{1,4} is a {1,4}-generalized inverse of a real matrix A if and only if AAT(A{1,4})
T
= A.

Result 4. The necessary and sufficient condition for an m-by-n dual matrix Â = A + εB to have a
{1,3}-dual generalized inverse (see Section 1 for the definition) is that

UT
2 BV2 = 0 (47)

where the matrices U2 and V2 are obtained from the singular value decomposition of the
real part, A, of Â, using the notation established in Lemma 3 (see Equation (13)).

Proof. By Lemma 2, Â{1,3} = Ĝ = G + εR = A{1,3} + εR must satisfy Equation (45) which,
upon carrying out the multiplications (ε2 = 0), gives the necessary and sufficient condition
for Â{1,3} to exist as

AT AG + ε(BT AG + AT BG + AT AR) = AT + εBT

which becomes
AT AG = AT (48)

BT = BT AG + AT BG + AT AR. (49)

The first equality simply states that G = A{1,3}, which always exists, so that
Â{1,3} = A{1,3} + εR, something we already knew from Lemma 2. Using the notation
in Lemma 3 and substituting for A and G from Equations (13) and (15) in Equation (49), we
obtain the necessary and sufficient condition for Â{1,3} to exist as

BT = BTU
[

I 0
0 0

]
UT + V

[
Λ 0
0 0

]
UT BV

[
Λ−1 0
L M

]
UT + V1Λ2VT

1 R (50)

where L and M are arbitrary matrices (see Lemma 3). Pre-multiplying both sides by VT and
post-multiplying both sides by U and using the notation in Equation (26) for UT BV give[

PT ST

QT WT

]
=

[
PT 0
QT 0

]
+

[
Y1 ΛQM
0 0

]
+

[
Λ2VT

1 RU1 Λ2VT
1 RU2

0 0

]
(51)

where Y1 = ΛPΛ−1 + ΛQL.
Then, equating the submatrices on both sides gives us the relations

W = UT
2 BV2 = 0 (52)

VT
1 RU1 = −(Λ−1PΛ−1 + Λ−1QL) (53)

VT
1 RU2 = Λ−2ST −Λ−1QM (54)

Since the steps from Equation (49) to Equations (52)–(54) are reversible, Equations (52)–(54)
are the necessary and sufficient conditions for Â{1,3} to exist.
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Equation (52) places a restriction on B, the dual part of A; Equations (53) and (54)
demand that a matrix R must exist such that they are satisfied.

The last two equations can be combined to read

VT
1 RU = [−(Λ−1PΛ−1 + Λ−1QL) | Λ−2ST −Λ−1QM]

so that
VT

1 R = [−(Λ−1PΛ−1 + Λ−1QL) | Λ−2ST −Λ−1QM]UT := C3. (55)

We now prove that the dual part, R, always exists so that Equation (55) is satisfied.
This requires us to show that Equation (55) is consistent for all matrices C3. From Lemma 4,
the necessary and sufficient condition for consistency is that

VT
1 (V+

1 )
TC3 = C3 (56)

which is the case, since the columns of V1 are orthonormal and V+
1 = VT

1 , so that

VT
1 (V+

1 )
T
= Ir. Hence, only the necessary and sufficient condition in Equation (52) remains. �

Result 5. The set of {1,3}-dual generalized inverses, Â{1,3}, of the m-by-n dual matrix Â = A + εB
exists if and only if the condition UT

2 BV2 = 0 is satisfied and it is explicitly given by the set
of matrices

Â{1,3} = A{1,3} + ε[V1C3 + (I −V1VT
1 )Z] (57)

where Z is an arbitrary n-by-m matrix and C3 = [−(Λ−1PΛ−1 + Λ−1QL) | Λ−2ST −
Λ−1QM]UT . The matrices Ui, Vi, i = 1, 2 and Λ are obtained from the singular value de-
composition of A with the notation given in Lemma 3. The matrix P = UT

1 BV1, Q = UT
1 BV2

and S = UT
2 BV1. A{1,3} are explicitly given in Equation (15), in which L and M are arbi-

trary matrices.

Proof. On the right-hand side of Equation (57), A{1,3} is explicitly given in Equation (15),
in which L and M are arbitrary matrices. The dual part of Â{1,3} is obtained by solving
Equation (55), which gives (see Lemma 4)

R = (VT
1 )

+
C3 + [I − (VT

1 )
+

VT
1 ]Z (58)

where Z is an arbitrary n-by-m matrix. Noting that (VT
1 )

+
= (V+

1 )
T
= V1, the result follows. �

Remark 5. Setting Z = 0 in Equation (57) gives a subset of {1,3}-dual generalized inverses of
Â = A + εB, that is explicitly given by

Â{1,3} = A{1,3} + εV1[−(Λ−1PΛ−1 + Λ−1QL) | Λ−2ST −Λ−1QM]UT (59)

where the matrices Λ, U, and Ui, Vi, i = 1, 2, are obtained from the singular value decom-
position of A with the notation given in Lemma 3 (Equation (13)). The matrix P = UT

1 BV1,
Q = UT

1 BV2 and S = UT
2 BV1. The set of matrices A{1,3} is explicitly given by the right-hand

side of Equation (15), in which L and M are arbitrary matrices.
Furthermore, setting the arbitrary matrices L, M and Z to zero, Equation (59) reduces

and we obtain a simple expression for a {1,3}-dual generalized inverse of Â as

Â{1,3} = A+ + εV1[−Λ−1PΛ−1 Λ−2ST ]UT (60)

Remark 6. The entire discussion in Remarks 2 and 3 is also applicable to the {1,3}-generalized of a
dual matrix Â.

We next consider the {1,4}-dual generalized inverse of the m-by-n matrix Â = A + εB.
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Result 6. The necessary and sufficient condition for an m-by-n dual matrix Â = A + εB to have a
{1,4}-dual generalized inverse is that

UT
2 BV2 = 0

Proof. By Lemma 2, Â{1,4} = G + εR = A{1,4} + εR. The equation ÂÂTĜT = Â
(Equation (46)) is satisfied with Ĝ = Â{1,4}. Carrying out the multiplications, this equation
gives the necessary and sufficient conditions for the existence of a {1,4}-dual generalized
inverse as

AATGT + ε(BATGT + ABTGT + AAT RT) = A + εB (61)

Hence, AATGT = A, which is what is already known (Lemma 2), namely, G = A{1,4}

(see Equation (16)), and we obtain the necessary and sufficient condition for the existence
of a {1,4}-dual generalized inverse to be

BATGT + ABTGT + AAT RT = B (62)

Substituting for A and A{1,4} from Equations (13) and (16) and using the notation for
UT BV given in Equation (26), this equation reduces, after some algebra, to[

P 0
S 0

]
+

[
ΛPTΛ−1 + ΛSTKT ΛST MT

0 0

]
+

[
Λ2UT

1 RTV1 Λ2UT
1 RTV2

0 0

]
=

[
P Q
S W

]
(63)

From which we obtain
W = UT

2 BV2 = 0 (64)

RU1 = V
[
−(Λ−1PΛ−1 + KSΛ−1)

QTΛ−2 −MSΛ−1

]
:= C4 (65)

in which K and M are arbitrary matrices. Since all the steps from Equation (61) to
Equations (64) and (65) are reversible, Equations (64) and (65) give the necessary and
sufficient conditions for a {1,4}-dual generalized inverse of Â to exist.

Equation (65) demands that a matrix R that satisfies it exists. However, one can
always find a matrix R so that equation (65) is satisfied. From Lemma 4, the necessary
and sufficient condition for its consistency is that C4(U1)

+U1 = C4, which is true, since
(U1)

+ = UT
1 , and UT

1 U1 = Ir. This leaves only the necessary and sufficient condition given
in Equation (64). Hence, the result. �

Result 7. The set of {1, 4}-dual generalized inverses, Â{1,4}, of the m-by-n dual matrix Â = A+ εB
exists if and only if the condition UT

2 BV2 = 0 is satisfied and it is explicitly given by (see Lemma 4)

Â{1,4} = A{1,4} + ε

{
V
[
−Λ−1PΛ−1 − KSΛ−1

QTΛ−2 −MSΛ−1

]
UT

1 + Z(I −U1UT
1 )

}
(66)

in which the matrices Λ, Ui, Vi, i = 1, 2, come from the singular value decomposition
of A, as shown in Lemma 3, Z, K and M are arbitrary matrices (Lemma 3) and the set of
matrices A{1,4} is explicitly given in Equation (16). The matrix P = UT

1 BV1, Q = UT
1 BV2

and S = UT
2 BV1.

Proof. The solution of Equation (65) is directly obtained as shown in Equation (66) by using
Lemma 4. �

Remark 7. Setting Z = 0 in Equation (66), we obtain a simpler subset for R and

Â{1,4} = A{1,4} + εV
[
−(Λ−1PΛ−1 + KSΛ)

QTΛ−2 −MSΛ−1

]
UT

1 (67)
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Further, choosing K and M to be zero, we find that an even simpler expression for a
{1,4}-dual generalized inverse of Â is given by

Â{1,4} = A+ + εV
[
−Λ−1PΛ−1

QTΛ−2

]
UT

1 (68)

Remark 8. The contents of Remarks 2 and 3 are applicable to the {1,4}-dual generalized inverse.

We note that the condition UT
2 BV2 = 0 is a necessary and sufficient condition for a

{1}-, a {1,3}-, {1,4}-dual generalized inverse to exist of a dual matrix. Therefore, we have the
following important result.

Result 8. A matrix Â has {1,3}- and {1,4}-dual generalized inverses if and only if it has a {1}-dual
generalized inverse.

The existence of any one of the three matrices Â{1}, Â{1,3}, or Â{1,4} guarantees the
existence of the other two.

Proof. The result follows from Results 1, 4 and 6. �

3.3. On the Existence of a {2,4}-Dual Generalized Inverses of an m-by-n Dual Matrix Â

While the {1,3}- and {1,4}-dual generalized inverses of a dual matrix are useful in the
solution of dual matrix equations, the {2,4}-generalized inverse is not used as often. We
obtain the necessary and sufficient conditions for the existence of this inverse, since we will
need it in what follows.

A dual matrix is defined to be a {2,4}-dual generalized of the m-by-n matrix Â = A+ εB
when it satisfies the second and fourth MP dual conditions (see Equations (2) and (4)),

namely, Â{2,4} ÂÂ{2,4} = Â{2,4} and Â{2,4} Â = (Â{2,4} Â)
T

. In a manner analogous to the
{1,3}-dual generalized inverse, these two MP dual conditions are equivalent to the condition

ÂT(Â{2,4})
T

Â{2,4} = Â{2,4} (69)

If the second and fourth MP dual conditions are satisfied, then substituting

Â{2,4} Â = (Â{2,4} Â)
T

in the second MP condition gives Equation (69). Conversely, we
show that if Equation (69) is satisfied, the second and fourth MP conditions are satisfied.

This is because from Equation (69), we obtain ÂT(Â{2,4})
T

Â{2,4} Â = Â{2,4} Â, showing

that Â{2,4} Â is symmetric; hence Â{2,4} Â = (Â{2,4} Â)
T

. Thus, the fourth MP condition is
satisfied. Substituting this relation in Equation (69) gives the second MP dual condition.

Result 9. The set of {2,4}-dual generalized inverse Â{2,4}of the m-by-n matrix Â = A + εB always
exists and is explicitly given by the relation

Â{2,4} = A{2,4} + εR (70)

where

R = V
[
−(Λ−1PΛ−1 + KSΛ−1)

(QTΛ−1 + WTKT)Λ−1

]
UT

1 + V2(QTΛ−1 + WTKT)KUT
2 −V2VT

2 ZU2UT
2 + Z(I −U1UT

1 ) (71)

in which Z and K are arbitrary matrices. The matrices P = UT
1 BV1, Q = UT

1 BV2 and
W = UT

2 BV2.
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Proof. Expressing Â{2,4} = G + εR = A{2,4} + εR (see Lemma 2) and carrying out the
multiplication on the left-hand side, Equation (69), that gives the necessary and sufficient
condition for Â{2,4} to exist, is

ATGTG + ε(BTGTG + AT RTG + ATGT R) = G + εR

This yields ATGTG = G, which is equivalent to G = A{2,4}, something we already
know; then, the necessary and sufficient condition for a {2,4}-dual generalized inverse to
exist is

BTGTG + AT RTG + ATGT R (72)

Substituting the expressions for A and A{2,4} from Equations (13) and (17) (see
Lemma 3), Equation (72) can be rewritten as

BTU
[

Λ−2 Λ−1K
KTΛ−1 KTK

]
UT + V

[
ΛPT

1 Λ−1 ΛPT
1 K

0 0

]
UT + V

[
I 0
0 0

]
VT R = R (73)

where we used the notation for VT RU, as given in Equation (40). The matrix K is arbitrary.
Pre-multiplying Equation (73) by VT and post-multiplying it by U, upon using the

notation in Equation (26) for UT BV, we obtain[
PTΛ−2 + STKTΛ−1 PTΛ−1K + STKTK

QTΛ−2 + WTKTΛ−1 QTΛ−1K + WTKTK

]
+

[
ΛPT

1 Λ−1 ΛPT
1 K

0 0

]
+

[
P1 Q1
0 0

]
=

[
P1 Q1
S1 W1

]
. (74)

Equating the submatrices on both sides yields the independent conditions

P1 = VT
1 RU1 = −(Λ−1PΛ−1 + KSΛ−1), (75)

S1 = VT
2 RU1 = (QTΛ−1 + WTKT)Λ−1 (76)

W1 = VT
2 RU2 = (QTΛ−1 + WTKT)K. (77)

Since the steps from Equation (72) to Equations (75)–(77) can be reversed, the last three
equations are the necessary and sufficient conditions for a {2,4}-dual generalized inverse
to exist.

Combining the first two Equations (75) and (76), we obtain

RU1 = V
[
−(Λ−1PΛ−1 + KSΛ−1)

(QTΛ−1 + WTKT)Λ−1

]
.

By Lemma 4, this equation is consistent and its solution for R is given by

R = V
[
−(Λ−1PΛ−1 + KSΛ−1)

(QTΛ−1 + WTKT)Λ−1

]
UT

1 + Z1(I −U1UT
1 ) (78)

where Z1 is an arbitrary n-by-m matrix.
Substituting this expression for R in Equation (77) gives

VT
2 Z1U2 = (QTΛ−1 + WTKT)K

which is consistent (see Lemma 4) and whose solution is

Z1 = V2(QTΛ−1K + WTKTK)UT
2 + Z−V2VT

2 ZU2UT
2

where Z is an arbitrary n-by-m matrix. Using this expression for Z1 in Equation (78), we
finally obtain R, which reduces to

R = V
[
−(Λ−1PΛ−1 + KSΛ−1)

(QTΛ−1 + WTKT)Λ−1

]
UT

1 + Z1 − ZU1UT
1 . (79)
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�

3.4. On the Existence of the {1,2,3} and {1,2,4} Dual Generalized Inverse of an m-by-n Matrix Â

The {1,2,3}-dual generalized inverse of the m-by-n matrix Â = A + εB is defined
as a dual matrix that satisfies the conditions for being a {1,3}-dual generalized inverse
(Equations (5), (6), (9) and (10)) and those for being a {2}-dual generalized inverse of Â
(Equations (7) and (8)). The necessary and sufficient conditions for a {1,3}-dual generalized
inverse to exist are given in Equations (52)–(54) and the necessary and sufficient conditions
for being a {2}-inverse are given in Equations (42)–(43). This motivates the following result.

Result 10. {1,2,3}-dual generalized inverses of the matrix Â = A + εB exists if and only if

UT
2 BV2 = 0 (80)

where U2 and V2 come from the singular value decomposition of the real part, A, of Â, as
shown in Equation (13), using the notation given in Lemma 3.

We show that this is true and provide an explicit result for the {1,2,3}-dual generalized
inverse next.

Result 11. The set of {1,2,3}-dual generalized inverses of a dual matrix Â = A + εB exists if and
only if the condition UT

2 BV2 = 0 and it is explicitly given by

Â{1,2,3} = A{1,2,3} + εR (81)

In which

R = −V1[−(Λ−1PΛ−1 + Λ−1QL)
∣∣∣Λ−2ST ]UT + V2(LΛ−1ST)UT

2 − (V2VT
2 )Z(U2UT

2 ) + (I −V1VT
1 )Z. (82)

where matrices Z and L are arbitrary. The notation in Lemma 3 regarding the singular
value decomposition of A is used. The set of matrices A{1,2,3} is given by the right-hand
side of Equation (14), in which K and M are set to zero (see Lemma 3). The matrices U,
Λ, Ui, Vi, i = 1, 2, come from the singular value decomposition of A given in Equation (13)
and P = UT

1 BV1, Q = UT
1 BV2 and S = UT

2 BV1.

Proof. We know that Â{1,2,3} = A{1,2,3} + εR. Moreover, when finding the {1,3}-dual
generalized inverse, we used Â{1,3} for the real part of Â{1,3}. In order to ensure that the
real part of Â{1,2,3} is A{1,2,3}, we must ensure that M = 0 (see Lemma 2, for the general
form of A{1,2,3}). Setting M = 0 in the necessary and sufficient conditions for a {1,3}-dual
generalized inverse to exist given Equations (52)–(54), we obtain

W = UT
2 BV2 = 0, VT

1 RU1 = −(Λ−1PΛ−1 + Λ−1QL) and VT
1 RU2 = Λ−2ST (83)

In addition, A{1,2,3} is required to be a {2}-dual generalized inverse and, again, we
want the real part of A{2} to be A{1,2,3}. To ensure this, we need to set the matrices K and
M to zero in the necessary and sufficient conditions for a {2}-dual inverse to exist given in
Equations (42) and (43). This gives the necessary and sufficient conditions for a {2}-dual
inverse to exist that has K = M = 0 as

VT
1 RU1 = −(Λ−1PΛ−1 + Λ−1QL) (84)

VT
2 RU2 = LΛQ1 = LΛ(VT

1 RU2) = LΛ−1ST (85)

Combining Equations (83) and (85), we see that the necessary and sufficient conditions
to be satisfied by a {12,3}-dual generalized inverse are

W = UT
2 BV2 = 0 (86)
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VT
1 RU1 = −(Λ−1PΛ−1 + Λ−1QL), VT

1 RU2 = Λ−2ST andVT
2 RU2 = LΛ−1ST (87)

Equation (87) demands that an R must exist that satisfies the three relations in it. We
now show that one can always find a matrix R that satisfies these relations. Since the real
part of Â{1,2,3} is A{1,2,3}, which is known to exist for any real matrix A, our concern is to
find the matrix R.

The first two equations in (87) can be re-written as

VT
1 R = [−(Λ−1PΛ−1 + Λ−1QL) | Λ−2ST ]UT (88)

which is consistent by Lemma 4 and whose solution is

R = V1[−(Λ−1PΛ−1 + Λ−1QL) | Λ−2ST ]UT + (I −V1VT
1 )Z1 (89)

where Z1 is an arbitrary n-by-m matrix. Substituting this expression for R in the last
equation in Equation (87), we obtain the consistent (see Lemma 4) equation for Z1 as

VT
2 RU2 = VT

2 Z1U2 = LΛ−1ST

whose solution is
Z1 = V2(LΛ−1ST)UT

2 + Z−V2VT
2 ZU2UT

2

where Z is an arbitrary n-by-m matrix. Using this expression in Equation (89), we obtain

R = V1[−(Λ−1PΛ−1 + Λ−1QL) | Λ−2ST ]UT + Z1 −V1VT
1 Z

Since there always exist matrices R so that the necessary and sufficient conditions
given in Equation (85) are always satisfied, the only necessary and sufficient condition left
is the one in Equation (86); hence, the result. �

The set of matrices Â{1,2,3} are explicitly obtained. Similar to this result, we now show
that the set of {1,2,4}-dual generalized inverse of Â always exists if and only if the {1}-dual
inverse exists.

A {1,2,4}-dual generalized inverse is defined as a dual matrix that satisfies the first,
second and fourth MP dual conditions (See Lemma 1).

Result 12. The dual matrix Â = A + εB has a {1,2,4}-dual generalized inverse if and only if it has
a {1}-dual generalized inverse. The {1,2,4} generalized inverse is given by

Â{1,2,4} = A{1,2,4} + εR

where A{1,2,4} is given by the right-hand side of Equation (14) with the matrices L and M
equal to zero and

R = V
[
−(Λ−1PΛ−1 + KSΛ−1)

QTΛ−2

]
UT

1 + V2QTΛ−1KUT
2 −V2VT

2 ZU2UT
2 + Z(I −U1UT

1 ) (90)

in which Z and K are arbitrary matrices and P = UT
1 BV1, Q = UT

1 BV2 and W = UT
2 BV2.

The matrices Ui, Vi, i = 1, 2, and V come from the singular value decomposition of A (see
Lemma 3).

Proof. The Â{1,2,4} is both a {2,4}-dual generalized inverse and a {1}-dual generalized
inverse. Its real part must be A{1,2,4}. Hence, the matrices L and M must be both
zero (see Lemma 3). Being a {2,4}-dual generalized inverse, Â{1,2,4} must satisfy the
necessary and sufficient conditions in Equations (75)–(77). In addition, it must satisfy
the necessary and sufficient conditions for being a {1}-dual generalized inverse, namely,
Equations (28) and (29), with L = 0. Equation (28) says that W = 0 and Equation (29), with
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L = 0, is the same as Equation (75). Hence, the necessary and sufficient conditions for a
{1,2,4}-dual generalized inverse to exist are

W = UT
2 BV2 = 0 (91)

VT
1 RU1 = −(Λ−1PΛ−1 + KSΛ−1), (92)

VT
2 RU1 = QTΛ−2 (93)

VT
2 RU2 = QTΛ−1K. (94)

The last three conditions demand that a matrix R must exist that satisfies
Equations (92)–(94). However, the last three equations were already considered and a
set of matrices R that satisfies them was obtained in Equation (71). However, we need to
set the matrices L and W to zero in it. Performing this, Equation (71) then gives

R = V
[
−(Λ−1PΛ−1 + KSΛ−1)

QTΛ−2

]
UT

1 + V2QTΛ−1KUT
2 −V2VT

2 ZU2UT
2 + Z(I −U1UT

1 ) (95)

in which Z and K are arbitrary matrices and P = UT
1 BV1, Q = UT

1 BV2 and W = UT
2 BV2.

This leaves Equation (91), namely, UT
2 BV2 = 0, as the remaining necessary and

sufficient condition for the existence of the {1,2,4}-dual generalized inverse. Hence, the
result. �

3.5. On the Existence of the Moore–Penrose Dual Generalized Inverse of an m-by-n Matrix Â

In this section we obtain the necessary and sufficient condition for the Moore–Penrose
dual inverse (MPDGI) of a matrix Â to exist; when this condition is satisfied, the explicit
closed for expression for the MPDGI is obtained. The proof of this result can also be found
in reference [5] and is given here just for completeness.

Result 13. If the MPDGI of the dual matrix Â exists, it is unique.

Proof. See reference [5]. �

We next provide the closed-form expression for the MPDGI of a dual matrix irrespec-
tive of the rank of its real part and state the following new result.

Result 14. A unique Moore–Penrose dual generalized inverse of the m-by-n matrix Â = A + εB
exists if and only if UT

2 BV2 = 0 and it is given explicitly by

Â{1,2,3,4} = A+ + εV
[
−Λ−1PΛ−1 Λ−2ST

QTΛ−2 0

]
UT (96)

where A+ is the unique Moore–Penrose generalized inverse (see Equation (18)) of the
matrix A and P = UT

1 BV1, Q = UT
1 BV2 and S = UT

2 BV1. The notation in Lemma 3 is used
and the matrices Λ, U, V, come from the singular value decomposition of the real part, A,
of Â, as shown in Equation (13).

Proof. By Lemma 2, the MPDGI of Â must have the form

Â{1,2,3,4} = A+ + εR (97)

In which the matrix R must be such that Â{1,2,3,4} is both a {1,3}-dual generalized
inverse and a {2,4}-dual generalized inverse. However, we already know the necessary and
sufficient conditions needed to be satisfied for a matrix to be a {1,3}-dual inverse, except
that, in Section 3.2, we took the real part of the generalized inverse to be A{1,3}. All we need
to do is replace A{1,3} throughout the proof in Result 3 with A+. However, this simply
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requires us to set L and M to zero, as seen in Lemma 2. Hence, the conditions for a Â to
have a {1,3}-dual inverse are simply obtained from Equations (52)–(54) by setting L and M
to zero in these equations. Thus, we obtain

W := UT
2 BV2 = 0, VT

1 RU1 = −Λ−1PΛ−1 and VT
1 RU2 = Λ−2ST (98)

in which P = UT
1 BV1 and S = UT

2 BV1.
Similarly, the necessary and sufficient conditions needed for Â to have a {2,4}-dual

generalized inverse are obtained directly from those in Section 3.3 using Equations (75)–(77)
and setting K = 0. We then obtain

VT
1 RU1 = −Λ−1PΛ−1,VT

2 RU1 = QTΛ−2 and VT
2 RU2 = 0 (99)

in which Q = UT
1 BV2. The real (primal) part of this MPDGI, if it exists, must be A+, so

Â{1,2,3,4} = A+ + εR. We must then show that the relations in Equations (98) and (99) can
always be solved to obtain R.

Equations (98) and (99) lead to five necessary and sufficient conditions for the existence
of an MPDGI, which can be re-written more compactly as

VT RU =

[
−Λ−1PΛ−1 Λ−2ST

QTΛ−2 0

]
and UT

2 BV2 = 0 (100)

The first matrix equation gives R as

R = V
[
−Λ−1PΛ−1 Λ−2ST

QTΛ−2 0

]
UT (101)

The matrix Λ−1PΛ−1 is r-by-r, QTΛ−2 is (n− r)-by-r, the matrix Λ−2ST is r-by-(m− r).
Thus, Â{1,2,3,4} = A+ + εR, with R given by Equation (101). By Result 13, we know it

is the unique MPDGI of Â, as is also obvious from the right-hand side of Equation (101).
Since such a matrix R always exists, the necessary and sufficient condition for the MPDGI
to exist is UT

2 BV2 = 0. �

We note that the condition UT
2 BV2 = 0 is a necessary and sufficient condition for a dual

matrix to have a {1}-, a {1,3}-, {1,4}- and a (unique) Moore–Penrose dual generalized inverse.
Therefore, using the least restrictive inverse, we have the following important result.

Result 15. The Moore–Penrose dual inverse (MPDGI) of the dual matrix Â exists if and only if a
{1}-dual generalized inverse of a matrix Â exists.

Proof. The result follows from Results 1 and 14. �

Result 16. An m-by-n dual matrix that has either full row rank or full column rank always has a
unique Moore–Penrose dual generalized inverse.

Proof. Since the dual matrix has either full row or full column rank, by Remark 2, it always
has an {1}-dual generalized inverse and, from Results 13 and 15, the assertion follows. �

While the above result is known “in isolation”, the reason why the presence of the full
rank of A permits the existence of the MPDGI is, to the best of the author’s knowledge,
not known. The deeper connections discovered here, in Results 14 and 15, show that the
reason for this is that a dual matrix Â has to have a {1}-dual generalized inverse for its
MPDGI to exist. Moreover, when it does have a {1}-dual generalized inverse, its MPDGI is
given by the simple explicit expression given in Equation (101) (see Result 14), whatever the
rank of A might be. Thus, what really matters is not whether or not A has full rank, (which
is the accepted criterion scientists and engineers use today) but whether or not Â has a
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{1}-dual generalized inverse. A dual matrix Â can have a real part that is rank deficient
and yet have an MPDGI, provided it has a {1}-dual generalized inverse. As shown in Result
16, it just so happens that when A has full row (column) rank, it always has a {1}-dual
generalized inverse (see Remark 2) and, therefore, an MPDGI.

The results here have thus answered a deeper question—can a dual matrix whose real
part is rank deficient have an MPDGI? The answer is in the affirmative and we gave the
explicit expression for the MPDGI in Result 14.

Remark 8. When the real part of the m-by-m dual matrix Â has rank m, then, by Remark 2, Â has a
{1}-dual generalized inverse (see Remark 2). Equation (101) simplifies to R = −VΛ−1PΛ−1UT =
−VΛ−1UT BVΛ−1UT = −A+BA+, giving

Â{1,2,3,4} = A+ − εA+BA+ = A−1 − εA−1BA−1 (102)

The last equality follows, because A is nonsingular; therefore, A+ = A−1. We consider
this result a bit further in the next section. This result is well-known and we see how easily
it falls out of the general expression for the MPDGI given in Equation (101), that is valid
irrespective of the rank of A. As seen from the right-hand side of the first equality in (102),
Â{1,2,3,4} is unique, something we already know from Result 13.

In fact, when the real part, A, of the m-by-m (square) dual matrix Â = A + εB is
nonsingular, then the matrix in the second equality in Equation (102) can be thought of as
the unique “inverse” of the dual matrix Â. For, the dual matrix,

Â−1 = A−1 − εA−1BA−1 (103)

which is also the MPDGI of Â (see Equation (102)), is the dual counterpart of the real
(ordinary) matrix inverse, as can be seen by computing the quantities

ÂÂ−1 = (A + εB)(A−1 − εA−1BA−1) = I (104)

Â−1 Â = (A−1 − εA−1BA−1)(A + εB) = I + εA−1B(I − A−1 A) = I (105)

Thus, we find that
ÂÂ−1 = Â−1 Â = I (106)

which is analogous to the relation satisfied by inverses of real (ordinary) matrices.
We can then call square (m-by-m) dual matrices whose real parts are nonsingular dual

invertible matrices.
Observe that the dual inverse (MPDGI), Â−1, of a dual invertible matrix Â is obtained

in Equation (103) directly in terms of its real and dual parts and no singular value decompo-
sitions are involved. In addition, when B = 0, so that Â becomes real, the equation simply
becomes an identity.

As shown above, proving the known result given in Equation (103) is indeed trivial.
It is included here because we shall see, in Result 18, that it has a very useful application
when we extend our investigation beyond dual invertible matrices, that is, from square
dual matrices whose real parts are nonsingular to non-square dual matrices whose real
parts have full rank. However, first, we give a result on the dual inverse of a product of
dual invertible matrices, which is analogous to that for real matrices.

Result 17. Consider the m-by-m dual invertible matrices Âi = Ai + εBi, i = 1, 2, . . . , n. Then

(Â1 Â2 . . . Ân−1 Ân)
−1

= Â−1
n Â−1

n−1 . . . A−1
2 A−1

1 (107)

or
(Â1 Â2 . . . Ân−1 Ân)

{1,2,3,4}
= Â{1,2,3,4}

n Â{1,2,3,4}
n−1 . . . A{1,2,3,4}

2 A{1,2,3,4}
1 (108)
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This result, as with real matrices, also makes the computation and algebraic manipula-
tion of MPDGIs of products of dual invertible matrices easier.

Proof. It suffices to prove that (Â1Â2)
−1

= Â−1
2 Â−1

1 . Let Â−1
i = A−1

i − εA−1
i BiA−1

i , i = 1, 2..
Then, Â1 Â2 = A1 A2 + ε(B1 A2 + A1B2) and, since A1 A2 is square and nonsingular,

(Â1 Â2)
−1

= (A1 A2)
−1 − ε(A1 A2)

−1(B1 A2 + A1B2)(A1 A2)
−1

= A−1
2 A−1

1 − ε(A−1
2 A−1

1 B1 A−1
1 + A−1

2 B2 A−1
2 A−1

1 ),

which is the same as Â−1
2 Â−1

1 , if one multiplies the two terms out. �

The general result for the MPDGI of an m by n dual matrix, so far, has been found
utilizing the framework of singular value decomposition. The next result shows that one
can determine the {1,2,3,4}-dual generalized of a matrix Â = A + εB, whose real part, A,
has full row(column) rank directly in terms of its real and dual parts—A and B—just like
we observed in the case of dual invertible matrices.

Result 18. Consider the m-by-n dual matrix Â = A + εB:

(i) When Rank(A) = m, i.e., A has full row rank; then,

Â{1,2,3,4} = ATC + ε[BTC− ATCDC], where C = (AAT)
−1 and

D = BAT + ABT (109)

(ii) when Rank(A) = n, i.e., A has full column rank; then,

Â{1,2,3,4} = EAT + ε[EBT − EFEAT ], where E = (AT A)
−1 and

F = BT A + AT B.
(110)

Proof. We prove the result for when A has full row rank. The m-by-m dual matrix

ÂÂT = (A + εB)(AT + εBT) = AAT + ε(BAT + ABT)︸ ︷︷ ︸
D

:= AAT + εD.

Since A has rank m, the m-by-m matrix AAT also has rank m and, therefore, is nonsin-
gular. Thus, ÂÂT is a dual invertible matrix. Using Equation (103), we then obtain

(ÂÂT)
{1,2,3,4}

= (ÂÂT)
−1

= (AAT)
−1 − ε(AAT)

−1
D(AAT)

−1
(111)

We prove below, in part (iii) of Result 20, that, if the MPDGI of Â exists—we know,

by Result 16, that it does, because it has full row rank—then Â{1,2,3,4} = ÂT(ÂÂT)
{1,2,3,4}.

Hence, we obtain

Â{1,2,3,4} = ÂT(ÂÂT)
+
= ÂT

(AAT)
−1︸ ︷︷ ︸

C

− ε(AAT)
−1

D(AAT)
−1

 = ÂT [C− εCDC]

which, upon substituting for Â, is the same as Equation (109).
In a similar manner, when A has full column rank, its MPDGI exists (Result 16). By

considering the n-by-n matrix ÂT Â, whose real part, AT A, is nonsingular, Equation (110)

follows, by considering Â{1,2,3,4} = (ÂT Â)
{1,2,3,4} ÂT , which is proved in the following

section, in part (iii) of Result 20. �
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3.6. Other Explicit Results for the Moore–Penrose Dual Generalized Inverse of a Matrix Â

In the previous section, it is shown that, while the {1,2,3,4}-dual generalized inverse of
a dual matrix, when it exists, is unique, the {1,3}- and {1,4}-dual generalized inverses are not
unique (see Section 3.2, Results 5 and 7). This is because {1,3}- and {1,4}-dual generalized
inverses are less restrictive than the {1,2,3,4}-dual generalized inverse, in that they are
defined as dual matrices that need to satisfy only two of the four dual MP conditions, while
an MP-dual generalized inverse (MPDGI) is defined as a matrix that must satisfy all four
of them.

In this section, we begin with a result that permits the determination of the unique
{1,2,3,4}-dual generalized inverse of a dual matrix through the use of any (every) {1,3}- and
any (every) {1,4}-dual generalized inverse of the dual matrix.

Result 19. If and only if either Â{1}, or Â{1,3}, or Â{1,4} exists, the MPDGI of Â = A + εB
exists and it is explicitly given by

Â{1,2,3,4} = Â{1,4} ÂÂ{1,3} (112)

Proof. From Result 8, if and only if either one of the three matrices Â{1}, Â{1,3}, Â{1,4} exists,
then the other two exist. Using the properties of Â{1,3} and Â{1,4} in Equations (1)–(4), we
show that Â given in Equation (112) satisfied the four dual Moore–Penrose conditions
as follows.

MP dual Condition 1: Â(Â{1,4} ÂÂ{1,3})Â = ÂÂ{1,4} Â = Â.

MP dual Condition 2: Â{1,4}ÂÂ{1,3} AÂ{1,4}Â Â{1,3} = Â{1,4} ÂÂ{1,3}Â Â{1,3} = Â{1,4}ÂÂ{1,3}.

MP dual Condition 3: (ÂÂ{1,4} Â Â{1,3})
T
= (ÂÂ{1,3})

T
= ÂÂ{1,3} = ÂÂ{1,4} ÂÂ{1,3}.

MP dual Condition 4: (Â{1,4} ÂÂ{1,3} Â)
T
= (Â{1,4} Â)

T
= Â{1,4} Â = Â{1,4} ÂÂ{1,3} Â

�

Result 19 says the following: As stated before, {1,3}- and {1,4}-dual generalized inverses
of the matrix Â (when they exist) are, in general, not unique. Therefore, one has a set of {1,3}-
and another set of {1,4}-dual generalized inverses of Â. Yet, no matter which particular
{1,3}-dual generalized inverse and which particular {1,4}-dual generalized inverse one
chooses from these sets, the product shown on the right-hand side of Equation (112)
always yields the unique MPDGI of Â. This result is analogous to that for real (ordinary)
generalized inverses.

We now introduce the following Lemma, which will be used in the results that follow.

Lemma 5. For any dual matrix Â = A + εB, the matrices ÂT Â, ÂÂT and ÂT ÂÂT always have
{1}-dual generalized inverses and, therefore, also {1,2,3,4}-dual generalized inverses.

Proof. The matrix ÂT Â = AT A + ε(BT A + AT B) := C + εD. Using the singular value
decomposition of A given in Equation (13) for the real part, C, of the dual matrix ÂT Â, we ob-

tain C = V
[

Λ2 0
0 0

]
VT, so that C{1} = V

[
Λ−2 K
L M

]
VT = [V1 | V2 ]

[
Λ−2 K
L M

]
[V1 | V2 ]

T,

where K, L and M are arbitrary matrices (see Lemma 3).
Using Result 1, ÂT Â has a {1}-dual generalized inverse if and only if VT

2 DV2 = 0,
where D is the dual part of ÂT Â. We show that this is always true. Since D = BT A + AT B,

VT
2 DV2 = VT

2 (BT A + AT B)V2 = VT
2 BT(AV2) + (AV2)

T BV2 (113)

Again, using the singular value decomposition of A, we obtain

AV2 = U
[

Λ 0
0 0

][
VT

1
VT

2

]
V2 = U

[
Λ 0
0 0

][
0
I

]
= U

[
0
0

]
= 0 (114)
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Using Equation (114) we see, from Equation (113), that VT
2 DV2 = 0; hence, ÂT Â has

an MPDGI.
In a similar manner, noting that ATU2 = 0, it can be shown that the matrices ÂÂT and

ÂT ÂÂT always have {1}-dual generalized inverses. Result 15 shows that their MPDGIs
always exist. �

We now use this Lemma to prove the following result.

Result 20. If the matrix Â has a {1}-dual generalized inverse, then

(ÂT)
+
= (Â+)

T (115)

(ÂÂT)
+
= (Â+)

T Â+ = (ÂT)
+

Â+ (116)

Â+ = (ÂT Â)
+

ÂT = ÂT(ÂÂT)
+

(117)

where we denoted the superscript {1,2,3,4} by “+” to reduce clutter.

Proof. By Lemma 5, the {1}-dual generalized inverse of ÂT Â always exists for all dual
matrices Â and its MPDGIs also exist. By Remark 4, since the {1}-dual generalized inverse
of Â exists, the {1}-dual generalized inverse of ÂT also exists; hence, the MPDGIs of both Â
and ÂT exist. The proof given in reference [5] then follows. �

Remark 9. Lemma 5 asserts that the two matrices ÂÂTand ÂT Â always have a {1}-dual generalized
inverse; therefore, by Result 15, they each also have Moore–Penrose dual generalized inverses.
Hence, it may be erroneously thought that the two product matrices (ÂT Â)

+ ÂT and ÂT(ÂÂT)
+

in Equation (117) always give the MPDGI of Â. While these two product matrices always do exist,
they do not equal Â{1,2,3,4}in general, and Equation (117) is not true in general. The result in
Equation (117) is true if and only if a {1}-dual generalized inverse of Â also exists and, therefore, if
and only if an MPDGI of Â exists (see the proof in reference [5]).

Lemma 6. If and only if Â{1} exists, then

X̂ÂÂT = ŶÂÂT ⇔ X̂Â = ŶÂ (118)

ÂÂTX̂T = ÂÂTŶT ⇔ ÂTX̂T = ÂTŶT (119)

X̂ÂT Â = ŶÂT Â⇔ X̂ÂT = ŶÂT (120)

ÂT ÂX̂T = ÂT ÂŶT ⇔ ÂX̂T = ÂŶT (121)

Notice that in each of the Equations (118) and (121), we are, so to speak, “cancelling”
ÂT on both sides of the equation which is prior to the implication sign to arrive at the
corresponding equation after the implication sign. Thus, one can so to speak “cancel”
ÂT on both sides of X̂ÂÂT = ŶÂÂT to obtain X̂Â = ŶÂ! Similarly, in each of the
Equations (119) and (120), we are, so to speak, “cancelling” Â on both sides in the first
equation to arrive at the second that follows the implication sign. In Equation (120), we
so to speak “cancel” Â on both sides of X̂ÂT Â = ŶÂT Â to arrive at the equivalence
X̂ÂT = ŶÂT .

Proof. If Â{1} exists, then Â{1,3} and Â{1,4} must exist (see Section 3.2, Results 4 and 6).
Multiplying both sides of Equation (118) by (Â{1,4})

T
, we obtain

X̂ÂÂT(Â{1,4})
T
= ŶÂÂT(A{1,4})

T ⇒ X̂Â(Â{1,4} Â)
T
= ŶÂ(Â{1,4} Â)

T

⇒ X̂ÂÂ{1,4} Â = ŶÂÂ{1,4} Â,

from which the result follows.
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Similarly, multiplying both sides of Equation (120) by (A{1,3})
T

gives

X̂ÂT ÂÂ{1,3} = ŶÂT ÂÂ{1,3} ⇒ X̂ÂT(ÂÂ{1,3})
T
= ŶÂT(ÂÂ{1,3})

T

⇒ X̂ÂT(Â{1,3})
T

ÂT = ŶÂT(Â{1,3})
T

ÂT ,
⇒ X̂ÂT = ŶÂT

Implications in the reverse direction in Equations (118)–(121) are obvious.
Equations (119) and (121) are obtained by transposing Equations (118) and (120); they

will be used later. �

We use this lemma to prove the next result, in which we obtain formulae for the
most restrictive dual generalized inverse—the {1,2,3,4}-dual generalized inverse—of a dual
matrix Â (which must satisfy all four dual MP conditions) by using only one of the least
restrictive dual generalized inverses—{1}-dual generalized inverses. As seen in Result 2, in
Section 3.1, {1}-dual generalized inverses of Â are a set of (uncountably infinite) matrices.

Result 21. If and only if the matrix Â has a {1}-dual generalized inverse, then

Â{1,2,3,4} = ÂT(ÂÂT)
{1}

Â(ÂT Â)
{1}

ÂT (122)

Proof. By Lemma 5, the two {1}-dual generalized inverses in Equation (122) always exist.

Hence, I ÂÂT = ÂÂT(ÂÂT)
{1} ÂÂT and, with X = I and Ŷ = ÂÂT(ÂÂT)

{1}, in Lemma 6
(Equation (118)), which is only applicable when A{1} exists, we obtain (cancelling the ÂT

effectively on both sides)

Â = ÂÂT(ÂÂT)
{1}

Â (123)

Using ÂT ÂI = ÂT Â(ÂT Â)
{1} ÂT Â, with X̂T = I and ŶT = (ÂT Â)

{1} ÂT Â, in
Equation (121), we obtain

Â = Â(ÂT ÂT)
{1}

ÂT Â (124)

In addition, from ÂÂT I = ÂÂT(ÂÂT)
{1} ÂÂT , with I = X̂T and ŶT = (ÂÂT)

{1} Â,
by using (119), we obtain

ÂT = ÂT(ÂÂT)
{1}

ÂÂT ⇒ Â = ÂÂT [(ÂÂT)
{1}

]
T

Â (125)

Lastly, from I ÂT Â = ÂT Â(ÂT Â)
{1} ÂT Â, with X̂ = I and Ŷ = ÂT Â(ÂT Â)

{1}, by
using Equation (120), we obtain

ÂT = ÂT Â(ÂT Â)
{1}

ÂT ⇒ Â = Â [(ÂT Â)
{1}

]
T

ÂT Â (126)

We now consider the four MP dual conditions that must be satisfied by the right-hand
side of Equation (122) as follows.

MP dual Condition 1:

ÂÂ{1,2,3,4} Â = ÂÂT(ÂÂT)
{1}

Â

=Â by Eq. (123)

(ÂT Â)
{1}

ÂT Â = Â(ÂT Â)
{1}

ÂT Â

=Â by Eq. (124)

= Â

MP dual Condition 2:

Â{1,2,3,4} ÂÂ{1,2,3,4} = ÂT(ÂÂT)
{1} Â(ÂT Â)

{1}
ÂT Â

=Â by Eq. (124)

ÂT(ÂÂT)
{1} Â(ÂT Â)

{1} ÂT

= ÂT(ÂÂT)
{1} Â ÂT(ÂÂT)

{1}
Â

=Â by Eq. (123)

(ÂT Â)
{1} ÂT = Â{1,2,3,4}
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MP dual Condition 3:

ÂÂ{1,2,3,4} = ÂÂT(ÂÂT)
{1}

Â

=Â by Eq. (123)

(ÂT Â)
{1} ÂT = Â(ÂT Â)

{1} ÂT

= Â [(ÂT Â)
{1}

]
T

ÂT Â

=Â by Eq. (126)

(ÂT Â)
{1} ÂT

= {Â(ÂT Â)
{1} ÂT}

T
{Â(ÂT Â)

{1} ÂT},

which is symmetric
MP dual Condition 4:

Â{1,2,3,4} Â = ÂT(ÂÂT)
{1} Â(ÂT Â)

{1}
ÂT Â

=Â by Eq. (124)

= ÂT(ÂÂT)
{1} Â

= ÂT(ÂÂT)
{1} ÂÂT [(ÂÂT)

{1}
]
T

Â

=Â by Eq. (125)

= {ÂT(ÂÂT)
{1} Â}{ÂT(ÂÂT)

{1} Â}
T

,

which is symmetric. �

Remark 10. Recalling that the {1}-dual generalized inverse of a dual matrix is not unique, to obtain
the unique MPDGI of Â, using Equation (122), any (every) {1}-dual generalized inverse ÂÂT and
any (every) {1}-dual generalized inverse of ÂT Â can be used.

The next Lemma will be used to obtain the MPDGI of a dual matrix Â using the
{1}-dual generalized inverse of just a single matrix.

Lemma 7. If Â has a {1}-dual generalized inverse, then the following relations are true.

Â = ÂÂT(ÂT ÂÂT)
{1}

ÂT Â (127)

ÂT = ÂT ÂÂT(ÂT ÂÂT)
{1}

ÂT (128)

Proof. By Lemma 5, (ÂT ÂÂT)
{1} always exists; therefore,

ÂT ÂÂT = ÂT ÂÂT(ÂT ÂÂT)
{1}

ÂT ÂÂT (129)

Furthermore, since Â{1} exists, Lemma 6 is applicable. Using the so-called “can-
cellation” observation in this lemma, we cancel the right-most ÂT on either side of

Equation (129) to obtain ÂT Â = ÂT ÂÂT(ÂT ÂÂT)
{1} ÂT Â. Again cancelling ÂT and Â,

respectively, on either side, we obtain the two relations Â = ÂÂT(ÂT ÂÂT)
{1} ÂT Â and

ÂT = ÂT ÂÂT(ÂT ÂÂT)
{1} ÂT , that are given in Equations (127) and (128). �

Result 22. If Â has a {1}-dual generalized inverse, then

Â{1,2,3,4} = ÂT(ÂT ÂÂ)
{1}

ÂT (130)

Proof. We show that, by using Lemma 7, the four MP dual conditions are satisfied by the
right-hand side of Equation (130) as follows.

MP dual Condition 1: By Equation (127),

ÂÂ{1,2,3,4} Â = ÂÂT(ÂT ÂÂ)
{1}

ÂT Â = Â.
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MP dual Condition 2:

Â{1,2,3,4} ÂÂ{1,2,3,4} = ÂT(ÂT ÂÂ)
{1}

ÂT ÂÂT(ÂT ÂÂ)
{1}

ÂT

=ÂT by Eq. (128)

= ÂT(ÂT ÂÂ)
{1}

ÂT .

MP dual Condition 3:

ÂÂ{1,2,3,4} = ÂÂT(ÂT ÂÂ)
{1} ÂT = ÂÂT(ÂT ÂÂ)

{1} ÂT Â [(ÂT ÂÂT)
{1}

]
T

ÂÂT

=AT by Eq. (127)

= {ÂÂT(ÂT ÂÂ)
{1} ÂT}{ÂÂT(ÂT ÂÂ)

{1} ÂT}
T

, which is symmetric.

MP dual Condition 4:

Â{1,2,3,4} Â = ÂT(ÂT ÂÂ)
{1} ÂT Â = ÂT Â[(ÂT ÂÂT)

{1}
]
T

ÂÂT

=AT f rom Eq. (127)

(ÂT ÂÂ)
{1} ÂT Â

= {ÂT(ÂT ÂÂ)
{1} ÂT Â}

T
{ÂT(ÂT ÂÂ)

{1} ÂT Â}, which is symmetric. �

Lastly, we consider the {1,2}-dual generalized inverse of the matrix Â. It is shown that
its existence is guaranteed by the existence of a {1}-dual generalized inverse of Â and a
simple way to obtain it from any (every) {1}-dual generalized inverse of Â is presented.

Result 23. If Â has a {1}-dual generalized inverse, then

Â{1,2} = Â{1} ÂÂ{1} (131)

Proof. We show that the first two MP conditions are satisfied as follows.
MP dual Condition 1:

ÂÂ{1,2} Â = ÂÂ{1} Â
Â

Â{1} Â = ÂÂ{1} Â = Â.

MP dual Condition 2:

Â{1,2} ÂÂ{1,2} = Â{1} ÂÂ{1} Â
=Â

Â{1} ÂÂ{1} = Â{1} ÂÂ{1} Â
=Â

Â{1} = Â{1} ÂÂ{1}. �

The expressions reported for the MPDGI of a dual matrix in Results 21–23 are new, and
they show that dual matrices have analogous characteristics to those possessed by their
real counterparts, when their {1}-dual generalized inverses exist.

4. Conclusions

This paper deals with the question of when a dual matrix Â has a specified kind of
dual generalized inverse. It provides new and foundational results on dual generalized
inverses of dual matrices, thereby providing a basic understanding of dual inverses. While
all real matrices have a {1}-dual generalized inverse, all dual matrices may not have a
{1}-dual generalized inverse. The necessary and sufficient condition for many useful dual
generalized inverses, such as the {1,3}- and {1,2,3,4}-dual generalized matrices, to exist is
found to be simply that a {1}-dual generalized inverse must exist.

A fairly comprehensive theory of dual generalized inverses is presented. For instance,
the formula for the Moore–Penrose dual generalized inverse of a dual matrix whose real
part has full row (column) rank has been known for quite some time. What is not known
is why this rank condition on the real part arises. Recently, it was also shown, in ref-
erence [4], that all dual matrices do not have Moore–Penrose dual generalized inverses
(MPDGIs). Such discovery then begs questions, such as, “What kinds of dual matrices
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have Moore–Penrose dual generalized inverses?” and “Can a dual matrix whose real part
is rank deficient have a Moore–Penrose dual generalized inverse?” These are questions
of practical importance, because such rank deficiency does arise in engineering applica-
tions, for example, in the analysis of kinematic systems and mechanisms [4]. The results
obtained in this paper answer the latter question in the affirmative. More importantly,
they point out that the key to answering such questions requires a redirection of our fo-
cus from rank conditions on the real part of a dual matrix to the existence of its {1}-dual
generalized inverse.

The necessary and sufficient condition for a dual matrix to have a {1}-dual generalized
inverse is obtained. It is shown that, for a dual matrix to have a {1}-dual generalized inverse,
its real and dual parts cannot be arbitrarily specified and the dual part of the matrix must
depend on its real part. An extension of the result (proof) given in reference [4], which now
provides the entire set of {1}-dual generalized inverses of a dual matrix, is obtained. It is
shown that the necessary and sufficient condition for a {1}-dual inverse to exist is that the
dual part of the dual matrix must map the null space of its real part to the column space of
its real part.

The paper shows that the necessary and sufficient condition for a dual matrix to have
a {1,2}-, {1,3}, {1,4}, {1,2,3}-, {1,2,4} and {1,2,3,4}-dual generalized inverse is that it must
have a {1}-dual inverse. This list covers the most useful dual generalized inverses from an
applications viewpoint in science and engineering, such as {1,3}- and {1,4}-dual generalized
inverses and the Moore–Penrose dual generalized inverse (MPDGI). Then, what this says
is that the existence of a {1}-dual inverse of a dual matrix is a sine qua non for the existence
of all these dual generalized inverses. Moreover, as mentioned earlier, the necessary and
sufficient conditions for a dual matrix to have a {1}-dual generalized inverse are explicitly
obtained. In fact, the complete set of {1}-dual inverses of a dual matrix is explicitly obtained.

Explicit expressions for each of the above-mentioned dual generalized inverses, when
they exist, are obtained irrespective of the rank of their real parts, for easy use by scientists
and engineers. To the best of the author’s knowledge, these explicit expressions have not
been reported previously.

It is shown that all dual matrices have {2}- and {2,4}-dual generalized inverses and
explicit expressions for these sets of inverses are obtained.

The Moore–Penrose generalized inverse of a dual matrix, in terms of only {1}-inverses
of matrices, is investigated. It is shown that the product matrices ÂÂT , ÂT Â and ÂT ÂÂT

always have {1}-dual generalized inverses. When Â has a {1}-dual generalized inverse,
explicit expressions for the Moore–Penrose dual generalized inverse of Â, in terms of
{1}-dual inverses of these matrices, are obtained.

It is hoped that the necessary and sufficient conditions developed in this paper,
along with the explicit closed form expressions for various types of dual generalized
inverses irrespective of the rank of their real parts, will aid in handling practical problems
in science and engineering, particularly in the analysis and synthesis of mechanisms
and machines, multi-body dynamics, robotic design and trajectory planning and sensor
calibration methods. Computational methods in various scientific disciplines for solving
both forward and inverse problems will also find the closed form results developed here
especially useful, since they provide simple and straightforward approaches for obtaining
dual generalized inverses.
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