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Abstract: With the increasing complexity of the human social environment, it is impossible to
describe each object in detail with accurate numbers when solving multiple attribute decision-
making (MADM) problems. Compared with the fuzzy set (FS), the intuitionistic fuzzy set (IFS) not
only has obvious advantages in allocating ambiguous values to the object to be considered, but
also takes into account the degree of membership and non-membership, so it is more suitable for
decision makers (DMs) to deal with complex realistic problems. Therefore, it is of great significance to
propose a MADM method under an intuitionistic fuzzy environment. Moreover, compared with the
traditional 2WD, by putting forward the option of delay, the decision-making risk can be effectively
reduced using three-way decision (3WD). In addition, the binary relations between objects in the
decision-making process have been continuously generalized, such as equivalence relation which
have symmetrical relationship, dominance relation and outranking relation, which are worthy of
study. In this paper, we propose 3WD-MADM method based on IF environment and the objective
IFS is calculated by using the information table. Then, the hybrid information table is used to solve
the supplier selection problem to demonstrate the effectiveness of the proposed method.

Keywords: outranking relation; three-way decision; intuitionistic fuzzy set; IF loss function; IF MADM

1. Introduction

Selecting one of these alternatives based on the information provided in real life is the
main purpose of MADM, which is to rank a series of alternatives and determine the best
one. In addition, in the face of different types of attributes, it is extremely important to make
reasonable decision results when dealing with MADM problems. Many scholars have gone
deep into MADM and made remarkable achievements in all aspects. There are a number
of classical approaches to deal with MADM problems, such as the VIKOR method [1,2],
the TOPSIS method which is used to find the alternative that is closest to the positive ideal
solution and farthest from the negative ideal solution [3], ELECTRE method is designed to
construct the outranking relationship of alternatives [4], Vinogradova provided MADM
methods as a component of mathematics-based optimization [5], Chen et al. [6] used
hybrid MADM model to evaluate and improve the performance of product design, etc.
However, most methods seldom consider the delay of decision-making, which will increase
the risk of decision-making. In order to make up for this shortcoming, Zhan et al. [7] used
the 3WD theory to solve MADM problems and put forward a vaild decision rule.

The researches which were reported in [8–11] inspired that IFSs, put forward by
Atanassov [12], are as well as a crucial evaluation form aiming to describe the uncertainty.
The original fuzzy set only considers membership degree [13–15], however, IFS has the
characteristics of both membership degree and non-membership degree [12], it provides
a more reasonable method to describe uncertainty. In recent years, intuitionistic fuzzy
values (IFVs) and intuitionistic fuzzy set (IFS) are deeply developed and studied, for
example, Chen [16] clarified the positive and negative evaluation effects (or optimism
and pessimism). Considering a combination of ELECTRE and VIKOR, Cali et al. [17]
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developed a novel outranking based multi criteria group decision making. Liu [18] de-
fined an evaluation function for the decision-making problem to measure the degrees
and presented the concept of intuitionistic fuzzy point operators. Du [19] studied the
subtraction and division operations over intuitionistic fuzzy values which derived from
the Hamming distance between them by the optimization method. Yang [20] investigated
two possible solutions to the problem of constructing a shadowed set from an Atanassov
intuitionistic fuzzy set. Gao et al. [21] proposed a novel target threat assessment method
under intuitionistic fuzzy multi-attribute decision making environment. Zou et al. [22]
used a linguistic-valued intuitionistic fuzzy formal decision context to solve the individual
financial investment problem.

Compared with fuzzy information and accurate information, intuitionistic fuzzy in-
formation can summarize and describe the uncertain and complex fuzzy characteristics
more comprehensively in the process of multi-attribute decision-making so that deci-
sion makers can obtain more comprehensive, real and effective information, and reduce
decision-making errors caused by incomplete information. Furthermore, intuitionistic
fuzzy information has compressibility, in which the decision makers can process, organize,
summarize information. In addition, decision makers can deal with intuitionistic fuzzy
information by appropriate methods, which can reduce the loss of effective information
and enable decision makers to make scientific decisions. For example, based on intuition-
istic fuzzy environment, Ecer [23] used MARCOS technique to make decisions and rank
insurance companies, Kumar [24] proposed a novel IF-reliability approach to evaluate
failure probability of the system, etc. [18,25–27].

Yao’s scientific and reasonable explanation for 3WD is derived from Decision-theoretic
rough sets (DTRSs), which, on the basis of Bayesian minimum risk, is able to make deci-
sions through actual semantics [28]. The theory of 3WD, started by Yao [29], is regarded as
a trisecting-acting-outcome (TAO). 3WD extends the usual 2WD (accept or reject) model
though adding a non-commitment option. In addition, in the course of medical diagnosis,
for instance, doctors often use the 3WD method aiming to make decisions. In other words,
doctors could decide to treat, not treat, or keep patients under observation according to
patients’symptom. The attitude towards an object depends on which domain it is in, the at-
titude of acceptance in the positive domain, the attitude of rejection in the negative domain,
the attitude of relaxation in the boundary domain. It is a new perspective of tolerance for
error which fits our habit of thinking under uncertainty. So, 3WD, based on DTRSs, has
drawn the attention of scholars and gotten rapid development since its birth. For example,
investment options [30], medical diagnosis [31], environmental managements [32], energy
project selection [8], infectious disease diagnosis problem [33], etc.

In a word, the combination of 3WD and MADM is a new direction for further research
in this paper. Particularly, a 3WD method, under IF environments, is intended to be
put forward via outranking relationships and decision risks. A hybrid information table
has been put forward by the combination of IF MADM matrix and loss function table.
Furthermore, we also make use of the proposed 3WD method to solve a supplier selection
problem.

2. Preliminaries

In this section, we briefly review some concepts of IFSs, Bayesian decision procedures
and the ELECTRE method.

2.1. Intuitionistic Fuzzy Set

Definition 1 ([12]). Let U be a universal set and an IFS X is represented as:

X = {〈a, µX(a), νX(a)〉|a ∈ U},

where µX, νX : U −→ [0, 1], such that µX(a) + νX(a) ≤ 1, a ∈ U. Here, µX(a), νX(a),
respectively, stand for the membership degree and non-membership degree of a to X. The hesitancy
degree of a ∈ U is given by πX(a) = 1− µX(a)− νX(a). According to the notations reported
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in [34,35], α = (µα, να) is named as intuitionistic fuzzy value(IFV), which satisfies 0 ≤ µα, να ≤ 1
and 0 ≤ µα + να ≤ 1.

Example 1. Let X be an IF concept of youth and the set of alternatives be U = {a1, a2, a3}. The
IFVs α1 = (µα1 , να1) = (0.6,0.4), α2 = (µα2 , να2) = (0.6,0.2), α3 = (µα3 , να3) = (0.6,0) represent
the membership degree and non-membership degree of the concept of youth for each alternative,
respectively. According to πX(a1) = 1− 0.6− 0.4 = 0, πX(a2) = 1− 0.6− 0.2 = 0.2 and
πX(a3) = 1− 0.6− 0 = 0.4, the alternative a1 in U is certain and alternatives a2 and a3 are
uncertain. Moreover, by comparison we have πX(a2) < πX(a3).

Definition 2 ([12,34,36,37]). Given two IFVs α = (µα, να), β = (µβ, νβ) and a positive real
number λ, some operations can be defined as follows:
(1) α = (να, µα);
(2) α

⊕
β = (µα + µβ − µαµβ, νανβ) = (1− (1− µα)(1− µβ), νανβ);

(3) α
⊗

β = (µαµβ, 1− (1− να)(1− νβ));
(4) λα = (1− (1− µα)λ, νλ

α );
(5) αλ = (µλ

α , 1− (1− να)λ);
(6) (Distance function) d(α, β) = 1

2 (|µα − µβ|+ |να − νβ|+ |µβ + νβ − µα − να|);
(7) α	 β = (µ̃α	β, ν̃α	β), where

µ̃α	β =

{ µα−µβ

1−µβ
, if µα ≥ µβ and να ≤ νβ and νβ > 0 and ναπβ ≤ πανβ

0, otherwise

and

ν̃α	β =

{
να
νβ

, if µα ≥ µβ and να ≤ νβ and νβ > 0 and ναπβ ≤ πανβ

1, otherwise

(8) α� β = (µ̃α�β, ν̃α�β), where

µ̃α�β =

{ µα
µβ

, if µα ≤ µβ and να ≥ νβ and µβ > 0 and µαπβ ≤ παµβ

0, otherwise

and

ν̃α�β =

{ να−νβ

1−νβ
, if µα ≤ µβ and να ≥ νβ and µβ > 0 and µαπβ ≤ παµβ

1, otherwise

Definition 3 ([25]). Let an IFV α = (µα, να), then the score function of α is calculated as:

S(α) = µα − να,

The accuracy function of α is defined as

H(α) = µα + να,

where −1 ≤ S(α) ≤ 1 and 0 ≤ H(α) ≤ 1.

Definition 4 ([25]). Given two IFVs α = (µα, να) and β = (µβ, νβ), we confirm their relation-
ships below:
(1) If S(α) > S(β), then β is smaller than α, denoted by α � β;
(2) If S(α) < S(β), then α is smaller than β, denoted by α ≺ β;
(3) If S(α) = S(β), then

(i) If H(α) = H(β), then α is equal to β, denoted by α = β;
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(ii) If H(α) > H(β), then β is smaller than α, denoted by α � β;
(iii) If H(α) < H(β), then α is smaller than β, denoted by α ≺ β.

Proposition 1. Let α1, α2 be two IFVs, when µα1 ≥ µα2 , να1 ≤ να2 , να2 > 0 and να1 πα2 ≤
πα1 να2 , we have the equation:

(α1 	 α2)⊕ α2 = α1.

Proof. For two IFVs α1 and α2, we have

(α1 	 α2)⊕ α2

=(
µα1 − µα2

1− µα2

,
να1

µα2

)⊕ (µα2 , να2)

=(1− (1− µα1 − µα2

1− µα2

)(1− µα2),
να1

να2

)

=(1− (1− µα2 − µα1 + µα2), να1)

=(µα1 , να1)

=α1.

Proposition 2. Let α1, α2 be two IFVs, when µα1 < µα2 or να1 > να2 or να2 ≤ 0 or να1 πα2 >
πα1 να2 , we have the equation:

(α1 	 α2)⊕ α2 = α2.

Proof. For two IFVs α1 and α2, we have

(α1 	 α2)⊕ α2

=(0, 1)⊕ (µα2 , να2)

=(1− (1− 0)(1− µα2), 1να2)

=(µα2 , να2)

=α2.

Definition 5. For an IFV α, the negative operation of α can be defined as follows:

¬α = (1, 0)	 α.

According to Propositions 1 and 2, we obtain ¬α⊕ α = (1, 0).

2.2. 3WD

Let U be a set of alternatives. For any X ⊆ U, let Φ = {X,¬X} be the state set of
alternatives which means each alternative a ∈ U or not. A = {aP, aB, aN} is the action set,
where aP, aB and aP denote a ∈ POS(X), a ∈ BND(X) and a ∈ NEG(X).

For any alternative a ∈ U, the expected loss funtions associated with taking three
actions R(a./|[a]R)(./= P, B, N) as follows [8]:

R(aP|[a]R) = χPPP(X|[a]R) + χPN P(¬X|[a]R),
R(aB|[a]R) = χBPP(X|[a]R) + χBN P(¬X|[a]R),
R(aN |[a]R) = χNPP(X|[a]R) + χNN P(¬X|[a]R), (1)

where [a]R represents the equivalence class that contains a, χPP, χBP and χNP represent
the loss function of actions aP, aB and aN when a belongs to X, respectively. Analogously,
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χPN , χBN and χNN denote the loss function of actions aP, aB and aN when a belongs to
¬X, respectively.

For any A ⊆ U, P(A|[a]R) represents the conditional probability of an alternative a.
By virtue of the properties of the conditional probability, we have:

P(A|[a]R) + P(¬A|[a]R) = 1. (2)

According to the realistic explanation of the loss functions, we can get

χPP ≤ χBP < χNP and χPN > χBN ≥ χNN . (3)

the following decision rules are given via Bayesian theory:

(P) If R(aP|[a]R) < R(aB|[a]R) and R(aP|[a]R) < R(aN |[a]R), then a ∈ POS(X),

(B) If R(aB|[a]R) < R(aP|[a]R) and R(aB|[a]R) < R(aN |[a]R), then a ∈ BND(X),

(N) If R(aN |[a]R) < R(aP|[a]R) and R(aN |[a]R) < R(aB|[a]R), then a ∈ NEG(X). (4)

2.3. The Determination of an Outranking Relation by the ELECTRE-I Method

In 1969, Roy [38] proposed the ELECTRE-I method, which process some choice prob-
lems in MADM. Let U = {a1, a2, . . . , an} be an alternative set, C = {A1, A2, . . . , Am} be
an attribute set andW = {ω1, ω2, . . . , ωm} be a weight vector. The ELECTRE-I method
constructs an outranking relation based on the following steps:

• Construction of three indicator sets

J+it = {j|j = 1, 2, . . . , m, Aij > Atj},

J=it = {j|j = 1, 2, . . . , m, Aij = Atj},

J−it = {j|j = 1, 2, . . . , m, Aij < Atj},

where Aij is the evaluation value of the alternative ai under the attribute Aj.
• Calculation of the concordance index

Jit = ∑
j∈J+it

ωj + ∑
j∈J=it

ωj,

Jit =
∑j∈J+it

ωj

∑j∈J−it
ωj

.

• Concordance test
Set δ ∈ (0.5, 1], if the alternatives ai and at meet the conditions Jit ≥ δ and Jit ≥ 1,

it passes the concordance test. The lager the value of δ, the stricter the requirement
that ai is superior to at.

• Calculation of discordance index

Git = max
j=1,2,...,m

{Aij − Atj

p

}
,

where p denotes a given veto threshold.
• Non-discordance test

If the alternatives ai and at satisfy requirement Git ≤ 1, it passes the non-
discordance test.

• The determination of the outranking relationship

If the alternatives ai and at pass both the concordance test and the non-discordance
test, i.e., Jit ≥ δ, Jit ≥ 1 and Git ≤ 1, then the alternative ai outranks the alternative at,
denoted as aiSat.
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3. A New 3WD Method under IF Environments

Next, we will obtain the objective IFS X, outranking relations via ELECTRE method
and the conditional probability based on IF environments. Finally, we build the decision-
theoretic rough intuitionistic fuzzy set(DTRIFS) model.

3.1. The Determination of IFSs

In general, both FS and IFS are given subjectively, which obviously will have subjective
influence in the decision-making process. Therefore, we intend to objectively calculate IFS
based on the IF information table. The specific process is as follows:

Let U = {a1, a2, . . . , an}, C = {A1, A2, . . . , Am} and E = {E1, E2, . . . , Ek} represent n
alternatives, m attributes and k experts. The IF-multi-attribute information table is given in
Table 1. Aggregated IF-multi-attribute information is given in Table 2.

Table 1. The IF-multi-attribute information table of k experts.

A1 A2 · · · Am

a1 α1
11 α1

12 · · · α1
1m

R1 =
...

...
... · · ·

...
an α1

n1 α1
n2 · · · α1

nm
...

...
...

... · · ·
...

a1 αk
11 αk

12 · · · αk
1m

Rk =
...

...
... · · ·

...
an αk

n1 αk
n2 · · · αk

nm
W ω1 ω2 · · · ωm

Table 2. Aggregated IF-multi-attribute information table.

A1 A2 · · · Am

a1 β11 β12 · · · β1m
...

...
... · · ·

...
an βn1 βn2 · · · βnm
W ω1 ω2 · · · ωm

In Table 1, αl
ij(i = 1, 2, . . . , n, j = 1, 2, . . . , m, l = 1, 2, . . . , k) are IFVs which denote the

evaluation value of the alternative ai by the lth expert under the attribute Aj. The weight of
the attribute Aj and the expert El are indicated by ωj and τl . Here, ∑m

j=1 ωj = 1, ∑k
l=1 τl = 1.

According to the IF matrix and the IFWA aggregation operator, the IFS X can be
determined as follows:

βij = IFWA(α1
ij, α2

ij, . . . , αk
ij) = τ1α1

ij
⊕

τ2α2
ij
⊕

. . .
⊕

τkαk
ij

=

(
1−

k

∏
l=1

(1− µl
ij)

τl ,
k

∏
l=1

(νl
ij)

τl

)
, (5)

X =
ω1β11

⊕
. . .
⊕

ωmβ1m
a1

+
ω2β21

⊕
. . .
⊕

ωmβ2m

a2
+ . . . +

ω1βn1
⊕

. . .
⊕

ωmβnm

an

=
n

∑
i=1

⊕m
j=1 ωjβij

ai
. (6)

These terms are well explained in the following example:
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Example 2 ([17]). Table 3 is an IF multi-attribute information table given by three experts. Suppose
that U = {a1, a2, a3} is a set of three alternatives and five criteria C = {A1, A2, A3, A4, A5}.
The weights of three experts are 0.369, 0.330 and 0.301, respectively. The value of each expert’s
assessment of each alternative ai with respect to attribute Aj is given in Table 3:

Table 3. The IF-multi-attribute information table of schemes.

A1 A2 A3 A4 A5

a1 (0.60,0.30) (0.70,0.20) (0.50,0.40) (0.80,0.10) (0.50,0.40)
R1 = a2 (0.70,0.20) (0.80,0.10) (0.80,0.10) (0.80,0.10) (0.80,0.10)

a3 (0.80,0.10) (0.60,0.30) (0.70,0.20) (0.70,0.20) (0.70,0.20)

a1 (0.70,0.20) (0.60,0.30) (0.70,0.20) (0.70,0.20) (0.50,0.40)
R2 = a2 (0.70,0.20) (0.80,0.10) (0.80,0.10) (0.80,0.10) (0.60,0.30)

a3 (0.70,0.20) (0.70,0.20) (0.60,0.30) (0.80,0.10) (0.70,0.20)

a1 (0.60,0.30) (0.50,0.40) (0.70,0.20) (0.80,0.10) (0.50,0.40)
R3 = a2 (0.60,0.30) (0.80,0.10) (0.70,0.20) (0.80,0.10) (0.70,0.20)

a3 (0.50,0.40) (0.80,0.10) (0.80,0.10) (0.60,0.30) (0.60,0.30)

W 0.144 0.219 0.210 0.305 0.122

According to Table 3 and Equation (5) , we obtain Table 4:

Table 4. Aggregated IF-multi-attribute information table.

A1 A2 A3 A4 A5

a1 (0.636,0.262) (0.615,0.282) (0.638,0.258) (0.771,0.126) (0.500,0.400)
a2 (0.673,0.226) (0.800,0.100) (0.774,0.123) (0.800,0.100) (0.716,0.177)
a3 (0.699,0.191) (0.705,0.188) (0.708,0.186) (0.714,0.180) (0.673,0.226)
W 0.144 0.219 0.210 0.305 0.122

Then we can obtain the following result using Table 4 and Equation (6):

X = {〈a1, 0.668, 0.224〉, 〈a2, 0.770, 0.126〉, 〈a3, 0.704, 0.190〉}.

In other words, objective IFS of the “good scheme” X is calculated. In particular, the
evaluation value of the scheme needs to be normalized if the attribute types are different [7].

3.2. DTRIFS Based on an Outranking Relation

Definition 6. The outranking relation S is determined via the ELECTRE-I method [38], the IF-
ELECTRE-I method [39], IF-multi-attribute information table and the score function, an outranked
set is defined as follows:

∀a ∈ U, [a]S = {b| aSb ∧ b ∈ U}. (7)

Proposition 3. Based on the given IF-multi-attribute information table, for ai ∈ U, there exists
at ∈ U, if Aij � Atj, Aj ∈ C, then we have

at ∈ [ai]S. (8)

Proposition 4. If SAij ≥ SAtj , then Aij � Atj.

Proof. Obviously, it can be proved directly by score function.

Then, we illustrate this in Example 3.
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Example 3. By means of Definitions 3, 4 and the ELECTRE-I method, we stipulate δ = 0.6 and
p = 0.2. Based on Definition 6, we obtain the outranked set as follows:

[a1]S = {a1},
[a2]S = {a1, a2, a3},
[a3]S = {a1, a3}. (9)

3.3. Objective Conditional Probability P(X|[a]S) Based on IF Environments

Definition 7. The conditional probability determined by an outranked set and an IFS is defined
as follows:

P(X|[a]S) =
⊕

b∈[a]S X(b)
|[a]S|

. (10)

By virtue of Definition 5, we have:

P(¬X|[a]S) = (1, 0)	 P(X|[a]S). (11)

Proposition 5. P(X|[a]S) and P(¬X|[a]S) meet the following condition:

P(X|[a]S)⊕ P(¬X|[a]S) = (1, 0).

Proof. For any a ∈ U, we have

P(X|[a]S)⊕ P(¬X|[a]S)

=
⊕b∈[a]S X(b)
|[a]S|

⊕
⊕b∈[a]S¬X(b)
|[a]S|

=
⊕b∈[a]S(X(b)⊕¬X(b))

|[a]S|

=
(1, 0)
|[a]S|

= (1, 0).

Remark 1. (1) The aforementioned conditional probability is an IFV which is compared with the
common one(a real value). This is obviously an extension.
(2) IF X is a fuzzy set, based on IF environment P(X|[a]S) degenerates into the case under fuzzy
environment [7]. Similarly, the conditional probability, a form put forward by Yao, is a degenerate
form [40].

Example 4. By analyzing Example 3, the conditional probability is determined according to the
above method.

To illustrate the above process, we use the alternative a3 as a demonstration.

P(X|[a3]S) =
∑b∈[a3]S

X(b)
|[a3]S|

=
X(a1)⊕ X(a3)

2
= (0.687, 0.206).

3.4. 3WD Methods Based on IF-MADMLFT

Then, we will present a hybrid information table composed of IF multi-attribute
information table and loss function table.

Definition 8. A new hybrid information table will be defined as IF-MADMLFT = (MADM, LFT),
where the IF-MADM = (U,C,A,W) is an IF multi-attribute information table, A ∈ IFSs, LFT =
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(U,χ/ .) is a loss function table, χ/ . ∈ IFSs, ? means the weight of loss function is not taken into
account. IF-MADMLFT is shown in Table 5:

Table 5. The IF-MADMLFT information table.

U A1 A2 · · · Am χPP χBP χNP χNN χBN χPN

a1 α1
11, . . . , αk

11 α1
12, . . . , αk

12 · · · α1
1m, . . . , αk

1m χPP(a1) χBP(a1) χNP(a1) χNN(a1) χBN(a1) χPN(a1)
a2 α1

21, . . . , αk
21 α1

22, . . . , αk
22 · · · α1

2m, . . . , αk
2m χPP(a2) χBP(a2) χNP(a2) χNN(a2) χBN(a2) χPN(a2)

...
...

... · · ·
...

...
...

...
...

...
...

an α1
n1, . . . , αk

n1 α1
n2, . . . , αk

n2 · · · α1
nm, . . . , αk

nm χPP(an) χBP(an) χNP(an) χNN(an) χBN(an) χPN(an)

W ω1 ω2 · · · ωm ? ? ? ? ? ?

From the hybrid information table, we can get that for each the value of ai which can
be expressed as n + 6 vectors:

F(ai) = (Ai1, Ai2, . . . , Aim, χPP(ai), χBP(ai), χNP(ai), χNN(ai), χBN(ai), χPN(ai)),

where Aij is obtained by using α1
ij,. . .,αk

ij from the Equation (5).
For any ai(i = 1, 2, . . . , n), by means of the realistic explanation of the loss functions,

we have:
χNP(ai) � χBP(ai) � χPP(ai); χPN(ai) � χBN(ai) � χNN(ai).

The IF-expected losses R(a./|[a]S)(./= P, B, N) of taking three actions are calculated
as follows:

R(aP|[a]S) = (χPP ⊗ P(X|[a]S))⊕ (χPN ⊗ P(¬X|[a]S)),
R(aB|[a]S) = (χBP ⊗ P(X|[a]S))⊕ (χBN ⊗ P(¬X|[a]S)),
R(aN |[a]S) = (χNP ⊗ P(X|[a]S))⊕ (χNN ⊗ P(¬X|[a]S)). (12)

In light of Bayesian minimum-risk criterion, we have:

(PI) If R(aP|[a]S) ≺ R(aB|[a]S) and R(aP|[a]S) ≺ R(aN |[a]S), then a ∈ POS(X),

(BI) If R(aB|[a]S) � R(aP|[a]S) and R(aB|[a]S) � R(aN |[a]S), then a ∈ BND(X),

(NI) If R(aN |[a]S) ≺ R(aP|[a]S) and R(aN |[a]S) ≺ R(aB|[a]S), then a ∈ NEG(X). (13)

By virtue of the definition of score functions, we have:

(PI) If SR(aP |[a]S) < SR(aB |[a]S) and SR(aP |[a]S) < SR(aN |[a]S), a ∈ POS(X),

(BI) If SR(aB |[a]S) ≤ SR(aP |[a]S) and SR(aB |[a]S) ≤ SR(aN |[a]S), a ∈ BND(X),

(NI) If SR(aN |[a]S) < SR(aP |[a]S) and SR(aN |[a]S) < SR(aB |[a]S), a ∈ NEG(X). (14)

3.5. Decision Making Methods under IF-DTRSs

In decision making problems, the ranking of alternatives is undoubtedly the most
important aspect that helps the decision maker to select the optimal solution. We first
divide all the alternatives into three regions, then according to a DM’s preferences for the
rules (PI)− (NI), we can obtain the order of all alternatives:

(PI) � (BI) � (NI).

4. Application of the Novel 3WD Method to IF-MADMLFT

We plan to study the new 3WD IF-DTRS model aiming to solve the practical IF-MADM
problem in this chapter.
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4.1. The Description of the Problem

Many traditional MADM methods have solved the classical problem of supplier
selection. However, these existing methods often neglect one point, that is, the actual
decision-making process needs more information and evaluation; because of this, these
methods are easy to lead to too harsh decision-making results, which may not maximize
the interests of the enterprise. It is very often for enterprises to inspect or evaluate suppliers
further so as to decrease potential risks or losses. Therefore, adding further investigation as
another way to the decision results is necessary which is able to make the decision-making
process more careful, rigorous and is better as well as more comprehensive to inspect
suppliers. Then, we will illustrate the new 3WD model proposed in this paper with an
example of the supplier selection.

Suppose that U = {a1, a2, . . . , an} can be seen as a set of component suppliers.
C = {A1, A2, . . . , Am} is a set consisted of m different index evaluation aspects and
E = {E1, E2, . . . , Ek} is a set of k heads of departments.

Let A = {Aij ∈ IFSs|ai ∈ U, Aj ∈ C; i = 1, 2, . . . , n; j = 1, 2, . . . , m; l = 1, 2, . . . , k}
denote the evaluation set of the alternative ai under the attribute Aj with the lth expert.
Let ωj, τl ∈ (0, 1)(j = 1, 2, . . . , m; l = 1, 2, . . . , k) denote the weights of the attributes Aj

and the experts El satisfying ∑m
j=1 ωj = 1 and ∑k

l=1 τl = 1, respectively. Nowadays,
let W = {ω1, ω2, . . . , ωm} represent weight vector of every attribute. Here, we call
(U, C, E,A,W) an IF MADM matrix for the supplier selection. The problem for enter-
prises is to decide an optimal supplier from all suppliers of product components. The
heads of departments evaluate all suppliers of product components based on previous
experiences and determines a comprehensive evaluation set X. In general, the intuitionistic
fuzzy set X represents a concept of “good supplier”. We express the final conclusion as the
optimal suppliers of product components, excluding selecting suppliers and the supplier
that need additional evaluation and inspecting. In other words, in light of (U,C,E,A,W),
supplier selection problem can be divided into three region, namely POS(X), BND(X)
and NEG(X) .

Assume that χPP(ai), χBP(ai) and χNP(ai) are the loss functions for taking the actions
aP, aB and aN when a supplier ai is considered to be a good supplier, whereas χPN(ai),
χBN(ai) and χNN(ai) are the loss functions for taking the actions aP, aB and aN when a
supplier ai is considered to be a bad supplier.

4.2. An Application of the 3WD Method under IF Environments

For each supplier ai, the evaluation value in the IF-MADMLFT which can be expressed
as n + 6 vectors:

F(ai) = (Ai1, Ai2, . . . , Aim, χPP(ai), χBP(ai), χNP(ai), χNN(ai), χBN(ai), χPN(ai)),

where Aij is obtained by using A1
ij,. . .,Ak

ij from the Equation (5) and χPP(ai), χBP(ai),
χNP(ai), χNN(ai), χBN(ai), χPN(ai) are the corresponding loss functions of ai.

In order to ensure the correctness of the decision, we need to normalize the IF multi-
attribute information table. Suppose I1 and I2 are benefit attribute set and cost attribute set,
respectively.

If j ∈ I1, we have
Bij = Aij � max

1≤i≤n
Aij. (15)

If j ∈ I2, we have
Bij = min

1≤i≤n
Aij � Aij, (16)

where Bij aggregated by evaluation values of k experts is represented by the evaluation
value of the supplier ai with respect to Aj.

First of all we can get the IF-outranked set [a]S for each supplier a ∈ U. Then,
according to the evaluation values of suppliers and the weights of attributes, we can obtain
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an objective IFS X, which means the concept of “good supplier”. Next, we can calculate
the conditional probability P(X|[a]S) of the IF-outranked set of the supplier a with respect
to the IF concept of the “good supplier”X. In addition, each supplier a has corresponding
loss functions in relation to three action and two states.

The IF-expected losses R(a./|[a]S)(./= P, B, N) of each supplier a ∈ U are computed
as follows:

R(aP|[a]S) = (χa
PP ⊗ P(X|[a]S))⊕ (χa

PN ⊗ P(¬X|[a]S)),
R(aB|[a]S) = (χa

BP ⊗ P(X|[a]S))⊕ (χa
BN ⊗ P(¬X|[a]S)),

R(aN |[a]S) = (χa
NP ⊗ P(X|[a]S))⊕ (χa

NN ⊗ P(¬X|[a]S)). (17)

According to Bayesian the minimum-risk decision making rules, we have:

(PI) If R(aP|[a]S) ≺ R(aB|[a]S) and R(aP|[a]S) ≺ R(aN |[a]S), then a ∈ POS(X),

(BI) If R(aB|[a]S) � R(aP|[a]S) and R(aB|[a]S) � R(aN |[a]S), then a ∈ BND(X),

(NI) If R(aN |[a]S) ≺ R(aP|[a]S) and R(aN |[a]S) ≺ R(aB|[a]S), then a ∈ NEG(X). (18)

In light of three decision rules which can be simplified to Equation (14), the associated
loss which is the risk of taking the final decision for a supplier a is defined as follows:

loss(a) = min{SR(aP |[a]S), SR(aB |[a]S), SR(aN |[a]S)}. (19)

The associated loss of supplier a depends on the region of a. Namely if a ∈ POS(X),
finally supplier a is selected and the associated loss is SR(aP |[a]S).

We can rank all the suppliers a1, a2,. . ., an ultimately via two rules as follows:
(1) According to a DM’s preferences for the rule (PI) − (NI), the priority order of

all alternatives is (PI) � (BI) � (NI), which means that the priority of the suppliers
in POS(X) is greater than the suppliers in BND(X) and the priority of the suppliers in
BND(X) is greater than suppliers in NEG(X). This type fits our semantic interpretation.

(2) Suppliers in the same domain are ranked in descending order of their respective
losses, which is in line with reality.

For example, if a1, a2 ∈ POS(X), a3 ∈ BND(X), a4 ∈ NEG(X) and loss(a1) >
loss(a2), then the final order is a2 � a1 � a3 � a4.

4.3. An Algorithm of 3WD-MADM Method

Algorithm 1 is aim to solve the supplier selection problem in IF environment based on
3WD-MADM method, the algorithm of the above method is summarized as follows:

Input: An IF-MADMLFT (U, C, E,A,W , χ./).
Output: The sorting of all suppliers and the optimal suppliers.
Step 1: Aggregate the IF-MADMLFT by Equation (5).
Step 2: Standardize the IF-MADMLFT by Equations (15) and (16).
Step 3: The IF-outranked set [a]S of each supplier a is acquired via Definition 6.
Step 4: The concept of the IFS X is determined in accordance with (U, C, E,A,W , χ./).
Step 5: Compute the conditional probability P(X|[a]S) and P(¬X|[a]S).
Step 6: Calculate the expected loss function R(a./|[a]S)(./= P, B, N) of each supplier

a via Equation (17).
Step 7: Determine that each supplier a is eventually selected, or not selected, or

requires further investigation using the decision rules.
Step 8: The corresponding loss value of each supplier is computed by Equation (19).
Step 9: Use the two rules (1)–(2) to rank all suppliers.
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Algorithm 1 : The algorithm of IF-3WD-MAMD method for supplier selection.

Input:
An IF-MADMLFT=(U, C, E,A,W , χ./)

Output:
The ranking of all suppliers and the best supplier

1: for ai ∈ U do
2: normalize: Bij, i = 1, 2, . . . , n; j = 1, 2, . . . , m
3: if j ∈ I1, then Bij = Aij � max

1≤i≤n
Aij

4: if j ∈ I2, then Bij = min
1≤i≤n

Aij � Aij

5: end for
6: Given the values of parameter δ and p
7: for ai ∈ U do
8: calculate: [ai]S = {b| aiSb ∧ b ∈ U}
9: end for

10: for ai ∈ U do
11: calculate: βij =

(
1−∏k

l=1(1− µl
ij)

τl , ∏k
l=1(ν

l
ij)

τl
)

12: calculate: X = ∑n
i=1

⊕m
j=1 ωj βij

ai
13: end for
14: for ai ∈ U do

15: calculate: P(X|[ai]S) =
⊕

b∈[ai ]S
X(b)

|[ai ]S |
16: end for
17: for ai ∈ U do
18: calculate: R(aP|[ai]S), R(aB|[ai]S), R(aN |[ai]S)
19: calculate: SR(aP |[ai ]S)

, SR(aB |[ai ]S)
, SR(aN |[ai ]S)

20: end for
21: for ai ∈ U do
22: if SR(aP |[ai ]S)

≤ SR(aB |[ai ]S)
then

23: if SR(aP |[ai ]S)
≤ SR(aN |[ai ]S)

then
24: then ai ∈ POS(X), else
25: ai ∈ NEG(X)
26: end if
27: else if SR(aB |[ai ]S)

≤ SR(aN |[ai ]S)
then

28: then ai ∈ BND(X) else
29: ai ∈ NEG(X)
30: end if
31: end if
32: end if
33: end if
34: end for
35: for ai ∈ U do
36: calculate: all suppliers loss values loss(ai)
37: if ai ∈ POS(X), then loss(ai) = SR(aP |[ai ]S)

38: if ai ∈ BND(X), then loss(ai) = SR(aB |[ai ]S)

39: if ai ∈ NEG(X), then loss(ai) = SR(aN |[ai ]S)
40: end for
41: for ai, at ∈ U do
42: if ai, at are in the same domain and loss(ai) < loss(at), then ai � at
43: else According to the decision rules : POS(X) � BND(X) � NEG(X)
44: end for
45: return : The ranking of all suppliers and the best supplier

5. Illustrative Examples

We use an example to show that the new IF 3WD is reasonable.
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5.1. Numerical Example and Analysis

In order to prove the effectiveness of the novel IF-3WD method and the algorithm, we
will study a realistic IF MADM example of supplier selection.

Ten component suppliers can be considered as a set of alternatives U = {a1, a2, . . . , a10}
when a core manufacturing enterprise to select suppliers of product components. The man-
ufacturer established relevant index evaluation system according to previous experience
with four criteria which are technical level (A1), service level(A2), business ability(A3) and
enterprise environment(A4). The weights are calculated, respectively, 0.22, 0.22, 0.36 and
0.2. Leaders from different departments have been gathered by manufacturer to evaluate
ten suppliers on the basis of the developed index evaluation system. These estimates
have been summarized and analyzed at present, hence, step 1 has been completed. A
supplier has two states: a good supplier or a bad supplier. In real life, for the benefit of
the enterprise, the enterprise should collect more information to decide which suppliers to
choose and which not to choose, and further consider which suppliers. Therefore, the head
of the business unit needs to divide the ten potential suppliers into three regions, namely,
acceptance aP, rejection aN and the indetermination aB. The IF-MADMLFT is shown in
Table 6 where ? means the weight of loss function is not taken into account and the score
function in relation to each attribute’s IF evaluation value is expressed in Table 7.

Table 6. The IF-MADMLFT information table of suppliers.

U A1 A2 A3 A4 χPP χBP χNP χNN χBN χPN

a1 (0.6,0.3) (0.2,0.4) (0.3,0.3) (0.1,0.5) (0,1) (0.11,0.74) (0.33,0.36) (0,1) (0.11,0.72) (0.37,0.25)
a2 (0.4,0.5) (0.7,0.2) (0.6,0.4) (0.5,0.3) (0,1) (0.19,0.77) (0.57,0.34) (0,1) (0.13,0.84) (0.37,0.55)
a3 (0.5,0.3) (0.1,0.6) (0.4,0.2) (0.3,0.4) (0,1) (0.13,0.70) (0.35,0.32) (0,1) (0.09,0.76) (0.37,0.29)
a4 (0.7,0.2) (0.9,0.1) (0.3,0.5) (0.8,0.2) (0,1) (0.22,0.72) (0.72,0.23) (0,1) (0.11,0.82) (0.30,0.58)
a5 (0.6,0.1) (0.6,0.2) (0.3,0.3) (0.5,0.2) (0,1) (0.15,0.66) (0.49,0.20) (0,1) (0.07,0.79) (0.21,0.46)
a6 (0.1,0.8) (0.3,0.5) (0.2,0.4) (0.5,0.1) (0,1) (0.07,0.78) (0.27,0.37) (0,1) (0.18,0.65) (0.51,0.23)
a7 (0.4,0.5) (0.3,0.6) (0.4,0.2) (0.3,0.5) (0,1) (0.12,0.74) (0.36,0.38) (0,1) (0.12,0.77) (0.44,0.35)
a8 (0.2,0.6) (0.6,0.3) (0.8,0.1) (0.4,0.2) (0,1) (0.24,0.64) (0.60,0.22) (0,1) (0.09,0.83) (0.30,0.48)
a9 (0.3,0.4) (0.8,0.1) (0.5,0.4) (0.6,0.3) (0,1) (0.18,0.75) (0.58,0.28) (0,1) (0.12,0.82) (0.32,0.51)
a10 (0.4,0.1) (0.1,0.3) (0.3,0.4) (0.5,0.5) (0,1) (0.11,0.71) (0.33,0.29) (0,1) (0.11,0.73) (0.35,0.28)

W 0.22 0.22 0.36 0.2 ? ? ? ? ? ?

Table 7. The score table of suppliers.

U A1 A2 A3 A4

a1 0.3 −0.2 0 −0.4
a2 −0.1 0.5 0.2 0.2
a3 0.2 −0.5 0.2 −0.1
a4 0.5 0.8 −0.2 0.6
a5 0.5 0.4 0 0.3
a6 −0.7 −0.2 −0.2 0.4
a7 −0.1 −0.3 0.2 −0.2
a8 −0.4 0.3 0.7 0.2
a9 −0.1 0.7 0.1 0.3
a10 0.3 −0.2 −0.1 0

5.2. Description of the Proposed Method

Next, we use the algorithm presented in Section 4.3 to process the supplier selection
case described in Section 5.1. The steps are shown below:

In Step 1, these evaluation values have been aggregated and analyzed, so Step 1 has
been completed.
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In Step 2, since all four attributes are all benefit attributes, this step has been accom-
plished.

In Step 3, the IF-outranked set [ai]S(i = 1, 2, . . . , 10) of each supplier ai ∈ U is acquired
by virtue of Definition 6 and the ELECTRE-I method (δ = 0.6, p = 0.2).

In light of Table 7, we have

[a1]S = {a1}, [a6]S = {a6},
[a2]S = {a2, a6, a7}, [a7]S = {a7},
[a3]S = {a3, a7}, [a8]S = {a6, a8},
[a4]S = {a1, a4, a5, a6, a10}, [a9]S = {a2, a6, a7, a9},
[a5]S = {a1, a3, a5, a6, a7, a10}, [a10]S = {a10}.

In Step 4, the evaluation values of Table 6 are integrated by an IFWA operator to obtain
X which shows the concept of the “good supplier”.

Taking the supplier a3 as an example, we can calculate it as follows:

ω1 A1(a3)⊕ω2 A2(a3)⊕ω3 A3(a3)⊕ω4 A4(a3)

= 0.22(0.5, 0.3)⊕ 0.22(0.1, 0.6)⊕ 0.36(0.4, 0.2)⊕ 0.2(0.3, 0.4)

= (0.350, 0.320).

By virtue of aggregations, we can obtain the IFS X below:

X = {〈a1, 0.330, 0.354〉, 〈a2, 0.571, 0.341〉, 〈a3, 0.350, 0.320〉, 〈a4, 0.705, 0.239〉, 〈a5, 0.488, 0.199〉,
〈a6, 0.274, 0.371〉, 〈a7, 0.360, 0.374〉, 〈a8, 0.606, 0.217〉, 〈a9, 0.579, 0.278〉, 〈a10, 0.331, 0.289〉}.

In Step 5, the conditional probability of the IF-outranked set of each supplier with
respect to the IF concept of the “good supplier” is calculate as follows:

P(X|[a1]S) =
∑b∈[a1]S

X(b)
|[a1]S|

= (0.330, 0.354), P(X|[a6]S) =
∑b∈[a6]S

X(b)
|[a6]S|

= (0.274, 0.371),

P(X|[a2]S) =
∑b∈[a2]S

X(b)
|[a2]S|

= (0.416, 0.362), P(X|[a7]S) =
∑b∈[a7]S

X(b)
|[a7]S|

= (0.360, 0.374),

P(X|[a3]S) =
∑b∈[a3]S

X(b)
|[a3]S|

= (0.355, 0.346), P(X|[a8]S) =
∑b∈[a8]S

X(b)
|[a8]S|

= (0.465, 0.284),

P(X|[a4]S) =
∑b∈[a4]S

X(b)
|[a4]S|

= (0.453, 0.283), P(X|[a9]S) =
∑b∈[a9]S

X(b)
|[a9]S|

= (0.462, 0.339),

P(X|[a5]S) =
∑b∈[a5]S

X(b)
|[a5]S|

= (0.359, 0.311), P(X|[a10]S) =
∑b∈[a10]S

X(b)
|[a10]S|

= (0.331, 0.289).

We can compute the conditional probability P(¬X|[ai]S)(i = 1, 2, . . . , 10) of each
supplier according to Proposition 5:

P(¬X|[a3]S) = (1, 0)	 P(X|[a3]S) = (1, 0)	 (0.355, 0.346) = (1, 0).

In Step 6, by virtue of Equation (17), the expected loss function R(a./|[a]S)(./= P, B, N)
of each supplier a is computed. Take the supplier a3, for example:

R(aP|[a3]S) = (χa3
PP ⊗ P(X|[a3]S))⊕ (χa3

PN ⊗ P(¬X|[a3]S))

= ((0, 1)⊗ (0.355, 0.346))⊕ ((0.37, 0.29)⊗ (1, 0))

= (0.37, 0.29).
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R(aB|[a3]S) = (χa3
BP ⊗ P(X|[a3]S))⊕ (χa3

BN ⊗ P(¬X|[a3]S))

= ((0.13, 0.70)⊗ (0.355, 0.346))⊕ ((0.09, 0.76)⊗ (1, 0))

= (0.1320, 0.6109).

R(aN |[a3]S) = (χa3
NP ⊗ P(X|[a3]S))⊕ (χa3

NN ⊗ P(¬X|[a3]S))

= ((0.35, 0.32)⊗ (0.355, 0.346))⊕ ((0, 1)⊗ (1, 0))

= (0.1242, 0.5553).

The expected loss values of all suppliers are shown in Table 8.

Table 8. The expected losses of suppliers.

U R(aP|[ai]S) R(aB|[ai]S) R(aN |[ai]S)

a1 (0.37,0.25) (0.1423,0.5990) (0.1089,0.5866)
a2 (0.37,0.55) (0.1987,0.7168) (0.2371,0.5789)
a3 (0.37,0.29) (0.1320,0.6109) (0.1242,0.5553)
a4 (0.30,0.58) (0.1987,0.6553) (0.3262,0.4479)
a5 (0.21,0.46) (0.1200,0.6049) (0.1759,0.4488)
a6 (0.51,0.23) (0.1957,0.5600) (0.0740,0.6037)
a7 (0.44,0.35) (0.1580,0.6446) (0.1296,0.6119)
a8 (0.30,0.48) (0.1916,0.6160) (0.2790,0.4415)
a9 (0.32,0.51) (0.1932,0.6845) (0.2680,0.5241)
a10 (0.35,0.28) (0.1424,0.5795) (0.1092,0.4952)

In Step 7, we calculate the scores SR(a./ |[a]S)(./= P, B, N), as shown in Table 9.

Table 9. The SR(a./ |[a]S) values of suppliers (./= P, B, N).

U SR(aP|[ai]S) SR(aB|[ai]S) SR(aN |[ai]S)

a1 0.12 −0.4567 −0.4777
a2 −0.18 −0.5181 −0.3418
a3 0.08 −0.4789 −0.4311
a4 −0.28 −0.4566 −0.1217
a5 −0.25 −0.4849 −0.2729
a6 0.28 −0.3643 −0.5297
a7 0.09 −0.4866 −0.4823
a8 −0.18 −0.4244 −0.1625
a9 −0.19 −0.4913 −0.2561
a10 0.07 −0.4371 −0.3860

By virtue of Equation (17) and the score function, we calculate each supplier a’s
expected losses shown in Table 8 and SR(a./ |[a]S)(./= P, B, N) shown in Table 9. These two
are under the three actions.

According to the decision rules (PI)− (NI) and Equation (19), we compute the associ-
ated loss of each supplier ai ∈ U(i = 1, 2, . . . , 10) which shown in Table 10.
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Table 10. Decision rules and associated loss of suppliers.

U Decision Actions Associated Loss(ai)

a1 NI −0.4777
a2 BI −0.5181
a3 BI −0.4789
a4 BI −0.4566
a5 BI −0.4849
a6 NI −0.5297
a7 BI −0.4866
a8 BI −0.4244
a9 BI −0.4913
a10 BI −0.4371

We have the following conclusions via the decision rules (PI)− (NI): POS(X) = ∅,
BND(X) = {a2, a3, a4, a5, a7, a8, a9, a10}, NEG(X) = {a1, a6}. Therefore, the corresponding
results are described below: no supplier is the optimal one, a1, a6 are not recommended
and a2, a3, a4, a5, a7, a8, a9, a10 need further consideration.

Finally, according to the decision rules PI � BI � NI and the associated loss of each
supplier, we can get the final ranking of 10 suppliers, i.e., a2 � a9 � a7 � a5 � a3 � a4 �
a10 � a8 � a6 � a1 Thus, the supplier a2 is recommended as component supplier. If the
enterprise is eager to choose a supplier to supply components, a2 can be reluctantly selected.
Otherwise, the enterprise needs to further investigate and collect more information to select
the optimal supplier to avoid potential risks and maximize the interests of the enterprise.

6. Conclusions

With the complexity of society and the actual need of real life, in the face of all kinds of
conditions, the company needs to choose the optimal scheme of minimum risk, its purpose
is to maximize interest with the company, so it belongs to MADM problems, on the other
hand, the decision results of MADM problem is further subdivided into three regions,
which help the company to choose a plan, do not choose options or consider options further.
Thus, the MADM approach is combined with 3WD to enable all alternatives to be not only
sorted, but also to reduce risk. The results and analysis are as follows:

1. There are four evaluation indicators in the supplier selection problem, which are tech-
nical level (A1), service level(A2), business ability(A3) and enterprise environment(A4).
Business ability(A3) is the attribute with the highest influential weight and the ability
of finance, supply, cooperation as well as development and economic efficiency are var-
ious aspects of business ability. In addition, product development capability, product
quality and reliability are included in the level of technology; price, reputation, after-
sales service satisfaction belongs to the service level; enterprise environment primarily
covers the compatibility of economic and technological environment, geographical
environment and enterprise culture.

2. Through the 3WD-MADM method, since a2 is the first in the whole sort and the risk
is minimal, the supplier a2 is the best choice.

In this paper, a new 3WD model, applied to the supplier selection, has been put
forward aiming to solve IF MADM problems. On the basis of IF-ELECTRE-I method, an
outranking relation has been introduced and the outranked set has been constructed. A
hybrid information table has been put forward by the combination of IF MADM matrix
and loss function table. Then, the corresponding 3WD model has been investigated. We
have demonstrated the effectiveness of the 3WD method though applying the proposed
method to the problem of supplier selection. This study does not consider the availability
of linguistic variables, so future papers will focus on establishing various new decision
models by combining hesitating intuitionistic fuzzy environments, linguistic variables and
rough sets, so as to provide more academic and practical values for many problems.



Symmetry 2021, 13, 1384 17 of 18

Author Contributions: Investigation, L.F.; Supervison, Z.G. Both authors have read and agreed to
the published version of the manuscript.

Funding: This work is supported by National Natural Science Foundation of China (Grant Nos.
12061067 and 61763044).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Liu, P.D.; Wang, M.H. An extended VIKOR method for multiple attribute group decision making based on generalized interval-

valued trapezoidal fuzzy numbers. Sci. Res. Essays 2011, 6, 766–776.
2. Opricovic, S.; Tzeng, G.H. Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res. 2007, 178, 514–529.

[CrossRef]
3. Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper.

Res. 2004, 156, 445–455. [CrossRef]
4. Liu, P.D.; Zhang, X. Research on the supplier selection of supply chain based on entropy weight and improved ELECTRE III

method. Int. J. Prod. Res. 2011, 49, 637–646. [CrossRef]
5. Vinogradova, I. Multi-Attribute Decision-Making Methods as a Part of Mathematical Optimization. Mathematics 2019, 7, 915.

[CrossRef]
6. Chen, T.L.; Chen, C.C.; Chuang, Y.C.; Liou, J.J.H. A Hybrid MADM Model for Product Design Evaluation and Improvement.

Sustainability 2020, 12, 6743. [CrossRef]
7. Zhan, J.M.; Jiang, H.B.; Yao, Y.Y. Three-way multi-attribute decision-making based on outranking relations. IEEE Trans. Fuzzy

Syst. 2020, 1–14. [CrossRef]
8. Liang, D.; Liu, D. A novel risk decision making based on decision-theoretic rough sets under hesitant fuzzy information. IEEE

Trans. Fuzzy Syst. 2015, 23, 237–247. [CrossRef]
9. Liang, D.C.; Liu, D. Systematic studies on three-way decisions with interval-valued decision-theoretic rough sets. Inform. Sci.

2014, 276, 186–203. [CrossRef]
10. Liu, D.; Li, T.R.; Liang, D.C. Decision-theoretic rough sets with probabilistic distribution. In Rough Sets and Knowledge Technology,

Proceedings of the 7th International Conference RSKT 2012, Chengdu, China, 17–20 August 2012; Springer: Berlin, Gremany, 2012;
Volume 7414, pp. 389–398.

11. Liang, D.C.; Liu, D.; Pedrycz, W.; Hu, P. Triangular fuzzy decision-theoretic rough sets. Int. J. Approx. Reason. 2013, 54, 1087–1106.
[CrossRef]

12. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 142–149. [CrossRef]
13. Deng, X.F.; Yao, Y.Y. Decision-theoretic three-way approximations of fuzzy sets. Inform. Sci. 2014, 279, 702–715. [CrossRef]
14. Pedrycz, W. Granular Computing: Analysis and Design of Intelligent Systems; CRC Press/Francis Taylor Publications: Boca Raton,

FL, USA; New York, NY, USA, 2013; pp. 1–105.
15. Zadeh, L.A. Fuzzy sets. Inform. Control. 1965, 8, 338–353. [CrossRef]
16. Chen, T.Y. Bivariate models of optimism and pessimism in multi-criteria decision-making based on intuitionistic fuzzy sets.

Inform. Sci. 2011, 181, 2139–2165. [CrossRef]
17. Cali, S.; Balama, S.Y. A novel outranking based multi criteria group decision making methodology integrating ELECTRE and

VIKOR under intuitionistic fuzzy environment. Expert Syst Appl. 2019, 119, 36–50. [CrossRef]
18. Liu, H.W.; Wang, G.J. Multi-criteria decision-making methods based on intuitionistic fuzzy sets. Eur. J. Oper. Res. 2007, 179,

220–233. [CrossRef]
19. Du, W.S. Subtraction and division operations on intuitionistic fuzzy sets derived from the Hamming distance. Inform. Sci. 2021,

571, 206–224. [CrossRef]
20. Yang, J.L.; Yao, Y.Y. A three-way decision based construction of shadowed sets from Atanassov intuitionistic fuzzy sets. Inform.

Sci. 2021, 577, 1–21. [CrossRef]
21. Gao, Y.; Li, D.S.; Zhong, H. A novel target threat assessment method based on three-way decisions under intuitionistic fuzzy

multi-attribute decision making environment. Eng. Appl. Artif. Intell. 2020, 87, 103276. [CrossRef]
22. Zou, L.; Lin, H.M.; Song, X.Y.; Feng, K.H.; Liu, X. Rule extraction based on linguistic-valued intuitionistic fuzzy layered concept

lattice. Int. J. Approx. Reason. 2021, 133, 1–16. [CrossRef]
23. Ecer, F.; Pamucar, D. MARCOS technique under intuitionistic fuzzy environment for determining the COVID-19 pandemic

performance of insurance companies in terms of healthcare services. Appl. Soft Comput. 2021, 104, 107199. [CrossRef]
24. Kumar, M.; Kaushik, M. System failure probability evaluation using fault tree analysis and expert opinions in intuitionistic fuzzy

environment. J. Loss Prev. Proc. 2020, 67, 104236. [CrossRef]

http://doi.org/10.1016/j.ejor.2006.01.020
http://dx.doi.org/10.1016/S0377-2217(03)00020-1
http://dx.doi.org/10.1080/00207540903490171
http://dx.doi.org/10.3390/math7100915
http://dx.doi.org/10.3390/su12176743
http://dx.doi.org/10.1109/TFUZZ.2020.3007423
http://dx.doi.org/10.1109/TFUZZ.2014.2310495
http://dx.doi.org/10.1016/j.ins.2014.02.054
http://dx.doi.org/10.1016/j.ijar.2013.03.014
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/j.ins.2014.04.022
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/j.ins.2011.01.036
http://dx.doi.org/10.1016/j.eswa.2018.10.039
http://dx.doi.org/10.1016/j.ejor.2006.04.009
http://dx.doi.org/10.1016/j.ins.2021.04.068
http://dx.doi.org/10.1016/j.ins.2021.06.065
http://dx.doi.org/10.1016/j.engappai.2019.103276
http://dx.doi.org/10.1016/j.ijar.2020.12.018
http://dx.doi.org/10.1016/j.asoc.2021.107199
http://dx.doi.org/10.1016/j.jlp.2020.104236


Symmetry 2021, 13, 1384 18 of 18

25. Boran, F.E.; Akay, D. A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition.
Inform. Sci. 2014, 255, 45–57. [CrossRef]

26. Li, D.F. Multiattribute decision making models and methods using intuitionistic fuzzy sets. J. Comput. Syst. Sci. 2005, 70, 73–85.
[CrossRef]

27. Vlachos, I.K.; Sergiadis, G.D. Intuitionistic fuzzy information-applications to pattern recognition. Pattern Recogn. Lett. 2007, 28,
197–206. [CrossRef]

28. Yao, Y.Y. Decision-Theoretic Rough Set Models.Int. Conf. Rough Sets Knowl. Technol. 2007, 180, 1–12.
29. Yao, Y.Y. Three-way decisions with probabilistic rough sets. Inform. Sci. 2010, 180, 341–353. [CrossRef]
30. Liu, D.; Yao, Y.; Li, T. Three-way investment decisions with decision-theoretic rough sets. Int. J. Comput. Intell. Syst. 2011, 4, 66–74.
31. Yao, J.T.; Azam, N. Web-based medical decision support systems for three-way medical decision making with game-theoretic

rough sets. IEEE Trans. Fuzzy Syst. 2015, 23, 3–15. [CrossRef]
32. Sun, B.Z.; Zhang, M.; Wang, T.; Zhang, X.R. Diversified multiple attribute group decision making based on multigranulation soft

fuzzy rough set and TODIM method. Comput. Appl. Math. 2020, 39, 45–53. [CrossRef]
33. Wang, J.J.; Ma, X.L.; Xu, Z.S.; Zhan, J.M. Three-way multi-attribute decision making under hesitant fuzzy environments. Inform.

Sci. 2021, 552, 328–351. [CrossRef]
34. Xu, Z.S.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. General Syst. 2006, 35, 417–433.

[CrossRef]
35. Xu, Z.S. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187.
36. Atanassov, K.T. On Intuitionistic Fuzzy Sets Theory; Springer: Berlin, Germany, 2012; pp. 1–76.
37. Liao, H.C.; Xu, Z.S. Subtraction and division operations over hesitant fuzzy sets. J. Intell. Fuzzy Syst. 2014, 27, 65–72. [CrossRef]
38. Roy, B. Classement et choix en presence de points devue multiples (la methode ELECTRE). Rev. Fr. Inf. Rech. Oper. 1968, 8, 57–75.
39. Wu, M.C.; Chen, T.Y. The ELECTRE multicriteria analysis approach based on Atanassov’s intuitionistic fuzzy sets. Expert Syst.

Appl. 2011, 38, 12318–12327. [CrossRef]
40. Yao, Y.Y. Three-way decision and granular computing. Int. J. Approx. Reason. 2018, 103, 107–123. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2013.08.013
http://dx.doi.org/10.1016/j.jcss.2004.06.002
http://dx.doi.org/10.1016/j.patrec.2006.07.004
http://dx.doi.org/10.1016/j.ins.2009.09.021
http://dx.doi.org/10.1109/TFUZZ.2014.2360548
http://dx.doi.org/10.1007/s40314-020-01216-5
http://dx.doi.org/10.1016/j.ins.2020.12.005
http://dx.doi.org/10.1080/03081070600574353
http://dx.doi.org/10.3233/IFS-130978
http://dx.doi.org/10.1016/j.eswa.2011.04.010
http://dx.doi.org/10.1016/j.ijar.2018.09.005

	Introduction
	Preliminaries
	Intuitionistic Fuzzy Set
	3WD
	The Determination of an Outranking Relation by the ELECTRE-I Method

	A New 3WD Method under IF Environments
	The Determination of IFSs
	DTRIFS Based on an Outranking Relation
	Objective Conditional Probability P(X|[a]S) Based on IF Environments
	3WD Methods Based on IF-MADMLFT
	Decision Making Methods under IF-DTRSs

	Application of the Novel 3WD Method to IF-MADMLFT
	The Description of the Problem
	An Application of the 3WD Method under IF Environments
	An Algorithm of 3WD-MADM Method

	 Illustrative Examples
	Numerical Example and Analysis
	Description of the Proposed Method

	Conclusions
	References

