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Abstract: Dynamic load identification is an inverse problem concerned with finding the load applied
on a structure when the dynamic characteristics and the response of the structure are known. In
engineering applications, some of the structure parameters such as the mass or the stiffness may be
unknown and/or may change in time. In this paper, an online dynamic load identification algorithm
based on an extended Kalman filter is proposed. The algorithm not only identifies the load by
measuring the structural response but also identifies the unknown structure parameters and tracks
their changes. We discuss the proposed algorithm for the cases when the unknown parameters
are the stiffness or the mass coefficients. Furthermore, for a system with many degrees of freedom
and to achieve online computations, we implement the model reduction theory. Thus, we reduce
the number of degrees of freedom in the resulting symmetric system before applying the proposed
extended Kalman filter algorithm. The algorithm is used to recover the dynamic loads in three
numerical examples. It is also used to identify the dynamic load in a lab experiment for a structure
with varying parameters. The simulations and the experimental results show that the proposed
algorithm is effective and can simultaneously identify the parameters and any changes in them as
well as the applied dynamic load.

Keywords: online dynamic load identification; extended Kalman filter; least square method; model
reduction; varying parameters

1. Introduction

In many applications related to structural safety and reliability, it is necessary to
obtain the dynamic loads active on a structure. Furthermore, it is possible that the dynamic
parameters of such a structure vary with time. In such cases, especially for gradually
varying parameters, the dynamic characteristics of a structure cannot be known in advance.
Therefore, in order to identify the load acting on such structures, it is important to identify
the structural parameters before or simultaneously as we identify the load by solving an
inverse problem starting from the structural responses. Such information will not only be
useful for monitoring the loads but also to monitor the characteristics of a structure as it
changes in real time.

The methods of parameters’ identification can be divided into time-domain and
frequency-domain methods [1–4]. In the frequency-domain, the methods are in general
concerned with identifying the modal parameters of a structure, and then using the modal
coordinate transformation relationship to obtain the physical parameters [5–7]. As for
the time-domain, several scholars have proposed a variety of identification methods
for the modal parameters as well as the physical parameters. The proposed methods
include: Random Decrement Technique (RDT) [8], Ibrahim Time Domain Method (ITD) [9],
Stochastic Subspace Identification (SSI) [10], Eigensystem Realization Algorithm (ERA) [11]
and Natural Excitation Technique (NExT) [12,13]. However, using these methods requires
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the excitation to be white noise, or the response to be a free decay process. There are
also extended Kalman filter (EKF) [14], least Square Estimation (LSE) [15], H∞filter [16]
and Monte Carlo filter [17] to identify the physical parameters for a structure in the
time-domain.

Similarly, the dynamic load identification can also be classified into frequency- and
time-domain methods. The frequency-domain methods are relatively more mature, but
they have certain limitations. The identification accuracy strongly depends on the time
length of the response data acquisition. Their performance is negatively impacted if the
response data are only available for a short time period. The time-domain methods are
relatively recent compared to the frequency-domain. In general, time-domain methods
express the system characteristics as a Duhamel integral, and then obtain the load acting on
a structure using a convolution response. Eills [18] is the first to identify the aerodynamic
load acting on a structure using the frequency-domain. Bartlett [19] identified the load on
the hub by measuring the acceleration response of a helicopter. Inoue [20] used deconvolu-
tion method to identify the load in the frequency-domain. Milana [21] proposed a method
of load identification by coherent analysis of a structural response. Liu et al. [22] used an
interpolation function to fit the load to be identified. Zhang [23] deduced the method of
identifying two dimensional distributed dynamic loads in generalized orthogonal domains.
By introducing the Tikhonov regularization algorithm, Jiang [24,25] improved the accuracy
of identifying distributed random dynamic loads in the generalized orthogonal polyno-
mial domain. Hory [26] first used the method of time discretization to identify aircraft
flight loads. Wu et al. [27] identified the load in time domain based on Green’s function.
Gunawan [28] improved the recognition effect of the impact load with the help of a L-curve
and the truncated singular value method. Song [29] proposed a dynamic load identification
method based on the Kalman filter, which took the strain signal as the observation signal
and identified the unknown load on a cantilever beam through recursive iteration. The
above methods can only identify the excitation when the dynamic characteristics of the
structure are known.

Starting in the past decade, a lot of efforts were invested in solving the inverse
problem of identifying the loads when the structural parameters are unknown while
the dynamic model is given. Based on the classical Kalman filter (KF) [30], Yang [31]
proposed an adaptive Kalman filtering algorithm. T. Lenkutis [32] modified the sinusoidal
approximation using a windowing function, which can remove sharp jumps in a generated
road profile. Y. Lei et al. [33] used an extended Kalman filter to identify the load and the
state vectors through multiple stages. The algorithm can identify the dynamic load when
the structural parameters are unknown and track changes in the structural parameters.
Naets et al. [34] reconstituted the structural state vector parameters and excitation into an
augmented vector, and then used the extended Kalman filter to identify the load and the
unknown parameters. Du et al. [35] studied the identification of the blade tip vortex and
the motion characteristics of the vortex. However, the “Drift phenomenon” is observed in
the displacement and in the load identification if the measured acceleration is contaminated
with noise. To solve this problem, Huang et al. [36] proposed a data fusion method, which
used partial data fusion of displacement and acceleration responses in the observation
equation. Lei et al. [37] proposed a dynamic load identification algorithm based on the
recursive least square method. Zhang and He [38] introduced the projection matrix to
identify jointly structural parameters and unknown loads. Yu [39] combined the theory of
the Hilbert transform and Kalman filter to identify the parameters and the dynamic load of
a shear frame structure.

In this paper, we are concerned with the dynamic load identification where structural
parameters are unknown and change gradually in time. An example of such a system is a
launched rocket where the mass is reduced in time due to the fuel consumption as well as
moving through stages of a multistage rocket. Standard load identification methods cannot
identify the load acting on such systems. We propose a load identification algorithm based
on an extended Kalman filter. We validate the algorithm using numerical and experimental
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studies where we also consider data contaminated with noise. The algorithm is used to
identify properties of structures with gradually varying stiffness or with gradually varying
mass. To deal with continuous structures, they are first discretized using the finite element
method. The discretization produces a symmetric linear system of equations. If the system
includes many degrees of freedom, we implement the model reduction theory to reduce
the number of degrees of freedom before applying the proposed extended Kalman filter
algorithm. The rest of this paper is organized as follows: the load identification method
is presented in Section 2; in Section 3, we discuss implementing the model reduction
theory to reduce the number of degrees of freedom; in Section 4, three numerical examples
are presented to study the efficiency and the accuracy of the proposed algorithm using
different structural parameters and different noise conditions, while in Section 5, the
proposed algorithm is used to identify the dynamic load of a simply supported beam with
gradually varying mass characteristic in an experimental setting; we finish in Section 6
with some concluding remarks.

2. Inverse Algorithm

The general vibration differential equation of a n-DOF system is written as

M
..
p(t) + C

.
p(t) + Kp(t) = Bu f (t). (1)

Here, the parameters M, C and K represent the mass, the damping and the stiffness
symmetric matrices of n × n for a given structure, while the variables

..
p(t),

.
p(t) and p(t)

are acceleration, velocity and displacement vectors of n × 1, respectively.

Starting form Equation (1) and employing x(t) =

[
p(t)
.
p(t)

]
to describe the state

vector of the structure, a linear state space of the vibration differential equation can be
obtained with

.
x(t) =

[
0 I

−M−1K −M−1C

]
x(t) +

[
0

M−1Bu

]
f (t) . (2)

where the influence matrix Bu is the n × s matrix which is composed of 0 and 1 to represent
the location of the applied excitation so that the position of the excitation on the structure
is allocated 1 and otherwise is allocated 0. The matrix 0 is a zero matrix. The variable f (t)
is the excitation vector of s × 1.

If some of the parameters in the mass or the stiffness or the damping matrices are
unknown, we combine these unknown parameters with the state vector x(t) to form the
extended state vector z(t) in Equation (3)

z(t) =
[

x(t)
α

]
=

 p(t)
.
p(t)

α

. (3)

Therefore, the state updating equation of the extended state vector can be rewritten as

.
z(t) =

 .
p(t)

−M−1Kp(t)−M−1C
.
p(t) + M−1Bu f (t)

0

 = f c(z(t), f (t)). (4)

Clearly, the state updating equation with the extended state vector is a nonlin-
ear equation.

The form of measurement available in the measurement updating equation is related
to the type of observation that can be gathered from the structure. Usually, the acceleration
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values measured at the degrees of freedom are the easiest to get. The measurement updated
equation can be written as

y(t) = H0M−1(−Kp(t)− C
.
p(t) + Bu f (t)

)
= h(z(t), f (t)). (5)

Thus, the state updating equation and the measurement updating equation are non-
linear equations with respect to two variables. Applying the Taylor expansion, the above
two nonlinear equations are transformed into a sum of polynomials. We retain only the
first-order polynomials which results into the following

f c(z(t), f (t)) ≈ f c
(

zk−1|k−1, f̂k−1

)
+∇z f c

k−1·
(

z(t)− zk−1|k−1

)
+∇ f f c

k−1·
(

f (t)− f̂k−1

)
, (6)

h(z(t), f (t)) ≈ h
(

zk|k−1, f̂k−1

)
+∇zhk·

(
z(t)− zk|k−1

)
+∇ f hk·

(
f (t)− f̂k−1

)
. (7)

where∇z f c
k−1 and∇zhk are the first-order partial derivatives of the state updating equation

and the measurement updating equation to the extended state vector z(t), respectively.
Then,∇ f f c

k−1 and∇ f hk are the first-order partial derivatives of the state updating equation
and the measurement updating equation to the load vector. The subscript k or k− 1 denotes
the time step. The parameter zk|k−1 indicates the prior estimation of the extended state
vector at the kth time step starting from the previous time step, namely, k− 1.

In order to identify the extended state vector and the unknown load, the extended
Kalman filter can be divided into three steps: state updating, excitation identification and
measurement updating, which is described below.

This starts with the following equations

zk|k−1 = zk−1|k−1 +
∫ tk

tk−1

f c
(

zk−1|k−1, f̂k−1

)
dt, (8)

f̂k = Jk

(
yk − hk

(
zk|k−1, f̂k−1

)
+∇ f hk· f̂k−1

)
, (9)

zk|k = zk|k−1 + Kk

[
yk − h

(
zk|k−1, f̂k−1

)
−∇ f hk·

(
f̂k − f̂k−1

)]
. (10)

The matrices Jk and Kk need to be determined in order to estimate the state zk|k and
the excitation f̂k as the minimum variance unbiased estimation of the system state zk and
the real excitation fk.

(1) Step 1: State updating

The recursive relation of the extended state vector can be written as

zk = zk−1 +
∫ tk

tk−1
f c(z(t), f (t))dt + w = zk−1 + ∆t·[ f c

(
zk−1|k−1, f̂k−1

)
+∇z f c

k−1·
(

zk−1 − zk−1|k−1

)
+∇ f f c

k−1·
(

fk−1 − f̂k−1

)
] + w.

(11)

Then, the prior estimation of the extended state vector can be written as

zk|k−1 = zk−1|k−1 +
∫ tk

tk−1
f c
(

zk−1|k−1, fk−1

)
dt

= zk−1|k−1 + ∆t· f c
(

zk−1|k−1, fk−1

)
.

(12)

Thus, the prior estimation error is

z̃k|k−1 = zk − zk|k−1

= zk−1 − zk−1|k−1 + ∆t·
[
∇z f c

k−1·
(

zk−1 − zk−1|k−1

)
+∇ f f c

k−1·
(

fk−1 − f̂k−1

)]
+ w

=
(

1 + ∆t·∇z f c
k−1

)
·
(

zk−1 − zk−1|k−1

)
+ ∆t·∇ f f c

k−1·
(

fk−1 − f̂k−1

)
+ w

=
(

1 + ∆t·∇z f c
k−1

)
·z̃k−1|k−1 + ∆t·∇ f f c

k−1· f̃k−1 + w.

(13)
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where z̃k−1|k−1 is the posterior estimation error at time (k − 1)∆t, and f̃k−1 is the load
estimation error at time (k− 1)∆t.

We can obtain the variance of prior estimation error using

Pz
k|k−1 = E(z̃k|k−1·

(
z̃k|k−1)

T
)

=
[

1 + ∆t·∇z f c
k−1 ∆t·∇ f f c

k−1
][ Pz

k−1|k−1 Pz f
k−1

P f z
k−1 P f

k−1

][
(1 + ∆t·∇z f c

k−1)
T

(∆t·∇ f f c
k−1)

T

]
+ Q.

(14)

with Pz
k−1|k−1 being the variance matrix of a posterior error estimation at the time instant

(k − 1)∆t, while P f
k−1 is the variance matrix of the load error at the same time instant.

The values of Pz f
k−1 and P f z

k−1 are the cross covariance matrix of the extended state vector
and load:

Pz
k−1|k−1 = E(z̃k−1|k−1·

(
z̃k−1|k−1)

T
)

, (15)

P f
k−1 = E( f̃k−1·

(
f̃k−1)

T
)

, (16)

Pz f
k−1 = (P f z

k−1)
T
= E(z̃k−1|k−1·

(
f̃k−1)

T
)

. (17)

(2) Step 2: Excitation identification

Firstly, we need to establish the equation about the load to be solved:

ỹk = yk − hk

(
zk|k−1, f̂k−1

)
+∇ f hk· f̂k−1. (18)

Then, by substituting Equation (7) into the above Equation (18), we get

ỹk = ∇ f hk· fk +∇zhk·
(

zk − zk|k−1

)
+ v

= ∇ f hk· fk +∇zhk·z̃k|k−1 + v = ∇ f hk· fk + ẽ
(19)

where ẽ = ∇zhk·z̃k|k−1 + v, and the mean value of ẽ is 0. As the components of ẽ have
different variances, it is necessary to select the appropriate weighting matrix W to optimize
the estimation result. Then,

f̂k = [(∇ f hk)
T ·W·∇ f hk]

−1
(∇ f hk)

TW·ỹk, (20)

R̃k = E
(

ẽk ẽT
k

)
= (∇zhk)

T ·Pz
k|k−1·∇zhk + Rk. (21)

where W is the inverse matrix of the variance matrix R̃k, and R̃k is the variance matrix of ẽ.
The matrix Jk is

Jk = [(∇ f hk)
T R̃k

−1∇ f hk]
−1

(∇ f hk)
T R̃k

−1. (22)

In this case, the variance matrix of the error of the excitation estimation f̂k is as follows:

P f
k = [(∇ f hk)

T ·R̃k
−1·∇ f hk]

−1
. (23)

(3) Step 3: Measurement updating

After determining the matrix Jk, we also need to determine the Kalman gain matrix
Kk. Substituting Equation (23) into Equation (11), we obtain the posterior estimation zk|k:

zk|k = zk|k−1 + Kk[yk − h
(

zk|k−1, f̂k−1

)
−∇ f hk·

(
Jk

(
yk − hk

(
zk|k−1, f̂k−1

)
+∇ f hk· f̂k−1

)
− f̂k−1

)
]

= zk|k−1 + Kk

(
I −∇ f hk·Jk

)(
yk − h

(
zk|k−1, f̂k−1

)
+∇ f hk· f̂k−1

)
.

(24)
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Thus, the error of posterior estimation z̃k|k is

z̃k|k = zk − zk|k = zk − zk|k−1 − Kk

(
I −∇ f hk·Jk

)(
yk − h

(
zk|k−1, f̂k−1

)
+∇ f hk· f̂k−1

)
= zk − zk|k−1 − Kk

(
I −∇ f hk·Jk

)(
∇zhk·

(
zk − zk|k−1

)
+∇ f hk· fk + v

)
=
(

I − Kk

(
I −∇ f hk·Jk

)
∇zhk

)
·z̃k|k−1 + Kk

(
I −∇ f hk·Jk

)
∇ f hk· fk + Kk

(
I −∇ f hk·Jk

)
·v.

(25)

Considering zk|k−1 is an unbiased estimation, in order to ensure that zk|k is also an
unbiased estimation, the following equation must be satisfied:

Kk

(
I −∇ f hk·Jk

)
∇ f hk = 0. (26)

Therefore, the variance of posterior estimation can be written as

Pz
k|k = E(z̃k|k·

(
z̃k|k)

T
)

=
[

I − Kk

(
I −∇ f hk·Jk

)
∇zhk

]
·Pz

k|k−1·
[

I − Kk

(
I −∇ f hk·Jk

)
∇zhk]

T + Kk

(
I −∇ f hk·Jk

)
·R·[Kk

(
I −∇ f hk·Jk

)
]T

= (I − Lk∇zhk)·Pz
k|k−1·(I − Lk∇zhk)

T + Lk·R·Lk
T .

(27)

Among them,
Lk = Kk

(
I −∇ f hk·Jk

)
. (28)

In order to make the posterior estimation optimal, the variance matrix Pz
k|k of the

posterior error estimation should be minimized:

∂Pz
k|k

∂Kk
= 0. (29)

According to the above Equation (29), the Kalman filter gain Kk can be obtained
as follows:

Kk = Pz
k|k−1(∇zhk)

T R̃k
−1. (30)

By substituting the above Equation (30) into Equation (27), the variance matrix of
posterior error estimation is rewritten as

Pz
k|k = Pz

k|k−1 − Kk·(R̃k −∇ f hk·P
f

k ·
(
∇ f hk)

T
)
·Kk. (31)

Then, we can get

Pz f
k = −Pz

k|k−1(∇zhk)
T Jk

T = −Kk·∇ f hk·P
f

k . (32)

In order to reduce the numbers of the given initial conditions, the order of the load
identification algorithm based on the extended Kalman filter can be adjusted including
all the above three steps. It should be stressed that the order adjustment does not affect
the efficiency of the algorithm. It only involves a different initial value which has little
influence on the whole process of load identification.

In this paper, we distinguish between two cases:

• the unknown parameters are the stiffness or the damping coefficients
• the unknown parameter are the mass coefficients.

First, we discuss the case of unknown stiffness or damping. We can get the partial
derivative matrix of the state update equation and the measurement update equation to
the extended state vector based on Equations (4) and (5) such as
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∇z f c
k−1 =

[
∂ f c

∂p
∂ f c

∂
.
p

∂ f c

∂α

]∣∣∣z = zk−1|k−1

= M−1

 0 I 0 · · · 0
−K −C − ∂K

∂α1
pk−1|k−1 − ∂C

∂α1

.
pk−1|k−1 · · · − ∂K

∂αm
pk−1|k−1 − ∂C

∂αm

.
pk−1|k−1

0 0 0 · · · 0

 (33)

∇zhk =
[

∂h
∂p

∂h
∂

.
p

∂h
∂α

]∣∣∣z = zk|k−1

= M−1H0

[
−K −C − ∂K

∂α1
pk|k−1 − ∂C

∂α1

.
pk|k−1 · · · − ∂K

∂αs
pk|k−1 − ∂C

∂αs

.
pk|k−1

] (34)

The partial derivative matrices of the state update equation and the measurement
update equation with respect to the load vector are

∇ f f c
k−1 =

 0
M−1Bu

0

, (35)

∇ f hk = H0M−1Bu. (36)

In this case, ∇ f f c
k−1 and ∇ f hk are constant matrices. The measurement update step

and the load identification step can be simplified as

zk|k = zk|k−1 + Kk

[
yk −

−
h
(

zk|k−1

)
−∇ f hk· f̂k

]
, (37)

f̂k = Jk

(
yk −

−
hk

(
zk|k−1

))
. (38)

Thus, the algorithm flow of dynamic load identification can be obtained.
Second is the case where the mass coefficients are unknown. We define the symmetric

matrix M−1 as

M−1 =


1

m1
1

m2
. . .

1
mn

. (39)

All n mass coefficients of the structure are then inserted in the extended state vector.
We can thus get the partial derivatives of the state updating equation and the measurement
updating equation as

∇z f c
k−1 =

[
∂ f c

∂p
∂ f c

∂
.
p

∂ f c

∂α

]∣∣∣z = zk|k =

 0 I 0
−M−1K −M−1C Ek

0 0 0

, (40)

∇zhk =
[

∂h
∂p

∂h
∂

.
p

∂h
∂α

]∣∣∣z = zk|k−1 =
[
−H0M−1K −H0M−1C H0

−
Ek

]
. (41)
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The symmetric matrices Ek and
−
Ek can be written as

Ek =


− 1

m2
1
ξk(1)

− 1
m2

2
ξk(2)

. . .
− 1

m2
n

ξk(n)

,

−
Ek =



− 1
m2

1

−
ξ k(1)

− 1
m2

2

−
ξ k(2)

. . .

− 1
m2

n

−
ξ k(n)


.

(42)

Let ξk(i),
−
ξ k(i) be the i-th element of the vector ξk,

−
ξ k at time (k− 1)∆t

ξk = −Kpk|k − Cpk|k + Bu fk, (43)

−
ξ k = −Kpk|k−1 − Cpk|k−1 + Bu fk−1. (44)

The partial derivatives of the state updating equation and the measurement updating
equation with respect to the load vector are the same as the Equations (35) and (36).
However, they are not constant matrices in this case because the mass coefficient will change
in the filtering process. The mass coefficient must be replaced back to the mass matrix in
each filtering. The algorithm procedure is then the same as that of the unknown parameter
stiffness or damping coefficient, but the difference is in calculating the Jacobian matrix.

For simplicity, we summarize the algorithm steps of the load identification in Algorithm 1.

Algorithm 1. Flow of load identification based on extended Kalman filter

1. Given initial conditions

z0|−1, Pz
0|−1and f0

2. Excitation identification step

R̃k = (∇zhk)
T ·Pz

k|k−1·∇zhk + R

Jk = [(∇ f hk)
T R̃k

−1∇ f hk]
−1

(∇ f hk)
T R̃k

−1

f̂k = Jk

(
yk − hk

(
zk|k−1, f̂k−1

)
+∇ f hk· f̂k−1

)
P f

k = [(∇ f hk)
T ·R̃k

−1·∇ f hk]
−1

3. Measurement update step

Kk = Pz
k|k−1(∇zhk)

T R̃k
−1

zk|k = zk|k−1 + Kk

[
yk − h

(
zk|k−1, f̂k−1

)
−∇ f hk·

(
f̂k − f̂k−1

)]
Pz

k|k = Pz
k|k−1 − Kk·(R̃k −∇ f hk·P

f
k ·
(
∇ f hk)

T
)
·Kk

Pz f
k|k = (P f z

k|k)
T
= −Kk·∇ f hk·P

f
k

4. State update step

zk+1|k = zk|k +
∫ tk+1

tk
f c
(

zk|k, f̂k

)
dt

Pz
k+1|k =

[
1 + ∆t·∇z f c

k ∆t·∇ f f c
k

][ Pz
k|k Pz f

k

P f z
k P f

k

][
(1 + ∆t·∇z f c

k )
T

(∆t·∇ f f c
k )

T

]
+ Q
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3. Model Reduction Strategy

The proposed algorithm works online to recover the applied load and the system
characteristics as they change in real-time, However, when considering a large system with
thousands of degrees of freedom, it becomes impossible to perform the computations in
real-time. In this case, the model reduction technique can be used to reduce the involved
computations. Here, we adapt the reduction strategy. The main idea in this strategy is to
divide the degrees of freedom of the finite element model into master and slave degrees of
freedom. The master degrees of freedom are generally those that have forces applied at
them, or we need to read the results at them. The other degrees of freedom can be defined
as slave degrees of freedom. The slave degrees of freedom are expressed in terms of the
master degree of freedom which significantly reduces the required computations.

Next, we explain the reduction strategy using a beam finite element with four degrees
of freedom associated to two nodes so that each node has a rotational and a translational
degree of freedom. The rotational degrees of freedom are difficult to measure, while the
translational ones are easy. Using the reduction method, the dynamic equations of the beam
elements can be transformed into condensed dynamic equations with only translational
degrees of freedom.

The mass associated to the translational degrees of freedom is considered and is
assumed to be concentrated, while the rotational degrees of freedom mass are ignored. In
this case, the stiffness matrix and the mass matrix of the beam element can be rewritten as

u1 u2 θ1 θ2 u1 u2 θ1 θ2

Ki =
Ei Ii
l3 ·


12 −12 6l 6l
−12 12 −6l −6l
6l −6l 4l2 2l2

6l −6l 2l2 4l2

, Mi =
ρi Ai l

2 ·


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

.
(45)

The global stiffness and mass matrices are composed of their counterpart elementary
matrices. The first half of the global stiffness and mass matrices correspond to the transla-
tional degrees of freedom, while the second half corresponds to the rotational degrees of
freedom. Then, the global stiffness matrix and mass matrix can be written as

K =

[
Kuu Kuθ

Kθu Kθθ

]
, M =

[
Muu 0

0 0

]
. (46)

Substituting the global stiffness and mass matrices into the differential equation of
motion, we can get[

Muu 0
0 0

]( ..
Xu..
Xθ

)
+

{
α

[
Muu 0

0 0

]
+ β

[
Kuu Kuθ

Kθu Kθθ

]}( .
Xu.
Xθ

)
+

[
Kuu Kuθ

Kθu Kθθ

](
Xu
Xθ

)
=

(
F(t)

0

)
. (47)

Among them, the parameter Xu and Xθ mean translational displacement and rota-
tional displacement, respectively. We also assume that the external load only acts on the
beam structure in the translational direction. Thereafter, Equation (47) can be divided into
two equations:

Muu
..
Xu + (αMuu + βKuu)

.
Xu + βKuθ

.
Xθ + KuuXu + KuθXθ = F(t), (48)

βKθu
.

Xu + βKθθ

.
Xθ + KθuXu + KθθXθ = 0. (49)

We can get
β

.
Xθ + Xθ = −K−1

θθ Kθu

(
β

.
Xu + Xu

)
. (50)

Substituting Equation (50) into Equation (48), we can get the motion equation of reduction

Mgu·
..
Xu+Cgu·

.
Xu + Kgu·Xu = F(t). (51)
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where
Mgu = Muu, (52)

Cgu = αMuu + β
(

Kuu − KuθK−1
θθ Kθu

)
, (53)

Kgu = Kuu − KuθK−1
θθ Kθu. (54)

Substitute the condensed dynamic equations into the proposed dynamic load identifi-
cation algorithm. It can be seen that the process of load identification is the same as that
without the reduction. Similar to before and after the reduction, the state update equation
and the measurement update equation in the algorithm can be rewritten as

d
dt

 Xu.
Xu
α

 =


.

Xu

Mgu
−1
(
−KguXu − Cgu

.
Xu + Bu f (t)

)
0

 = f c(z(t), f (t)), (55)

y(t) = H0Mgu
−1
(
−Cgu

.
Xu − KguXu + Bu f (t)

)
= h(z(t), f (t)). (56)

4. Numerical Validation

In this section, three numerical examples are used to validate the proposed algorithm.
The first two represent systems of multi-degrees of freedom while the third a beam. Two of
the examples are dedicated to systems with unknown mass while the third to unknown
stiffness. The measurement taken in the examples is assumed to be contaminated with low
and high levels of noise. In the last example, the proposed algorithm is combined with the
reduction algorithm to identify the system and its load.

4.1. Three-Degrees-of-Freedom with Varying Mass

In the first example, a three-degrees-of-freedom system is selected. A schematic
diagram of the structure is shown in Figure 1. The damping of the system is assumed to be
Rayleigh damping, with the damping coefficients α = 0.05, β = 0.02.

Figure 1. Schematic diagram of the three-degrees-of-freedom system.

Here, m1 = m2 = m3 = 1 kg, k1 = k2 = k3 = k4 = 200 N/m. We assume the mass coef-
ficient m2 increases gradually from 1 kg to 3 kg starting 1.5 s and finishing at 3.5 s. The
responses of the three masses are selected as the measurement vector, while the three
masses are included in the extended state vector as unknown parameters. Assuming that
the estimation of the initial response is correct and the estimation of the initial parame-
ters is biased, the initial extended state vector can be set as z0|−1 = [0, 0, 0, 0, 0, 0, 1, 3, 4]T ,
which is a 9 × 1 column vector. We set the covariance matrix of the model noise to
Q = diag

((
1× 10−6ones(1, 6), 1× 10−4ones(1, 3)

))
, and the covariance matrix of the mea-

surement noise to R = 1× 10−6eye(3).
A load of f = sin(5πt) + 2sin(2πt) is applied on the mass block m1 and 5%, 10% noise

are applied to the measurement vector, respectively. The identification results are shown in
the Figures 2–5. The left plots are for the case with 5% noise, while the right side is for the
case with 10% noise.
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Figure 2. Identification results of the mass coefficient m1.

Figure 3. Identification result of the mass coefficient m2.

Figure 4. Identification result of the mass coefficient m3.
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Figure 5. Identification result of the unknown load.

The results show that the proposed algorithm can accurately and simultaneously
identify the varying masses and the unknown loads on the structure when the noise level
is 5% and 10%. The values of the unknown parameters identified by the algorithm are
recorded before the mass changes (t = 1 s) and after it changes (t = 5 s), and are compared
with the real values in Table 1. The identification errors are shown in the same table. It can
be seen that the algorithm has successfully identified the unknown mass values.

Table 1. Parameter identification error.

Mass Coefficient

t = 1 s t = 5 s

Identification
(kg)

Exact
(kg)

Error
(%)

Identification
(kg)

Exact
(kg)

Error
(%)

5%
noise

m1 1.013 1 1.3 0.9867 1 1.3
m2 1.087 1 8.7 3.022 3 0.7
m3 0.9856 1 1.4 1.006 1 0.6

10%
noise

m1 1.002 1 0.2 1.142 1 14.2
m2 1.025 1 2.5 3.049 3 4.9
m3 1.051 1 5.1 1.139 1 13.9

In order to illustrate the identification accuracy of the unknown loads, the relative
error (RE) and the correlation coefficient (r) methods are used to verify the results. The
relative error refers to the ratio of the absolute error between the identification result and
the exact value divided by the exact value. The smaller the relative error is, the higher the
accuracy of the identification result. The correlation coefficient (r) is the quantity to study
the level of the linear correlation between the variables and is expressed as a percentage.
The closer the correlation coefficient is to 1, the better the identification. The errors are
shown in Table 2. It can be seen that the algorithm can accurately identify the unknown
load in general even when the measured data is contaminated with 5% or 10% noise.

Table 2. Load identification error.

Noise Level Relative Error (RE) (%) Correlation Coefficient (r) (%)

5% noise 9.55 99.48

10% noise 17.75 98.44

4.2. Five-Degree-of-Freedom with Varying Stiffness

In the second numerical test, we study a five-degrees-of-freedom system. We show in
Figure 6 a schematic diagram of the structure. In this test, we consider a gradually varying
stiffness. The damping of the system is assumed to be Rayleigh damping of the coefficients
α = 0.05, β = 0.02.
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Figure 6. Schematic diagram of the five-degree-of-freedom system.

The considered masses and stiffnesses are m1 = m2 = m3 = m4 = m5 = m6 = 1 kg and
k1 = k2 = k3 = k4 = k5 = k6 = 200 N/m. The stiffness coefficient k4 of the structure decreases
gradually from 200 N/m to 120 N/m starting at the time instant t = 1.5 s and finishes
at t = 3.5 s. The response of all the mass blocks is recorded in the measurement vector.
Assuming that the stiffness coefficients k1 and k2 are accurately estimated, the remaining
stiffness coefficients are substituted into the extended state vector as unknown parameters.
We start by considering the initial response estimation to be correct and that the initial
parameter estimation has a certain deviation. The initial extended state vector can be set to
z0|−1 = (zeros(1, 10), 120, 220, 160, 180)T , which is a 14 × 1 column vector.

The mass m1 is excited with a load given by f1 = sin(5πt) + 2sin(2πt), while the
mass m2 by a load f2 = sin(6πt). We consider the measurement to be polluted with noise
so that we first add 1% and then 5% white noise to the measurement vector. Again, we use
the proposed algorithm to track the unknown parameters as well as identify the unknown
load. Figures 7–11 show the identified stiffness while Figures 12 and 13 show the identified
loads. The left plots show the identification results when the measurement is contaminated
with 1% noise, while the right plots with 5% noise. The values of the unknown parameters
identified by the algorithm are recorded before the parameters change at t = 1 s and again
after the parameters change at t = 5 s, and the results are compared to the real values in
Table 3. The corresponding errors are also shown in the table. The errors in the identified
load under different noise conditions are shown in the Table 4.

Figure 7. Identification results of the unknown stiffness k3.
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Figure 8. Identification results of the unknown stiffness k4.

Figure 9. Identification results of the unknown stiffness k5.

Figure 10. Identification results of the unknown stiffness k6.



Symmetry 2021, 13, 1372 15 of 26

Figure 11. Identification result of the unknown load f 1.

Figure 12. Identification result of the unknown load f 2.

Figure 13. Schematic diagram of cantilever structure.
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Table 3. Parameter identification error.

Stiffness Coefficient

t = 1 s t = 5 s

Identification
(N/m)

Exact
(N/m)

Error
(%)

Identification
(N/m)

Exact
(N/m)

Error
(%)

1%
noise

k3 198.8 200 0.6 199.3 200 0.35
k4 199.2 200 0.4 118.4 120 1.33
k5 199.6 200 0.2 198.9 200 0.55
k6 199.8 200 0.1 199.2 200 0.4

5%
noise

k3 187.2 200 6.4 194.4 200 2.8
k4 191.8 200 4.1 118.8 120 1
k5 198.7 200 0.65 197.5 200 1.25
k6 201 200 0.5 195.6 200 2.2

Table 4. Load identification error.

Noise Level Relative Error (RE) (%) Correlation Coefficient (r) (%)

1% noise
f 1 2.64 99.97

f 2 4.98 99.88

5% noise
f 1 10.24 99.32

f 2 19.85 98.05

The results show that the proposed algorithm can successfully identify the unknown
load with varying stiffness even when the measurement is polluted with noise. The
algorithm is also capable of tracking the changes in the stiffness as it recovers the load. The
results suggest that the identification results of the proposed algorithm are accurate.

4.3. Cantilever with Varying Mass

In the third example, we study a cantilever with a varying mass. The considered beam
length is L = 1 m with a rectangular cross section of the width b = 0.1 m and the height
h = 0.01 m. The material density is ρ = 2770 kg/m3. The Young’s modulus is E = 71 GPa.
The damping characteristic of the cantilever is assumed to be Rayleigh damping with
the coefficients being α = 0.8, β = 0.004. We mesh the cantilever using six beam finite
elements. Figure 13 shows the cantilever and the considered mesh. In this example, we
consider the mass ρi Ai of the beam element to be gradually changing. We assume the mass
characteristics ρ4 A4 of the element number 4 to decrease linearly between 1.5 s and 3.5 s to
60% of its original value. The masses of the other elements do not change. A sinusoidal force
F = 200sin(5πt) is applied at the end of the cantilever. Again, two cases are considered
where 1% and then 5% white Gaussian noise is added to the measured response.

The reduction method proposed in Section 3 is used to reduce the dynamic equation of
the beam structure to a dynamic equation with only translational degrees of freedom. Then,
the proposed algorithm is used to identify the load and the parameters of the condensed
beam structure. We assume that the mass coefficient ρ6 A6 is accurately estimated, while
other elements’ mass characteristics are assumed unknown. Thus, the extended state vector
of the proposed algorithm can be written as z = (p,

.
p, ρ1 A1, ρ2 A2, ρ3 A3, ρ4 A4, ρ5 A5)

T . Let
the initial extended state vector be z0|−1 = (zeros(1, 12), ρA, 0.6ρA.ones(1, 4))T , which is
a 17 × 1 column vector, and all the translational degrees of freedom on the beam are
observed. Figures 14–18 show the identification results of the unknown mass parameters,
while Figure 19 shows the identified load. Again, on the left side, we show the results
when 1% noise is applied to the measurement, while to the right are the results correspond
to 5% noise pollution.
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Figure 14. Identification results of the mass ρ1 A1.

Figure 15. Identification results of the mass ρ2 A2.

Figure 16. Identification results of the mass ρ3 A3.
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Figure 17. Identification results of the mass ρ4 A4.

Figure 18. Identification results of the mass ρ5 A5.

Figure 19. Identification result of the unknown load.

The results’ accuracy clearly shows that the reduction algorithm works well with the
proposed load identification algorithm. The load as well as the unknown mass of each
beam element are recovered with good accuracy. The errors of the identification results
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are shown in Tables 5 and 6 for the mass and the load, respectively. The results with both
levels of noise are accurate with engineering accuracy, i.e., the error is the same level as
that of the pollution noise. Obviously, increasing the noise level results in larger errors, but
the algorithm remains to provide meaningful results.

Table 5. Parameter identification error.

Mass Characteristic

t = 1 s t = 5 s

Identification
(kg/m)

Exact
(kg/m)

Error
(%)

Identification
(kg/m)

Exact
(kg/m)

Error
(%)

1%
noise

ρ1 A1 2.76 2.77 3.61 2.903 2.77 4.8
ρ2 A2 2.818 2.77 1.73 2.506 2.77 9.53
ρ3 A3 2.765 2.77 0.18 2.944 2.77 6.28
ρ4 A4 2.773 2.77 0.11 1.554 1.662 6.49
ρ5 A5 2.785 2.77 0.54 2.908 2.77 4.98

5%
noise

ρ1 A1 2.773 2.77 0.11 2.829 2.77 2.13
ρ2 A2 2.285 2.77 17.51 2.349 2.77 15.20
ρ3 A3 3.172 2.77 14.51 3.155 2.77 13.89
ρ4 A4 2.518 2.77 9.09 1.863 1.662 7.26
ρ5 A5 2.924 2.77 5.56 2.949 2.77 6.46

Table 6. Load identification error.

Noise Level Relative Error (RE) (%) Correlation Coefficient (r) (%)

1% noise 2.74 99.96

5% noise 13.66 99.08

5. Experimental Validation

As a final validation, an online dynamic load identification experiment of a simply
supported beam with varying mass characteristics is designed to verify the proposed
algorithm experimentally. The structural parameters of the simply supported beam are
shown in Table 7.

Table 7. Parameter table of simply supported beam.

Parameters of Simply Supported Beam Value

Length a 0.7 m
Width b 0.04 m

Thickness h 0.008 m
Density ρ 7800 kg/m3

Elastic Modulus E 209 GPa
Poisson’s ratio µ 0.30

Before we run the experiment, the natural frequencies of the simply supported beam
are evaluated both experimentally and numerically using the finite element method. The
natural frequencies and natural mode shapes of the beam are shown in Table 8 where
the numerical and experimental results are compared. It can be seen that the natural
frequencies of the experimental results are very close to that of the simulation model. This
is reflected in the first four mode shapes where the relative errors are less than 1%. Thus,
we conclude that the finite element model is reliable.
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Table 8. Natural frequency comparison.

Order Experimental Results (Hz) Simulation Results (Hz) Error (%)

1 37.864 37.8051 0.156
2 151.74 151.264 0.314
3 337.58 340.8637 0.963
4 603.5 609.2473 0.943

To vary the beam mass, we fix an aluminum box at 0.48 m from the left of the simply
supported beam. The aluminum box is filled with steel sand. To change the beam mass, the
box has holes at the bottom so that it leaks the steel sand as the experiment progresses. The
aluminum box with the iron sand and the holes is shown in Figure 20, while a schematic
diagram of the experiment is shown in Figure 21. The experimental setting is shown in
Figure 22. All the used instruments are listed in Table 9. The sampling rate is set to 8196 Hz,
and the excitation signal on the exciter is measured by a force sensor. The beam is meshed
into eight beam elements. The aluminum box is fixed to element 6. The acceleration
responses are measured by sensors placed at the nodes as shown in Figure 21. Two loading
cases are considered. First, a sinusoidal load is applied, and then the experiment is repeated
for a triangular wave load.

Table 9. Force identification experiment equipment.

Equipment Classification Name

Vibration Exciter JZT-2 Permanent magnet exciter
Power amplifier HEAS-50 Power amplifier

Dynamic signal acquisition board NI PXIe-4499 Capture card
Signal acquisition instrument NI PXI

Sensor PCB 356A33 accelerometer
Software NI Signal Express

Figure 20. The aluminum box with iron sand.

Figure 21. The test scheme of the dynamic load identification test.
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Figure 22. The test site of the dynamic load identification test.

Using the acceleration measurements at the nodes, the proposed identification al-
gorithm is used to identify the unknown load and the unknown changing mass. The
identification results are evaluated by comparing them to the actual load measured by
the force sensor. The mass identification results and evaluation results are shown in
Figures 23–26. Table 10 shows the error in the identified mass of individual elements. The
errors are shown before the box has started leaking the sand and then again immediately
after all the sand has leaked.

Figure 23. Mass identification results (ρ1 A1 on the left and ρ2 A2 on the right).

Figure 24. Mass identification results (ρ3 A3 on the left and ρ4 A4 on the right).
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Figure 25. Mass identification results (ρ5 A5 on the left and ρ6 A6 on the right).

Figure 26. Mass identification results (ρ7 A7 on the left and ρ8 A8 on the right).

Table 10. Parameter identification errors.

Mass
Characteristic

Before Mass Changes After Mass Changed

Identification
(kg/m)

Exact
(kg/m)

Error
(%)

Identification
(kg/m)

Exact
(kg/m)

Error
(%)

ρ1 A1 2.097 2.528 17.05 2.168 2.528 14.24
ρ2 A2 2.395 2.528 5.26 2.540 2.528 0.47
ρ3 A3 2.246 2.528 11.15 2.451 2.528 3.04
ρ4 A4 2.557 2.528 1.14 2.477 2.528 2.02
ρ5 A5 2.596 2.528 2.69 2.622 2.528 3.72
ρ6 A6 5.582 5.385 3.66 2.728 2.528 7.91
ρ7 A7 2.588 2.528 2.37 2.562 2.528 1.34
ρ8 A8 2.457 2.528 2.81 2.503 2.528 0.98

It can be seen that the proposed algorithm can identify the unknown mass with good
accuracy regarding the parameters of the structure as well as the unknown loads acting on
it. Other than the identification error of the mass characteristic ρ1 A1, the identification of
other mass coefficients is good. The errors between the identification results and the real
values are due to the noise in the measurement responses and the inaccuracy caused by
the approximation of the reduction method. Since most of the identification errors of these
mass characteristic is within a close range of the element mass, it can be considered that
the parameters identified by the proposed algorithm are accurate. Figures 27 and 28 show
the identification results of the sinusoidal loads before and during the beam mass change.
While Figures 29 and 30 show the identification results of the triangular loads before and
during the beam mass change. In general, it can be seen that the algorithm has captured
the loads with good accuracy. To quantify the identification accuracy further, we show in
Table 11 the relative errors and the correlation coefficient for the identified results against
the experimental results.
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Figure 27. Identification result of the sinusoidal wave load in the initial phase before the mass change.

Figure 28. Identification result of the sinusoidal wave load during the mass change phase.

Figure 29. Identification result of the triangular load in the initial phase before the mass change.
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Figure 30. Identification result of the triangular load during the mass change phase.

Table 11. Load identification errors.

Type Relative Error (RE) (%) Correlation Coefficient (r) (%)

sine 9.31 99.57

triangular wave 12.97 99.16

It can be seen in the figures that the accuracy of the load identification is indeed
accurate where all the details of the applied load are captured. However, in the initial
stage for the first 0.05 s, there are fluctuations in the results. This is caused by the initial
errors in estimating the mass coefficients at this initial phase. With the identification
progress, the mass parameter converges to accurate values, and the load identification
accuracy significantly improves. The errors in Table 11 show the correlation coefficients
of the sinusoidal load and the triangular load to be more than 99%, which suggests an
excellent overall accuracy in the algorithm. This accuracy in identifying the dynamic load
and in capturing the mass parameters has been achieved despite the varying nature of
the problem.

6. Conclusions

In this paper, an online dynamic load identification method based on an extended
Kalman filter is proposed. The proposed algorithm is also combined with the reduction
method which is used to reduce the number of degrees of freedom in the system. The
reduced system leads to improved efficiency by reducing the rank of the matrix to be
solved, hence, the amount of necessary computation. The algorithm is implemented for
cases when the unknown parameters are either the stiffness or the mass of a structure. It
can be seen that the different unknown parameter types only affect the Jacobian matrix,
but the algorithm flow in a similar way for both cases.

Several examples are used to test and validate the proposed approach. The studied
examples include multi-degrees of freedom systems as well as a cantilever where the
measured data are contaminated with different levels of noise. The algorithm was also
validated in a lab experiment designed to validate the approach in a physical test on
a simply supported beam with a varying mass. The reduction method is successfully
implemented with the proposed algorithm to eliminate the rotational degrees of freedom
in the beam elements. The numerical as well as the experimental results prove that the
proposed algorithm can simultaneously identify the change in the structural parameters
and capture them as well as identify the unknown dynamic load acting on the structure.
All the presented results show the accuracy of the proposed algorithm and its efficiency in
capturing the dynamic loads as well as the changing parameters in the system even when
the measurement data are polluted with noise. Finally, for future works, we aim to develop
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a theoretical proof for the method converge. However, developing such a theoretical proof
can be especially difficult given the varying nature of the identified parameters.
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