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Abstract: The purpose of this paper is to introduce the class of enriched multivalued contraction
mappings. Both single-valued and multivalued enriched contractions are defined by means of
symmetric inequalities. Our main result extends and generalizes the recent result of Berinde and
Păcurar (Approximating fixed points of enriched contractions in Banach spaces, Journal of Fixed
Point Theory and Applications, 22 (2), 1–10, 2020). We also study a data dependence problem of
the fixed point set and Ulam–Hyers stability of the fixed point problem for enriched multivalued
contraction mappings. Applications of the results obtained to the problem of the existence of a
solution of differential inclusions and dynamic programming are presented.

Keywords: Banach space; enriched multi-valued contraction; fixed point; iterative method; data
dependence; Ulam–Hyers stability; differential inclusion; dynamic programming

1. Introduction and Preliminaries

In 1922, Banach [1] demonstrated a significant conclusion for fixed point theory on
the metric spaces, known as the Banach contraction principle. Because of its applications in
various fields of nonlinear analysis and applied mathematical analysis, this principle has
been generalized and extended in different ways.

One of the interesting and famous generalizations was proved by Nadler [2] by
applying the concept of the Pompeiu–Hausdorff metric defined on a family of closed
and bounded subsets of a complete metric space (see [3]). He established the concept of
multi-valued contraction mappings.

Throughout this paper, the standard notations and terminologies in nonlinear analysis
(see [4,5]) are used. For the convenience of the reader, we recall some of them.

Let (X, d) be a metric space. Let CB(X) and (C(X)) be the class of all nonempty closed
and bounded (compact) subsets of X, respectively.

The symmetric functional H : CB(X)× CB(X)→ [0, ∞) defined by

H(A, B) = max
{

D(A, B), D(B, A)
}

,

where D(A, B) = supx∈A infy∈B d(x, y), for all A, B ∈ CB(X), is a metric called the
Pompeiu–Hausdorff metric.

Nadler had proved the following fixed point theorem for multivalued mappings
satisfying a symmetric contraction condition.
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Theorem 1 ([2]). Let (X, d) be a complete metric space and T : X → CB(X) be a multi-valued
contraction mapping satisfying

H(Tx, Ty) ≤ kd(x, y), (1)

for all x, y ∈ X, where k is a constant such that k ∈ (0, 1). Then, T has a fixed point; that is, there
exist a point z ∈ X such that z ∈ Tz.

Later, several interesting fixed point theorem for multi-valued mappings were ob-
tained (see [4–13] and especially the monographs of Rus [14–16]).

Let T : X → CB(X) be a given mapping. For any fixed x0 in X, a sequence {xn} in
X such that xn+1 ∈ Txn is called a T-orbital sequence around x0. The set O(T, x0) denotes
the collection of all such sequences. Further, an element x ∈ X is called a fixed point of
T, if x ∈ T(x). The set of all fixed points of a multi-valued T is denoted by Fix(T), that is,
Fix(T) = {x ∈ X : x ∈ T(x)}. A multi-valued mapping T : X → CB(X) is called a Lips-
chitzian mapping if, for all x, y ∈ X, there exists some L ≥ 0 such that H(Tx, Ty) ≤ Ld(x, y)
holds. If we take L = 1 in the previous inequality, then the Lipschitzian mapping T is
called nonexpansive.

The following data dependence problem is well known.
Let T1, T2 : X → P(X) be two multi-valued mappings such that Fix(T1) and Fix(T2)

are nonempty and there exists δ > 0 with the property that H(T1x, T2x) ≤ δ, for all x ∈ X.
Under these conditions, estimate H(Fix(T1, Fix(T2)), where P(X) is the power set of

X. Several partial answers to this problem are given in [17–19].
The stability problems of functional equations originated from a question of Ulam [20]

concerning the stability of group homomorphisms. Hyers [21] gave a partial answer to the
question of Ulam [20] for Banach spaces.

Let (X, d) be a metric space and T : X → 2X a multi-valued mapping. Consider the
fixed point problem

x ∈ Tx. (2)

Let ε > 0. An element w∗ ∈ X is called an ε-solution of the fixed point problem (2) if
there exists y∗ ∈ X such that

D(w∗, Ty∗) ≤ ε. (3)

The fixed point problem (2) is called Ulam–Hyers stable if there exists a finite constant
c > 0 such that for each ε > 0 and for each ε-solution x∗ ∈ X of the fixed point problem (2)
there exist solutions w∗ ∈ X of problem (2) such that

d(x∗, w∗) ≤ cε. (4)

Following the authors of [22,23], a single-valued mapping T : X → X is called
an enriched contraction or (b, θ)-enriched contraction [22] if there exist two constants,
b ∈ [0, ∞) and θ ∈ [0, b + 1), such that, for all x, y ∈ X,

‖b(x− y) + Tx− Ty‖ ≤ θ‖x− y‖, (5)

and enriched nonexpansive or b-enriched nonexpansive [23] if

‖b(x− y) + Tx− Ty‖ ≤ (b + 1)‖x− y‖, ∀ x, y ∈ X,

respectively.
Note that the above two contractive conditions are both symmetric. We state Theorem

2.4 of [22] for convenience and in view of extending to the case of multi-valued mappings.

Theorem 2 ([22]). Let (X, ‖·‖) be a Banach space and T : X → X be a (b, θ)-enriched contraction.
Then,

1. T has a unique fixed point p.
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2. There exist λ ∈ [0, 1) such that the iterative method {xn}∞
n=0, given by

xn+1 = (1− λ)xn + λTxn, n ≥ 0,

converges to p for any x0 ∈ X.
3. The following estimate holds

‖xn+i−1 − p‖ ≤ ci

1− c
‖xn − xn−1‖, n = 0, 1, . . . ; i = 1, 2, . . .

where c = θ
b+1 .

As shown in [22], a lot of well-known contractive conditions from the literature imply
the (b, θ)-enriched contraction. Therefore, Theorem 2 includes as particular cases the
Banach contraction principle and several important fixed point theorems in the literature.

The purpose of this paper is to extend the concept of enriched contraction and enriched
nonexpansive from the case of single-valued mappings to multi-valued mappings, which
not only includes the class of multi-valued contraction mappings but also the class of some
Lipschitzian mappings as a subclass. We study a data dependence problem of the fixed
point sets and Ulam–Hyers stability of the fixed point problem for enriched multi-valued
mappings. We present applications of our results in establishing the existence of a solution
of a differential inclusion problem, dynamic programming; introduce a algorithm in real
Hilbert space; prove a strong convergence theorem for approximating a common solution
of fixed point inclusion for enriched multi-valued nonexpansive mapping and equilibrium
problem of a bifunction.

2. Main Results

We introduce now the notions of enriched multi-valued contraction and enriched
multi-valued nonexpansive mapping by means of the following two symmetric contractive
type inequalities.

Definition 1. Let (X, ‖·‖) be a linear normed space. A multi-valued mapping T : X → CB(X)
is called:

(i) Enriched multi-valued contraction if there exists b ∈ [0, ∞) and θ ∈ [0, b + 1) such that

H(bx + Tx, by + Ty) ≤ θ‖x− y‖, ∀ x, y ∈ X. (6)

(ii) Enriched multi-valued nonexpansive if for all x, y ∈ X, we have

H(bx + Tx , by + Ty) ≤ (b + 1)‖x− y‖. (7)

To indicate the constant involved in (6) and (7), we also call T a (b, θ)-enriched multi-valued
contraction and b-enriched multi-valued nonexpansive, respectively.

Example 1. Any multi-valued contraction (1) mapping T with contraction constant L is (0, L)-
enriched multi-valued contraction, i.e., T satisfies (6) with b = 0 and θ = L ∈ [0, 1).

Every multi-valued nonexpansive mapping T is 0-enriched multi-valued nonexpansive.

Example 2. Let (Y, µ) be a finite measure space. The classical Lebesgue space X = L2(Y, µ) is de-
fined as the collection of all Borel measurable functions f : Y → R such that

∫
Y | f (y)|

2dµ(y) < ∞.

We know that the space X equipped with the norm ‖ f ‖X =

( ∫
Y | f |

2dµ

) 1
2

is a Banach space.

Define the mapping T : L2(Y, µ)→ CB(L2(Y, µ)) by

T f = {− f , g− f },
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where g(y) = 1, ∀ y ∈ Y. Clearly, g ∈ L2(Y, µ) as µ(Y) < ∞.
Note that T is an (1, 1)-enriched multi-valued contraction mapping but not a contraction

mapping in the sense of Nadler [2].
Indeed, if we take f1, f2 ∈ L2(Y, µ), such that f1(y) = 3 and f2(y) = 6, ∀ y ∈ Y, then

clearly,

d(− f1, T f2) = inf
{
‖ − f1 + f2‖, ‖ − f1 − g + f2‖

}
(8)

Note that

‖ − f1 + f2‖2 =
∫

Y
| − f1 + f2|2dµ =

∫
Y
(−3 + 6)2dµ = 32µ(Y)

and

‖ − f1 − g + f2‖2 =
∫

Y
| − f1 − g + f2|2dµ =

∫
Y
(−3− 1 + 6)2dµ = 22µ(Y)

Thus,
d(− f1, T f2) = 2[µ(Y)]

1
2 (9)

Similarly, we have

d(g− f1, T f2) = inf
{
‖g− f1 + f2‖, ‖ − f1 + f2‖

}
(10)

Note that,

‖g− f1 + f2‖2 =
∫

Y
|g− f1 + f2|2dµ =

∫
Y
(1− 3 + 6)2dµ = 42µ(Y)

‖g− f1 + f2‖ = 4[µ(Y)]
1
2 . (11)

Thus,
d(g− f1, T f2) = 3[µ(Y)]

1
2 . (12)

Therefore,

D(T f1, T f2) = sup{d(− f1, T f2), d(g− f1, T f2)} = 3[µ(Y)]
1
2

Similarly,
D(T f2, T f1) = 3[µ(Y)]

1
2 (13)

and hence
H(T f1, T f2) = 3[µ(Y)]

1
2

Note that

‖ f1 − f2‖ =
( ∫

Y
| f1 − f2|2dµ

) 1
2

=

( ∫
Y
(3− 6)2dµ

) 1
2

= 3[µ(Y)]
1
2 = H(T f1, T f2).

On the other hand,
f + T f = {0, g},

where 0 is the zero measurable function on Y. Clearly, we have

d(0, h + Th) = inf{‖0‖, ‖0− g‖} = 0

and
d(g, h + Th) = 0
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which gives that D( f + T f , h + Th) = 0. Similarly, D(h + Th, f + T f ) = 0. Thus,

H( f + T f , h + Th) = max
{

D( f + T f , h + Th), D(h + Th, f + T f )
}

= 0 ≤ d( f , h), ∀ f , h ∈ L2(Y, µ).

Hence, T is (1, 1)-enriched multi-valued contraction. In addition,

Fix(T) =
{

0,
g
2

}
.

Remark 1. Let M be a convex subset of a linear space X and T : M → CB(M). Then, for any
λ ∈ (0, 1), consider the mapping Tλ : M→ CB(M) given by

Tλ(x) = (1− λ)x + λTx (14)

= {(1− λ)x + λs : s ∈ Tx}. (15)

In other words, for each x in M, Tλ(x) is the translation of the set λTx by the vector
(1− λ)x. Clearly,

Fix(Tλ) = Fix(T).

Indeed, if p ∈ Tp, then p = (1− λ)p + λp ∈ Tλ p. On the other hand, if p ∈ Tλ p, then for
some s ∈ Tp, we have p = (1− λ)p + λs which further implies that s = p.

We need the following Lemma of Nadler [2] (see also [7] ).

Lemma 1 ([7]). Let (X, d) be a metric space, A, B ⊂ X and q > 1. Then, for each a ∈ A, there
exists b ∈ B such that

d(a, b) ≤ qH(A, B).

We now prove the following fixed point theorem for a (b, θ)-enriched multi-valued
contraction in normed space. In the sequel, the letters R and N denote the set of all real
numbers and the set of all natural numbers, respectively.

Theorem 3. Let (X, ‖.‖) be a normed space, T : X → CB(X) a (b, θ)-enriched multi-valued
contraction. Then,

1. Fix(T) = {x∗};
2. There exist a Tλ-orbital sequence {xn}∞

n=0 around x0 that converges to the fixed point x∗ of
T, for which the following estimates hold:

d(xn, x∗) ≤ hn

1− h
d(x0, x1), n = 0, 1, 2, . . . (16)

d(xn, x∗) ≤ h
1− h

d(xn−1, xn), n = 1, 2, . . . (17)

provided that for some x0 in X, the Tλ-orbital subset O(Tλ, x0) is a complete subset of X where
h = qθ

b+1 for certain q > 1 and λ = 1
b+1 .

Proof. We divide the proof into the following two cases.
Case 1. Suppose that b > 0. Take λ = 1

b+1 . Clearly, 0 < λ < 1. In this case, we have

H
((

1
λ
− 1
)

x + Tx,
(

1
λ
− 1
)

y + Ty
)
≤ θd(x, y)

and hence
H
(
(1− λ)x + λTx, (1− λ)y + λTy

)
≤ θλd(x, y).
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Equivalently, for each x, y ∈ X, we have

H
(
Tλx, Tλy

)
≤ cd(x, y), (18)

where c = θλ, and Tλ is defined as in (14). As θ ∈ (0, b + 1), so c ∈ (0, 1) and hence the
mapping Tλ is a c contraction in the sense of Nadler [2].

Let q > 1, x0 ∈ X and x1 ∈ Tλx0. If H(Tλx0, Tλx1) = 0, then Tλx0 = Tλx1 implies that
x1 ∈ Tλx1 and hence Fix(Tλ) 6= ∅.

Suppose that H(Tλx0, Tλx1) 6= 0. Then, by Lemma 1, there exists x2 ∈ Tλx1 such that

d(x1, x2) ≤ qH(Tλx0, Tλx1) ≤ qcd(x0, x1).

We may take q > 1 such that h = qc < 1 and hence

d(x1, x2) < hd(x0, x1).

If H(Tλx1, Tλx2) = 0. Then, Tλx1 = Tλx2 gives that x2 ∈ Tλx2. Suppose that
H(Tλx1, Tλx2) 6= 0. Following the arguments similar to those given above, there exists
x3 ∈ Tλx2 such that

d(x2, x3) ≤ hd(x1, x2).

Continuing this way, we can obtain a sequence {xn}∞
n=0 in X such that xn+1 ∈ Tλxn

and it satisfies
d(xn, xn+1) ≤ hd(xn−1, xn), n = 0, 1, 2, ..., . (19)

By (19), we inductively obtain that

d(xn, xn+1) ≤ hnd(x0, x1), (20)

and
d(xn+k, xn+k+1) ≤ hk+1d(xn−1, xn), k ∈ N, n ≥ 1. (21)

By (20), and triangular inequality, we have

d(xn, xn+p) ≤
hn(1− hp)

1− h
d(x0, x1), (22)

for all n, p ∈ N. Hence,

d(xn, xn+p) ≤
hn

1− h
d(x0, x1) (23)

which, in view of 0 < h < 1 gives that {xn}∞
n=0 is a Cauchy sequence in the subspace

O(Tλ, x0) of X. Next, we assume that there exists an element x∗ in O(Tλ, x0) such that
lim

n→∞
xn = x∗. Note that

D(x∗, Tλx∗) ≤ d(x∗, xn+1) + D(xn+1, Tλx∗)

≤ d(x∗, xn+1) + H(Tλxn, Tλx∗)

≤ d(x∗, xn+1) + cd(x∗, xn).

On taking the limit as n → ∞, we get that D(x∗, Tλx∗) = 0. Since Tλx∗ is closed,
x∗ ∈ Tλx∗.

Case 2. b = 0. In this case, the enriched multi-valued contraction (6) becomes,

H(Tx, Ty) ≤ θd(x, y) ∀ x, y ∈ X, (24)

where θ ∈ (0, 1). That is, T is a multi-valued contraction mapping in the sense of Nadler
and hence Fix(T) 6= ∅, by Nadler’s fixed point theorem.
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To obtain (16), we let p→ ∞ in (22). By (21), we get similarly to (3.10)

d(xn, xn+p) ≤
h(1− hp)

1− h
d(xn−1, xn), p ∈ N, n ≥ 1, (25)

and letting p→ ∞ in (25) we obtain (17).

Example 3. Let X = R \
{

1
5 , −1

5 , 4
5

}
be endowed with the usual norm and let T : X → CB(X)

be defined by Tx = {−x, 1− x}, for all x ∈ X. Then, clearly T is a (1, 1)-enriched multi-valued
contraction. As λ = 1

b+1 , this gives λ = 1
2 . Let x0 = 0 be fixed in X. Then, we have

T1
2
(x0) =

1
2

x0 +
1
2

Tx0 =
1
2
(0) +

1
2
{

0, 1
}
=

{
0,

1
2

}
.

Pick x1 = 0 in T1
2
(x0). Similarly, in this way, we get T1

2
(x1) = {0, 1

2}. Pick x2 = 0 ∈ T1
2
x1.

Continuing in this same way, we obtain xn+1 ∈ T1
2
(xn), where xn+1 = (0, 0, 0, ...), we obtain a

Cauchy sequence {xn}n∈N which converges to 0 and 0 is the fixed point of T.

We now prove the following fixed point theorem for a (b, θ)-enriched multi-valued
contraction in a Banach space.

Corollary 1. Let (X, ‖.‖) be a Banach space and T : X → CB(X) a (b, θ)-enriched multi-valued
contraction. Then, Fix(T) 6= ∅.

Proof. Following arguments similar to those in the proof of Theorem 3, the result fol-
lows.

As a corollary of our result, we can obtain Nadler’s fixed point theorem for multi-
valued mappings, in the setting of a Banach space.

Corollary 2 ([2]). Let (X, ‖.‖) be a Banach space and T : X → CB(X) a multi-valued contraction,
that is,

H(Tx, Ty) ≤ θd(x, y), ∀ x, y ∈ X.

Then, Fix(T) 6= ∅.

If in Corollary 1 for T we take a single valued mapping, then we obtain Theorem 2.4
of [22].

Corollary 3. Let (X, ‖.‖) be a Banach space and T : X → X a (b, θ)-enriched contraction, that is,

‖b(x− y) + Tx− Ty‖ ≤ θ‖x− y‖, ∀ x, y ∈ X.

Then, T has a unique fixed point.

We now prove the following fixed point theorem for b-enriched multi-valued nonex-
pansive mappings in a uniformly convex Banach space.

Theorem 4. Let X be a uniformly convex Banach space and D a closed convex bounded nonempty
subset of X. Let T : D → C(D) be a b enriched multi-valued nonexpansive mapping. Then, T has
a fixed point, i.e., there exists x ∈ D with x ∈ Tx.

Proof. We divide the proof into the following two cases.
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Case 1. Suppose that b > 0. Clearly, 0 < λ = 1
b+1 < 1. In this case, an b-enriched

multi-valued nonexpansive condition (7) reduces to the following form

H(Tλx, Tλy) ≤ d(x, y).

Clearly, Tλ satisfies all the conditions of Theorem 1 of [24]. Hence Fix(T) 6= ∅.
Case 2. Suppose that b = 0. In this case, we have λ = 1.
Then, Fix(T) 6= ∅ by Theorem 1 of [24].

As a corollary of our result, we can obtain Theorem 1 of [24] for multi-valued mappings.

Corollary 4 ([24]). Let X be a uniformly convex Banach space and let D be a closed convex
bounded nonempty subset of X. Let T : D → C(D) be a 0-enriched multi-valued nonexpansive
mapping. Then, T has a fixed point, i.e., there exists x ∈ D with x ∈ Tx.

3. Approximation Methods for Enriched Multi-Valued Nonexpansive Nonself
Mappings and Equilibrium Problems

Let H be a real Hilbert space with inner product
〈
·, ·
〉
. Let D be a nonempty and

convex subset of H and let F : D× D → R be a bifunction. The equilibrium problem for F
is to find u ∈ D such that

F(u, y) ≥ 0, ∀y ∈ D. (26)

The solutions set of (26) is denoted by EP(F). The equilibrium problem (26) includes as
special cases numerous problems in physics, optimization, and economics. Some methods
have been continuously constructed for solving the equilibrium problem (see, for example,
Refs. [25,26] and references therein). Let X be a Banach space and D a subset of X. A multi-
valued mapping T : D → CB(X) is said to satisfy the condition (A), if ‖x− p‖ = D(x, Tp)
for all x ∈ X and p ∈ Fix(T).

When {xn} is a sequence in H, xn ⇀ x implies that {xn} converges weakly to x and
xn → x means the strong convergence. In a real Hilbert space H, we have

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖x‖2 − λ(1− λ)‖x− y‖2,

for all x, y ∈ H and λ ∈ [0, 1]. Let D be a closed and convex subset of H. For every point
x ∈ H, there exists a unique nearest point in D, denoted by PDx, such that

‖x− PDx‖ ≤ ‖x− y‖, ∀ y ∈ D.

PD is called the metric projection of H onto D.
For solving the equilibrium problem for a bifunction F : D× D → R, let us assume

that F satisfies the following conditions:

(A1) F(x, x) = 0, for all x ∈ D.
(A2) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0, ∀ x, y ∈ D.
(A3) For each x, y, z ∈ D,

lim
t↓0

F(tz + (1− t)x, y) ≤ F(x, y).

(A4) For each x ∈ D, y 7→ F(x, y) is convex and lower semicontinuous.

The following is used for the proof if our main results in the sequel.

Lemma 2 ([27]). Let {sn} be a sequence of nonnegative real numbers, {αn} be a sequence in [0, 1]
with ∑∞

n=1 αn = ∞, {βn} be the sequence of nonnegative real numbers with ∑∞
n=1 βn < ∞, and

{γn} be the sequence of real numbers with lim supn→∞ γn ≤ 0. Suppose that

sn+1 = (1− αn)sn + αnγn + βn,

for all n ∈ N. Then, limn→∞ sn = 0.
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Lemma 3 ([27]). Let D be a closed and convex subset of a real Hilbert space H and PD be the
metric projection from H onto D. Given x ∈ H and z ∈ D, z = PDx if and only if〈

x− z, y− z
〉
≤ 0, ∀y ∈ D.

Lemma 4 ([27]). For r > 0, x ∈ H, define the mapping Tr : H → D as follows:

Tr(x) =
{

z ∈ D : F(z, y) +
1
r
〈
y− z, z− x

〉
≥ 0, ∀ y ∈ D

}
.

Then, the following hold:

1. Tr is single-value.
2. Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤
〈

Trx− Try, x− y
〉
.

3. Fix(Tr) = EP(F).
4. EP(F) is closed and convex.

Lemma 5. Let D be a closed and convex subset of Hilbert space H. Let T : D → C(D) be
a b-enriched multi-valued nonexpansive mapping with Fix(T) 6= ∅ and Tp = {p} for each
p ∈ Fix(T). Then, Fix(T) is a closed and convex subset of D.

Proof. We divide the proof into the following two cases.
Case 1. Suppose that b > 0. Clearly, 0 < λ = 1

b+1 < 1. In this case, a b-enriched
multi-valued nonexpansive condition (7) reduces to the following form

H(Tλx, Tλy) ≤ d(x, y).

First, we show that Fix(Tλ) is closed. Let {xn} be sequence in Fix(Tλ) such that
xn → x as n→ ∞. We have

D(x, Tλx) ≤ d(x, xn) + D(xn, Tλx)

≤ d(x, xn) + H(Tλxn, Tλx)

= 2d(x, xn).

It follows that D(x, Tλx) = 0, so x ∈ Fix(Tλ). Next, we show that Fix(Tλ) is convex.
Let p = tp1 + (1− t)p2 where p1, p2 ∈ Fix(Tλ) and t ∈ (0, 1). Let z ∈ Tλ p, we have

‖p− z‖2 = ‖t(z− p1) + (1− t)(z− p2)‖2

= t‖z− p1‖2 + (1− t)‖z− p2‖2 − t(1− t)‖p1 − p2‖2

= tD(z, Tλ p1)
2 + (1− t)D(z, Tλ p2)

2 − t(1− t)‖p1 − p2‖2

≤ tH(Tλ p, Tλ p1)
2 + (1− t)H(Tλ p, Tλ p2)

2 − t(1− t)‖p1 − p2‖2

≤ t‖p− p1‖2 + (1− t)‖p− p2‖2 − t(1− t)‖p1 − p2‖2

= t(1− t)2‖p2 − p1‖2 + (1− t)t2‖p1 − p2‖2 − t(1− t)‖p1 − p2‖2

= 0.

Hence, p = z. Therefore, p ∈ Fix(T).
Case 2. Suppose that b = 0. In this case, we have λ = 1. Then, Fix(T) is a closed and

convex subset of D by Lemma 2.7 of [27].

Using the above results, we study convergence of the following iteration (27). Let D
be a nonempty, closed, and convex subset of a Hilbert space H. Let T : D → C(H) be a
multi-valued nonself mapping, f : H → H a contraction, and F : D× D → R a bifunction.
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Let {αn} be a sequence in [0, 1] and {rn} a sequence in (0, ∞). For a given x0 ∈ H, we
compute

u0 ∈ D such that F(u0, y) + 1
r0

〈
y− u0, u0 − x0

〉
≥ 0, ∀ y ∈ D,

then we let z0 ∈ Tλu0 for some λ ∈ (0, 1) and define x1 ∈ D by

x1 = α0 f (x0) + (1− α0)z0.

We next compute

u1 ∈ D such that F(u1, y) + 1
r1

〈
y− u1, u1 − x1

〉
≥ 0, ∀ y ∈ D.

From Nadler’s Theorem (see [2]), it follows that there exists z1 ∈ Tλu1 such that
‖z1 − z0‖ ≤ H(Tλu1, Tλu0). Inductively, we construct the sequence {xn} as follows:{

un ∈ D : F(un, y) + 1
rn

〈
y− un, un − xn

〉
≥ 0, ∀ y ∈ D,

xn+1 = αn f (xn) + (1− αn)zn, n ≥ 0.
(27)

Here, zn ∈ Tλun is such that ‖zn+1 − zn‖ ≤ H(Tλun+1, Tλun) for n ≥ 1.
Now, we prove a strong convergence theorem of the iteration (27) to find the common

element of the solutions set of an equilibrium problem and the fixed points set of a multi-
valued nonself mapping.

Theorem 5. Let D be a nonempty, closed, and convex subset of a Hilbert space H. Let F be a
bifunction from D× D to R satisfying (A1)-(A4) and T a b-enriched multi-valued nonexpansive
mapping of D into C(H) such that Fix(T) ∩ EP(F) 6= ∅. Let f be a contraction of H into itself.
Let {αn} ⊂ [0, 1] and {rn} ⊂ (0, ∞) be sequence satisfied the following conditions:

(i) limn→∞ αn = 0, ∑∞
n=0 αn = ∞ and ∑∞

n=0 |αn+1 − αn| < ∞.
(ii) lim infn→∞ rn > 0 and ∑∞

n=0 |rn+1 − rn| < ∞.

If Tλ satisfies Condition (A), then the sequence {xn} and {un} generated by (27) converges
to z ∈ Fix(T) ∩ EP(F), where z = PF(T)∩EP(F) f (z) and λ = 1

b+1 .

Proof. Take λ = 1
b+1 ; then, the b-enriched multi-valued nonexpansive condition (7) reduces

to the following form
H(Tλx, Tλy) ≤ d(x, y). (28)

Using Lemmas 4 and 5, we define Q = PF(T)∩EP(F). Since f is a contraction, there
exists a constant α ∈ [0, 1) such that

‖Q f (x)−Q f (y)‖ ≤ ‖ f (x)− f (y)‖ ≤ α‖x− y‖

for all x, y ∈ H. Hence, Q f is a contraction of H into itself. Thus, there exists a unique
element z ∈ H such that z = Q f (z). We next divide the proof into five steps.

Step 1. Show that {xn} is bounded.
Let p ∈ Fix(T) ∩ EP(F). Then, un = Trn xn, and we have

‖un − p‖ = ‖Trn xn − Trn p‖ ≤ ‖xn − p‖,
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for all n ∈ N. It follows from (28) that

‖xn+1 − p‖ ≤ αn‖ f xn − p‖+ (1− αn)‖zn − p‖
≤ αn(‖ f xn − p‖) + ‖ f p− p‖) + (1− αn)D(zn, Tλ p)

≤ αn(α‖xn − p‖) + ‖ f p− p‖) + (1− αn)H(Tλzn, Tλ p)

≤ αn(α‖xn − p‖) + ‖ f p− p‖) + (1− αn)‖un − p‖

≤ (1− αn(1− α))‖xn − p‖+ αn(1− α)
1

1− α
‖ f p− p‖

≤ max
{
‖xn − p‖, 1

1− α
‖ f p− p‖

}
.

By induction, we have

‖xn − p‖ ≤ max
{
‖x0 − p‖, 1

1− α
‖ f p− p‖

}
, ∀ n ≥ 0.

Hence, {xn} is bounded, and so are the sequences {un}, {zn} and { f xn}.
Step 2. Show that ‖xn+1 − xn‖ → 0 as n→ ∞.
From the definition of {xn}, there exist zn+1 ∈ Tλun+1 and zn ∈ Tλun such that

‖zn+1 − zn‖ ≤ H(Tλun+1, Tλun). Put K = supn≥0{‖ f xn‖+ ‖zn‖}. Then, we have

‖xn+2 − xn+1‖ (29)

= ‖αn+1 f xn+1 − αn+1 f xn + αn+1 f xn − αn f xn

+ (1− αn+1)zn+1 − (1− αn+1)zn + (1− αn+1)zn − (1− αn)zn‖
≤ αn+1α‖xn+1 − xn‖+ |αn+1 − αn|‖ f xn‖+ (1− αn+1)‖zn+1 − zn‖

+ |αn+1 − αn‖zn‖
≤ αn+1α‖xn+1 − xn‖+ |αn+1 − αn|‖ f xn‖

+ (1− αn+1)H(Tλun+1, Tλun) + |αn+1 − αn‖zn‖
≤ αn+1α‖xn+1 − xn‖+ 2K|αn+1 − αn|

+ (1− αn+1)‖un+1 − un‖.

On the other hand, from un = Trn xn and un+1 = Trn+1 xn+1, we have

F(un, y) +
1
rn

〈
y− un, un − xn

〉
≥ 0, (30)

for all y ∈ D and

F(un+1, y) +
1

rn+1

〈
y− un+1, un+1 − xn+1

〉
≥ 0, (31)

for all y ∈ D. Setting y = un+1 in (30) and y = un in (31), we have

F(un, un+1) +
1
rn

〈
un+1 − un, un − xn

〉
≥ 0,

and
F(un+1, un) +

1
rn+1

〈
un − un+1, un+1 − xn+1

〉
≥ 0.

It follows from (A2) that〈
un+1 − un,

un − xn

rn
− un+1 − xn+1

rn+1

〉
≥ 0
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and hence 〈
un+1 − un, un − un+1 + un+1 − xn −

rn

rn+1
(un+1 − xn+1)

〉
≥ 0.

Without loss of generality, let us assume that there exists a real number α such that
rn > a > 0 for all n ≥ 0. Then, we have

‖un+1 − un‖2 ≤
〈

un+1 − un, xn+1 − xn + (1− rn

rn+1
)(un+1 − xn+1)

〉
≤ ‖un+1 − un‖

{
‖xn+1 − xn‖+

∣∣(1− rn

rn+1
)
∣∣‖un+1 − xn+1‖

}
and hence

‖un+1 − un‖ ≤‖xn+1 − xn‖+
1

rn+1
|rn+1 − rn‖|un+1 − xn+1‖ (32)

≤ ‖xn+1 − xn‖+
1
a
|rn+1 − rn|M,

where M = sup{‖un − xn‖ : n ≥ 0}. Combining (29) and (32), we obtain

‖xn+2 − xn+1‖ ≤ αn+1α‖xn+1 − xn‖+ 2K|αn+1 − αn|

+ (1− αn+1)
(
‖xn+1 − xn‖+

1
a
|rn+1 − rn|M

)
= (1− αn+1 + αn+1α)‖xn+1 − xn‖+ 2K|αn+1 − αn|

+ (1− αn+1)
1
a
|rn+1 − rn|M

≤ (1− αn+1(1− α))‖xn+1 − xn‖+ 2K|αn+1 − αn|

+
M
a
|rn+1 − rn|.

By Conditions (i) and (ii), we have ‖xn+1 − xn‖ → 0 as n→ ∞ using Lemma 2.
Step 3. Show that limn→∞ ‖xn − zn‖ = limn→∞ ‖un − zn‖ = 0.
Using (32) and (ii), we have

lim
n→∞

‖un+1 − un‖ = 0. (33)

Since xn+1 = αn f xn + (1− αn)zn,

‖xn+1 − zn‖ = αn‖ f xn − zn‖.

Since αn → 0 as n→ ∞ and, by Step 1, the sequence { f xn − zn} is bounded, we see
‖xn+1 − zn‖ → 0 as n→ ∞. This implies that

‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖ → 0 (34)

as n→ ∞. For p ∈ Fix(T) ∩ EP(F), we have

‖un − p‖2 = ‖Trn xn − Trn p‖2

≤
〈

Trn xn − Trn p, xn − p
〉

=
〈
un − p, xn − p

〉
=

1
2

(
‖un − p‖2 + ‖xn − p‖2 − ‖xn − un‖2

)
,
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which yields
‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2.

Therefore, from the convexity of ‖.‖2, we have

‖xn+1 − p‖2 =‖αn f xn − (1− αn)zn − p‖2

≤ αn‖ f xn − p‖2 + (1− αn)‖zn − p‖2

= αn‖ f xn − p‖2 + (1− αn)D(zn, Tλ p)2

≤ αn‖ f xn − p‖2 + (1− αn)H(Tλun, Tλ p)2

≤ αn‖ f xn − p‖2 + (1− αn)‖un − p‖2

≤ αn‖ f xn − p‖2 + (1− αn)(‖xn − p‖2 − ‖xn − un‖2)

≤ αn‖ f xn − p‖2 + ‖xn − p‖2 − (1− αn)‖xn − un‖2

and hence

(1− αn)‖xn − un‖2 ≤ αn‖ f xn − p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

≤ αn‖ f xn − p‖2 + ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖)

It follows from (i) and limn→∞ ‖xn+1 − xn‖ = 0 that

‖xn − un‖ → 0, n→ ∞. (35)

From (34) and (35), it follows that

‖zn − un‖ ≤ ‖zn − xn‖+ ‖xn − un‖ → 0 n→ ∞. (36)

Step 4. Show that lim supn→∞
〈

f z− z, xn − z
〉
≤ 0, where z = PF(T)∩EP(F) f (z).

Firstly, we choose a subsequence {xni} of {xn} such that

lim
i→∞

〈
f z− z, xni − z

〉
= lim sup

n→∞

〈
f z− z, xn − z

〉
and xni ⇀ q ∈ D. From ‖xn − un‖ → 0, we obtain uni ⇀ q. Let us show q ∈ EP(F). From
un = Trn xn, we have

F(un, y) +
1
rn

〈
y− un, un − xn

〉
≥ 0, ∀ y ∈ D.

From (A2), we also have

1
rn

〈
y− un, un − xn

〉
≥ F(y, un).

Since
uni−xni

rni
→ 0 and uni ⇀ q, from (A4), we have

0 ≥ F(y, q),

for all y ∈ D. For t with 0 < t ≤ 1 and y ∈ D, let yt = ty + (1− t)q. Since y ∈ D and q ∈ D,
yt ∈ D. Hence, F(yt, q) ≤ 0. Thus, from (A1) and (A4), we get

0 = F(yt, yt) ≤ tF(yt, y) + (1− t)F(yt, q) ≤ tF(yt, y)

and hence 0 ≤ F(yt, y). Thus, 0 ≤ F(q, y) for all y ∈ D by (A3) and hence q ∈ EP(F).
Since limn→∞ ‖zn − un‖ = 0, uni ⇀ q and I − Tλ is demiclosed at 0, we obtain that
q ∈ Fix(Tλ) = Fix(T). Therefore, q ∈ Fix(T) ∩ EP(F).
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Since z = PF(T)∩EP(F) f (z), by Lemma 3,

lim sup
n→∞

〈
f z− z, xn − z

〉
= lim

i→∞

〈
f z− z, xni − z

〉
=
〈

f z− z, q− z
〉
≤ 0. (37)

Step 5. Show that xn → z as n→ ∞.
From the equality xn+1 − z = αn( f xn − z) + (1− αn)(zn − z), we readily infer

(1− αn)
2‖zn − z‖2 ≥ ‖xn+1 − z‖2 − 2αn

〈
f xn − z, xn+1 − z

〉
.

Hence, we obtain

‖xn+1 − z‖2 ≤ (1− αn)
2‖zn − z‖2 + 2αn

〈
f xn − z, xn+1 − z

〉
(38)

= (1− αn)
2D(zn, Tλz)2 + 2αn

〈
f xn − z, xn+1 − z

〉
≤ (1− αn)

2H(Tλun, Tλz)2 + 2αn
〈

f xn − z, xn+1 − z
〉

≤ (1− αn)
2‖un − z‖2 + 2αn

〈
f xn − f z, xn+1 − z

〉
+ 2αn

〈
f z− z, xn+1 − z

〉
≤ (1− αn)

2‖xn − z‖2 + 2αnα‖xn − z‖‖xn+1 − z‖
+ 2αn

〈
f z− z, xn+1 − z

〉
≤ (1− αn)

2‖xn − z‖2 + αnα{‖xn − z‖2 + ‖xn+1 − z‖2}
+ 2αn

〈
f z− z, xn+1 − z

〉
.

This implies that

‖xn+1 − z‖2 ≤ (1− αn)2 + αnα

1− αnα
‖xn − z‖2 +

2αn

1− αnα

〈
f z− z, xn+1 − z

〉
=

1− 2αn + αnα

1− αnα
‖xn − z‖2 +

α2
n

1− αnα
‖xn − z‖2

+
2αn

1− αnα

〈
f z− z, xn+1 − z

〉
=

(
1− 2αn(1− α)

1− αnα
‖xn − z‖2

)
+

2αn(1− α)

1− αnα

{
αn

2(1− α)
‖xn − z‖2 +

1
1− α

〈
f z− z, xn+1 − z

〉}
.

Put γn = αn
2(1−α)

‖xn − z‖2 + 1
1−α

〈
f z− z, xn+1 − z

〉
. It follows from (i) and (37) that

lim supn→∞ γn ≤ 0. Thus, limn→∞ ‖xn − z‖2 = 0 by Lemma 2. This concludes that {xn}
converges strongly to z ∈ Fix(T) ∩ EP(F). We can easily check that {un} also converges to
z. We thus complete the proof.

Remark 2. If in Theorem 5 for T we take a single valued mapping and b = 0, then we obtain
Theorem 3.2 of [26].

4. Data Dependence and Uniform Convergence of Fixed Point Sets in Banach Spaces

We now present the following data dependence result for (b, θ) enriched multi-valued
mappings.

Theorem 6. Let (X, ‖.‖) be a Banach space and S, T : X → CB(X) be multi-valued mappings.
Assume that

1. S is a (b1, θ1)-enriched multi-valued contraction.
2. T is a (b2, θ2)-enriched multi-valued contraction.
3. There exists δ > 0 such that H(Sx, Tx) ≤ δ, ∀ x ∈ X.
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Then, Fix(S), Fix(T) ∈ CB(X).
Moreover,

H(Fix(S), Fix(T)) ≤ δ

1−max{c1, c2}
,

where c1 = θ1(
1
b1
+ 1) and c2 = θ2(

1
b2
+ 1).

Proof. It follows from (1) that Fix(Sλ) = Fix(S) and Fix(Tλ) = Fix(T). As S and T
are (b1, θ1)- and (b2, θ2)-enriched multi-valued contractions, respectively, by Corollary 1,
Fix(S) 6= ∅ and Fix(T) 6= ∅.

Let zn ∈ Fix(Tλ) be such that zn → z as n → ∞, that is, limn→∞ d(zn, z) = 0.
Using (18), we have

d(z, Tλz) ≤ d(z, zn) + D(zn, Tλz)

≤ d(z, zn) + H(Tλzn, Tλz)

≤ d(z, zn) + c2d(zn, z).

On taking limit as n→ ∞, we obtain d(z, Tλz) = 0. Hence, Fix(T) is closed. Similarly,
the set Fix(S) is closed. To prove the remaining part of the theorem, let q > 1. Then, for an
arbitrary x0 ∈ Fix(Sλ), there exists x1 ∈ Tλx0 such that

d(x0, x1) ≤ qH(Sλx0, Tλx0)

As x1 ∈ Tλx0, there exists x2 ∈ Tλx1 such that

d(x1, x2) ≤ qH(Tλx1, Tλx2)

≤ qc2d(x1, x2)

= hd(x1, x2).

We take q > 1 such that h = qc2 < 1. Following arguments similar to those given in
the proof of Theorem 1, we get

d(xn, xn+p) ≤
hn

1− h
d(x0, x1), (39)

for any n, p ∈ N. On taking limit as n→ ∞, we obtain that {xn} is a Cauchy sequence in X.
Since X is a Banach space, we have xn → x∗, for some x∗ in X. In addition, x∗ ∈ Tλx∗. By
(39), we obtain that

d(xn, x∗) ≤ hn

1− h
d(x0, x1).

In particular, we get

d(x0, x∗) ≤ 1
1− h

d(x0, x1) ≤
δ

1− h
, (40)

where h = qc2. Similarly, for each a0 ∈ Fix(Tλ), there is an a ∈ Fix(Sλ) such that

d(a0, a) ≤ 1
1− h

d(a0, a1) ≤
δ

1− h′
, (41)

where h
′
= qc1. By (40) and (41), we obtain that

H(Fix(Sλ), Fix(Tλ)) ≤
δ

1−max{qc1, qc2}
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Hence,

H(Fix(S), Fix(T)) ≤ δ

1−max{qc1, qc2}
.

Letting q↘ 1 in the previous inequality, we get the conclusion.

Theorem 7. Let (X, ‖.‖) be a Banach space and Tn : X → CB(X) a sequence of (bn, θn)-enriched
multi-valued mappings, for n = 0, 1, 2, ... If the sequence {Tn} converges to T0 uniformly on X,
then

lim
n→∞

H(Fix(Tn), Fix(T0)) = 0.

Proof. As {Tn} converges to T0 uniformly on X, for an arbitrary ε > 0, there exists n0 ∈ N
such that

sup
x∈X

H(Fix(Tn(x)), Fix(T0(x))) <
(
1−max

n∈N
{c0, cn}

)
ε, ∀ n ≥ n0.

If we set δ = (1 −maxn∈N{c0, cn})ε, then H(Fix(Tn)(x), Fix(T0)(x)) < δ for all
n ≥ n0 and x ∈ X. Then, by Theorem 6, we have

H(F(Tn), F(T0)) ≤
δ(

1−maxn∈N{c0, cn}
) ≤ ε, ∀ n ≥ n0.

Theorem 8. Let (X, ‖.‖) be a Banach space. Suppose that all the hypotheses of Corollary 1 hold.
Then, the fixed point problem (2) is Ulam–Hyers stable.

Proof. From Remark 1, it follows that the fixed point problem (2) is equivalent to the fixed
point problem

x ∈ Tλx (42)

Let y∗ be an ε-solution of (42). Hence, we see that

D(y∗, Tλy∗) ≤ ε (43)

Using (18) and 43, we get

d(x∗, y∗) ≤ D(x∗, Tλy∗) + D(y∗, Tλy∗) ≤ H(Tλx∗, Tλy∗) + ε

≤ cd(x∗, y∗) + ε =
ε

1− c
= c

′
ε,

where c
′
= 1

1−c . Since 0 ≤ c < 1, this gives c
′
> 0.

5. Application to Differential Inclusions

In this section, as an application of the result proven in the above section, we prove
the existence of solutions to the problem of differential inclusions. Before that, recall the
following concept. Let I be the interval in the real line R. A function f : I → R is absolutely
continuous on I if, for every positive number ε, there is a positive number δ such that,
whenever a finite sequence of pairwise disjoint sub-intervals (ak, bk) of I with ak < bk ∈ I
satisfies

∑
k
(bk − ak) < δ,

∑
k
| f (bk)− f (ak)| < ε.
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Let α > 0 and K = [0, α]. The space of all real valued continuous (absolutely continu-
ous) functions on K equipped with supremum norm is denoted by C(K) (AC(K)).

We consider the following time dependent differential inclusion problem: find x in
AC(K) such that

x
′
(t) ∈ G(t, x(t)), for almost every t ∈ K, (44)

where G : K×R→ 2R is a given multi-valued mapping satisfying certain conditions.
Next, we prove the existence of the solution to the differential inclusion problem (44).

Denote by SG(x) the set of Lebesgue integrable selections of G(·, x(·)), i.e.,

SG(x) = {g ∈ L1(K,R) : g(t) ∈ G(t, x(t)) for almost every t ∈ K}.

Definition 2. A function x ∈ AC(K) is said to be the solution of the problem (44), if there exists
g ∈ SG(x) such that

x
′
(t) = g(t) holds for almost every t in K.

Theorem 9. Suppose that the following conditions are satisfied:

1. SG(x) 6= ∅, ∀ x ∈ C(K).
2. For every fixed x ∈ C(K) and for any sequence {gn} in SG(x), there exists a subsequence

{gni} of {gn} such that {gni} converges to a function g ∈ L1(K,R) as i → ∞ for almost
every t ∈ K and ∫ t

0
gni (s)ds→

∫ t

0
g(s)ds, as i→ ∞.

3. G(t, s) is closed for all (t, s) ∈ K×R.
4. For each fixed x ∈ C(K), G(·, x(·)), is bounded on K.
5. There exists φ ∈ L1(K,R) with supt∈K

∫ t
0 |φ(s)|ds ≤ 1

2 and for all t ∈ K, x, y ∈ C(K), we
have

0 ≤ |gx(t)− gy(t)| ≤ |φ(t)‖x(t)− y(t)|, (45)

where gx ∈ SG(x), gy ∈ SG(y).

Then, problem (44) has a solution.

Proof. Let X = C(K). Define the multi-valued mapping T on X by

Tx =

{
f ∈ X : f (t) =

∫ t

0
g(s)ds, t ∈ K, g ∈ SG(x)

}
.

As SG(x) is nonempty for each x ∈ X, the multi-valued mapping T is well defined.
If x ∈ Tx, then x(t) =

∫ t
0 g(s)ds gives that

x
′
(t) = g(t) for almost every t ∈ K.

Thus, the differential inclusion problem (44) is equivalent to the following inclusion:

x(t) ∈ [Tx](t), t ∈ K.

We now show that the multi-valued mapping T satisfies all the conditions of Corollary 1.
Clearly, Tx is nonempty for each x ∈ X. First, we prove that Tx is a closed subset of

X. For this, let x ∈ X be fixed and { fn} a sequence in Tx such that fn → f ∈ X as n→ ∞.
Then, there exists a sequence {gn} in SG(x) such that

fn(t) =
∫ t

0
gn(s)ds, t ∈ K.
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By the given hypotheses, there exists a subsequence {gni} of {gn} such that {gni}
converges to a function g ∈ L1(K,R) as i→ ∞ for almost every t ∈ K and∫ t

0
gni (s)ds→

∫ t

0
gn(s)ds, as i→ ∞.

As G(t, x(t)) is closed for all t ∈ K, g(t) ∈ G(t, x(t)), for almost every t ∈ K and hence
g ∈ SG(x). Note that

f (t) = lim
n→∞

fn(t) = lim
n→∞

∫ t

0
gn(s)ds =

∫ t

0
gni (s)ds =

∫ t

0
g(s)ds, i→ ∞.

Thus, f ∈ Tx. Moreover, for a fixed x ∈ X, G(·, x(·)) is bounded on K. In addition,
there exists M > 0 such that |g(t)| ≤ M for almost every t ∈ K and every g ∈ SG(x).
Indeed, g(t) ∈ G(t, x(t)), for almost every t ∈ K. Hence, for all f ∈ Tx, we have

sup
t∈K
| f (t)| ≤ sup

t∈K

∫ t

0
|g(s)ds| ≤ Mα.

Therefore, T has bounded values in X. Thus, T : X → CB(X).
We now show that T is an enriched multi-valued contraction. For this, let b > 0 be

fixed. Let us denote A = bx + Tx and B = by + Ty for fixed x and y in X. We know that

H(bx + Tx, by + Ty) = max
{

D(bx + Tx, by + Ty), D(by + Ty, bx + Tx)
}

(46)

where
D(bx + Tx, by + Ty) = sup

fx∈A
inf
fy∈B

d( fx, fy) = sup
fx∈A

inf
fy∈B

sup
t∈K
| fx − fy|

By using the values of fx and fy, we get

D(bx + Tx, by + Ty) = sup
fx∈A

inf
fy∈B

sup
t∈K

∣∣∣∣(bx(t) +
∫ t

0
gx(s)ds)− (by(t) +

∫ t

0
gy(s)ds)

∣∣∣∣ (47)

for some gx ∈ SG(x), gy ∈ SG(y).
We have ∣∣∣∣(bx(t) +

∫ t

0
gx(s)ds)− (by(t) +

∫ t

0
gy(s)ds)

∣∣∣∣
≤ |bx(t)− by(t)|+

∣∣∣∣ ∫ t

0
[gx(s)− gy(s)]ds

∣∣∣∣
≤ b|x(t)− y(t)|+

∫ t

0
|gx(s)− gy(s)|ds

≤ bd(x, y) +
∫ t

0
|gx(s)− gy(s)|ds.

By using (45) in the above inequality, we obtain that∣∣∣∣(bx(t) +
∫ t

0
gx(s)ds)− (by(t) +

∫ t

0
gy(s)ds)

∣∣∣∣
≤ bd(x, y) +

∫ t

0
|φ(s)‖x(s)− y(s)|ds

≤ bd(x, y) + d(x, y)
∫ t

0
|φ(s)|ds.
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Hence,∣∣∣∣(bx(t) +
∫ t

0
gx(s)ds)− (by(t) +

∫ t

0
gy(s)ds)

∣∣∣∣ ≤ (b +
∫ t

0
|φ(s)|ds

)
d(x, y) (48)

From (48) and (47), we have

D(bx + Tx, by + Ty) ≤ sup
fx∈A

inf
fy∈B

sup
t∈K

(
b +

∫ t

0
|φ(s)|ds

)
d(x, y).

Hence,

D(bx + Tx, by + Ty) ≤
(

b + sup
t∈K

∫ t

0
|φ(s)|ds

)
d(x, y). (49)

Similarly, we obtain that

D(by + Ty, bx + Tx) ≤
(

b + sup
t∈K

∫ t

0
|φ(s)|ds

)
d(x, y). (50)

Using (49) and (50) in (46), we have

H(bx + Tx, by + Ty) ≤
(

b + sup
t∈K

∫ t

0
|φ(s)|ds

)
d(x, y). (51)

Let θ = supt∈K
∫ t

0 |φ(s)|ds. Since supt∈K
∫ t

0 |φ(s)|ds ≤ 1
2 , we get

sup
t∈K

∫ t

0
|φ(s)|ds + b < b + 1

and so (51) becomes

H(bx + Tx, by + Ty) ≤ θd(x, y), ∀ x, y ∈ X.

Thus, all the conditions of Corollary 1 are satisfied, and hence we deduce the existence
of a solution of (44).

Example 4. Consider the problem

x
′
(t) ∈ G(t, x(t)) for almost every t ∈ K = [0, 1], (52)

where G(t, x) = {0, x
4}.

We check that all the conditions of Theorem 9 are satisfied. Indeed,

1. SG(x) 6= ∅, ∀x ∈ C(K), since f (t) = x(t)
4 , t ∈ [0, 1] is a Lebesgue integrable selection of

G(·, x(·)).
2. For x ∈ C(K) fixed and for any sequence {gn} in SG(x), we have, for every n ∈ N, that

gn(t) =
x(t)

4 except possibly for t at a set of measure zero, {gn} converges at almost every
point t ∈ K towards the function g ∈ L1(K,R) given by g(t) = x(t)

4 , t ∈ K, as n→ ∞, and,
for every t ∈ K, we have ∫ t

0
gn(s)ds =

∫ t

0
g(s)ds, ∀ n ∈ N.

3. It is clear that G(t, x) is closed for all (t, x) ∈ K× C(K).
4. For x ∈ C(K) fixed, G(·, x(·)), is bounded on K.
5. If we take φ(t) = 1

4 , ∀ t ∈ [0, 1] then for every x, y ∈ C(K) and for all t ∈ K, we have

0 ≤ |gx(t)− gy(t)| = |φ(t)‖y(t)− x(t)|,



Symmetry 2021, 13, 1350 20 of 23

for all gx ∈ SG(x), gy ∈ SG(y).

By Theorem 9, there exists a solution to the differential inclusion problem (52). Indeed,
x(t) = e

t
4 is the solution of the differential inclusion (52).

6. An Application to Dynamic Programming

Dynamic Programming has attracted the attention of several researchers due to its
broad applicability in various disciplines of physical and social sciences. The origin of the
theory of dynamic programming lies in multi-stage decision processes. In such processes,
certain functional equations emerge in a usual fashion.

This section deals with functional equations that occur in some kinds of continu-
ous multi-stage decision-making processes. We define below the continuous multi-stage
decision-making mechanism as follows.

Let S ⊂ X be the state space and D ⊂ Y the decision space, where X and Y are Banach
spaces. We denote a state vector by x and a decision vector by y. Let π : S × D → S,
g : S× D → R, and G : S× D×R→ R be the given mappings, where R is the field of real
numbers. The return function f : S→ R of the continuous decision process is defined by
the functional equation.

f (x) = sup
y∈D

{
g(x, y) + G(x, y, f (π(x, y))

}
, x ∈ S. (53)

For more results in this direction, we refer to the works in [28–30].
Let B(S) be the space of bounded real-valued functions on S.

Theorem 10. Let the notation be as just above and suppose that the following conditions are satisfied:

1. G and g are bounded.
2. |G(x, y, hz)− G(x, y, kz)| ≤ sd(h, k),

for all h, k ∈ B(S) and (x, y, h(z)) ∈ S× D×R, where z ∈ S and s ≤ 1
2 .

Then, functional Equation (53) possesses a unique bounded solution on S.

Proof. We know that B(S) equipped with the norm ‖h‖ = supx∈S |hx| is a Banach space.
Define the operator T on B(S) by Th = ϕ, where

ϕ(x) = sup
y∈D

{
g(x, y) + G(x, y, h(π(x, y))

}
.

Since G and g are bounded, ϕ ∈ B(S). Moreover, the problem of finding any bounded
solution of functional Equation (53) is equivalent to finding a fixed point of T.

Let h1, h2 ∈ B(S) and Th1 = ϕ1, Th2 = ϕ2. Then, for i = 1, 2, we have

ϕi(x) = sup
y∈D

{
g(x, y) + G(x, y, hi(π(x, y))

}
.

Let b > 0 be fixed real number. Choose x ∈ S, y1, y2 ∈ Y and ε > 0 such that

bh1(x) + Th1(x) < bh1(x) + g(x, y1) + G(x, y, h1(π(x, y1)) + ε, (54)

bh2(x) + Th2(x) < bh2(x) + g(x, y2) + G(x, y, h2(π(x, y2)) + ε, (55)

bh1(x) + Th1(x) ≥ bh1(x) + g(x, y2) + G(x, y, h1(π(x, y2)), (56)

bh2(x) + Th2(x) ≥ bh2(x) + g(x, y1) + G(x, y, h2(π(x, y1)). (57)



Symmetry 2021, 13, 1350 21 of 23

From (54) and (57), we have

b(h1(x)− h2(x)) + Th1(x) + Th2(x) < b(h1(x)− h2(x)) + G(x, y, h1(π(x, y1))

− G(x, y, h2(π(x, y1)) + ε

≤ b|(h1(x)− h2(x))|
+ |G(x, y, h1(π(x, y1))− G(x, y, h2(π(x, y1))|+ ε

≤ bd(h1, h2) + cd(h1, h2).

Hence,
b(h1(x)− h2(x)) + Th1(x) + Th2(x) ≤ θd(h1, h2) (58)

where θ = b + c. Since 0 < c ≤ 1
2 , θ ∈ [0, b + 1).

Similarly, it follows from (55) and (56) that

b(h2(x)− h1(x)) + Th2(x) + Th1(x) ≤ θd(h1, h2). (59)

Finally, by (58) and (59), we have

‖b(h1 − h2) + Th1 − Th2‖ ≤ θ‖h1 − h2‖.

Thus, all the conditions of Corollary 3 are satisfied, and hence the functional Equation (53)
possesses a unique bounded solution.

7. Conclusions

1. We introduce the classes of enriched multi-valued contractions and enriched multi-
valued nonexpansive contractions that include multi-valued contractions as a particu-
lar case, as well as some multi-valued nonexpansive and Lipschitzian mappings. For
other related results, we refer to the works in [31–42].

2. We present examples to show that the class of enriched multi-valued contractions
strictly includes the multi-valued contractions in the sense that there exist mappings
which are not multi-valued contractions and belong to the class of enriched multi-
valued contractions.

3. We show that every enriched multi-valued contraction has a fixed point (Theorem 3).
In particular, by the fixed point results established in this paper, we obtain the Nadler’s
fixed point theorem (Corollary 2) in the setting of a Banach space.

4. We obtain Corollary 1, which extends the fixed point theorem (Theorem 2.4, [22]) from
the class of enriched single-valued contraction to enriched multi-valued contractions.

5. We show that every enriched multi-valued nonexpansive contraction has a fixed point
(Theorem 4), and we provide an algorithm to estimate the common solution of the
equilibrium problem and the enriched multi-valued nonexpansive one (Theorem 5).

6. We also obtain Theorems 6 and 8 for a data dependence problem of the fixed point
sets and Ulam–Hyers stability of the fixed point problem for enriched multi-valued
mappings, respectively.

7. As an application of our results (Corollaries 1 and 3), the existence of the solution to
the problem of differential inclusions (Theorem 9) and the application to dynamic
programming (Theorem 10) are presented.
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