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Abstract: Micropolar fluids are fluids with microstructure and belong to a class of fluids with
asymmetric stress tensor that called Polar fluids, and include, as a special case, the well-established
Navier–Stokes model. In this work we study a 3D micropolar fluids model with Navier boundary
conditions without friction for the velocity field and homogeneous Dirichlet boundary conditions
for the angular velocity. Using the Galerkin method, we prove the existence of weak solutions and
establish a Prodi–Serrin regularity type result which allow us to obtain global-in-time strong solutions
at finite time.
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1. Introduction

The Navier–Stokes system is a widely accepted model for describing the motion of
viscous and incompressible fluids in the presence of convection. However, the Navier–
Stokes theory is unable of describing the motion of certain fluids consisting of randomly
oriented (or spherical) particles suspended in a viscous medium, where the deformation of
fluid particles is ignored. A subclass of these fluids is the micropolar fluids or also called
asymmetric fluids, which exhibit micro-rotational effects and micro-rotational inertia [1].
Animal blood, liquid crystals, and certain polymeric fluids are a few examples of fluids
which may be represented by the mathematical model of micropolar fluids, so that it is
interesting to study the behavior of such fluids. The mathematical model that describes the
movement of these fluids has been introduced by Eringen in 1966 [2]. In this work we study
a 3D non-stationary micropolar fluids system associated with Navier boundary conditions
without friction for the velocity field and homogeneous Dirichlet boundary conditions for
the microrotational velocity. Specifically, we consider Ω ⊂ R3 the flow domain, which is
assumed to be bounded of class C2,1 with boundary Γ := ∂Ω and (0, T) a time interval,
with 0 < T < ∞. Then, we analyze the following coupled non-linear system of partial
differential equations, which expresses the balance of momentum, angular momentum,
and mass, in the space-time region Q := Ω× (0, T):

∂tu + (u · ∇)u− (ν + νr)∆u +∇p = 2νrcurlw + f,
∂tw + (u · ∇)w− (ca + cd)∆w− (c0 + cd − ca)∇div w + 4νrw = 2νrcurl u + g,

div u = 0.
(1)

Here, the unknowns are u := u(x, t) ∈ R3, w := w(x, t) ∈ R3 and p := p(x, t) ∈ R,
and denote, respectively, the linear velocity field, the velocity of rotation of the particles
and the pressure of the fluid at the point (x, t) ∈ Q. The functions f and g are given and
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represent external sources of linear and angular momentum of particles, respectively. The
positive real constants ν, νr, c0, ca, cd characterize isotropic properties of the fluid. More
specifically, the constant ν is the usual Newtonian viscosity; the constant νr is called the
viscosity of microrotation and c0, ca and cd are new viscosities related to the asymmetry
of the stress tensor and satisfy c0 + cd > ca. For simplicity we denote ν1 := ν + νr,
ν2 := ca + cd, and ν3 := c0 + cd − ca. Without loss of generality we can assume that the
density of the fluid is equal to one. The symbols ∆, ∇, div and curl denote the Laplacian,
gradient, divergence and rotational operators, respectively; the terms ∂tu and ∂tw stand for
the time derivatives of u and w, respectively. The i-th component of (u · ∇)u and (u · ∇)w
are given, respectively, by

[(u · ∇)u]i =
3

∑
j=1

uj
∂ui
∂xj

and [(w · ∇)u]i =
3

∑
j=1

wj
∂ui
∂xj

.

We associate to system (1) the following initial conditions

u(x, 0) = u0(x), w(x, 0) = w0(x) in Ω, (2)

and mixed boundary conditions

[D(u)n]tang = 0, u · n = 0 and w = 0 on Σ := Γ× (0, T). (3)

Here n denotes the outward unit normal vector to Γ. The term [D(u)n]tang is the
tangential component of the vector D(u)n; that is, [D(u)n]tang := D(u)n− [(D(u)n) · n]n
and D(u) := 1

2 (∇u +∇Tu) is twice standard symmetric part of the rate of deformation
tensor. The requirements [D(u)n]tang = 0, u · n = 0 on Γ are called the Navier boundary
condition without friction (or also called the perfect slip boundary condition [3]) and arises
in the context of free-boundary problems. The Navier boundary condition was proposed
by Navier in [4] and justified as a homogenization of the non-slip condition on a rough
boundary (cf. [5]). Moreover, when the boundary Γ is flat, the fluid tends to slip over Γ
without friction and there are no boundary layers [6,7]. Hence, from the physical point-
of-view, the Navier boundary condition makes more sense than the Dirichlet boundary
conditions. Moreover, the mathematical analysis is more complicated, since to define
a correct variational formulation of the systems (1)–(3) the classical Green identities are
not applicable in this case. The above, to obtain a suitable weak formulation of the
problems (1)–(3), leads us to study other results of integration by parts in the spatial
variable (see Lemma 1, below). Additionally, in order to correctly control the Hσ-norm of
the Galerkin approximations in terms of the L2-norm of the deformation tensor; that is,
the norm ‖D(um)‖2, we must employ Korn inequality (see [8], p. 52), which is not usual.
There exist some phenomena modeling of which might require the introduction of Navier
boundary conditions; for instance, flow through a drain or canal with its bottom covered be
sherbet of mud and pebbles, and flow of melted iron coming out from a smelting furnace,
avalanche of water and rocks and blood flow in a vein of an arterial sclerosis patient (see,
for instance, Fujita [9,10]).

From the mathematical point-of-view, the initial-value problem (1)–(2) with Dirich-
let boundary conditions has been studied by several authors, and important results on
existence of weak solutions and local strong solutions, large time asymptotic behavior,
and general qualitative analysis, have been obtained (see, for instance, the textbook [11]).
Moreover, in [12] the authors analyze the case with variable density and prove the existence
of local-in-time strong solutions, using a spectral semi-Galerkin method. In addition, they
prove the uniqueness of the strong solutions and some global existence results. In [13],
the global existence and uniqueness of solutions through a Lagrangian approach under
suitable conditions are investigated on the initial data. The same authors in [14] establish
the existence of local-in-time semi-strong solutions and global-in-time strong solutions in
general 3D domains. Ferreira and Villamizar-Roa [15] study the 3D generalized micropolar
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system in a space of tempered distributions and, using the Duhamel principle, prove the
global existence, uniqueness, and asymptotic stability of the underlying mild solutions.
Other study on the asymptotic analysis of the solutions can be see in [16]. In this work the
authors obtain their results using the semigroups approach in Lp-spaces.

The purpose of this paper is to prove the existence of weak solutions of systems (1)–(3)
and establish a regularity result of the Prodi-Serrin type (cf. [17,18]) that allow us obtain
global-in-time strong solutions of problems (1)–(3). The literature concerning to regularity
results for weak solutions of problems (1) and (2) associated with Dirichlet boundary con-
ditions is scarce. Indeed, we can mention the works [19–24]. In [19], assuming the external

forces f and g in Lq(Lq(Ω)), for q > 3, and that the pressure p belongs to Lq(L
3q

q+1 Ω), the
authors improved the regularity for the weak solutions. In [23] the authors present a weak-
Lp Prodi–Serrin type regularity criterion, assuming that the velocity field u ∈ Ls(Lr,∞(Ω)),
where (s, r) is a Prodi–Serrin pair and Lr,∞(Ω) denotes the weak-Lr space; that is, the
space of measurable functions f, such that ‖f‖Lr,∞ = sup{α · df(α)

1/r : α > 0} is finite,
with df = m({x ∈ Ω : | f (x)| > α}). In the recent analysis developed by Ragusa and
Wu [24], the authors establish a regularity criterion in terms of the one partial derivative
of the velocity; that is, they assume that ∂3u ∈ L

2
1−r (B−r

∞,∞), with 0 < r < 1, and B−r
∞,∞

is a Besov space with negative order of regularity −r, and prove that the weak solution
(u, w) is also strong (see [22], for positive indices). In this work, we establish a regularity
criterion imposing only the condition that u ∈ Ls(Lr(Ω)), where (s, r) is a Prodi–Serrin
pair (r ∈ (3, ∞), s ∈ (2, ∞) with 2

s +
3
r ≤ 1, see Theorem 2).

We recall that when w = 0, systems (1)–(3) is reduced to the Navier–Stokes equations
with Navier boundary conditions, for which there is a good amount of studies. In [25] the
authors study the inhomogeneous (variable density) 3D Navier–Stokes system and prove
the existence of weak solutions using the Galerkin method. Additionally, they analyze
the inviscid limits of solutions to strong solutions of the corresponding inhomogeneous
Euler system, as the viscosity ν goes to 0, under suitable regularity assumptions on external
force f and the initial velocity u0 and that the initial density is separated from zero; that
is, ρ0 ≥ ρ∗ > 0. Mulone and Salemi [26] prove the existence of generalized solutions in
an either bounded or exterior domain. Moreover, they prove the existence of periodic
solutions under assumptions that the flow domain is bounded and the external forces
are periodic in time. These results are extended by the same authors in [27], considering
the case of non-homogeneous Navier boundary conditions for a bounded domain. Other
results related with exterior domains can be consulted in [28]; moreover, the authors obtain
Lp-Lq estimates for the Stokes system and this result leads to global-in-time existence for the
Navier–Stokes systems with small initial data in Ln(Ω), where n is the spatial dimension.
The stationary Navier–Stokes system with Navier boundary condition has been analyzed
in [29–31]. Solonnikov and Šcadilov [30], assuming that the density of the fluid is constant,
prove the existence of weak solutions and in [29] the authors generalize these results using
Lp-theory. In [31], the case of variable density in 2D domains and, using the stream-Frolov
approach for the density, the existence of weak solutions is studied and is proven. The
steady-state problem related to systems (1)–(3) has been studied in [32,33]. In [32], the 3D
case with constant density is analyzed and proves the existence and uniqueness of weak
solutions using the Galerkin method. In [33], the authors study the 2D case with variable
density and, using the stream-Frolov approach for the density, prove the existence of weak
solutions. Studies related with low-concentrated aqueous polymer systems subject to the
Navier slip boundary conditions have been developed by Baranovskii [34]. In this work
the author proved the existence of global-in-time weak solutions and, assuming additional
regularity for the weak solutions, established some uniqueness results.

The outline of this paper is a follows: In Section 2, we fix the notation, introduce the
functional spaces to be used throughout this work and give the concept of weak solutions
of systems (1)–(3). In Section 3 we prove the existence of weak solutions applying the
Galerkin method. Finally, in Section 4 we present a regularity result, of Prodi–Serrin type,
under which a weak solution of (1)–(3) is also a strong solution and unique (see Theorem 2).
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2. Preliminaries

In this section, some notations will be introduced. The Lebesgue space Lp(Ω),
1 ≤ p ≤ ∞, with norm denoted by ‖ · ‖Lp will be used. In particular, the L2-norm and
its inner product will be denoted by ‖ · ‖ and (·, ·), respectively. The usual Sobolev spaces
Wm,p(Ω) = {u ∈ Lp(Ω) : ‖∂αu‖Lp < ∞, ∀|α| ≤ m}, with norm denoted by ‖ · ‖Wm,p is
considered. When p = 2, it is established Hm(Ω) := Wm,2(Ω) denoting the respective
norm by ‖ · ‖Hm . The function spaces of vector-valued spaces will be denoted by bold
script; for instance, H1(Ω), Lp(Ω), and so on. Additionally, we will use the following
solenoidal Hilbert space Hσ := {u ∈ H1(Ω) : div u = 0 and u · n = 0 on Γ}. The space
Hσ is endowed with the usual norm and inner product of H1(Ω). Additionally, we con-
sider the space H1

0(Ω) := {u ∈ H1(Ω) : u = 0 on Γ}, which is a Hilbert space with the
inner-product (u, v)H1

0
:= (∇u,∇v) and the norm ‖u‖H1

0
:= ‖∇u‖.

Additionally, as usual, we define V := {u ∈ C∞
0 (Ω) : div u = 0} and the space

H := the closure of V in L2(Ω).

The space H is characterized by [35]:

H = {u ∈ L2(Ω) : div u = 0 and u · n = 0 on Γ}.

If X is a Banach space, Lp(X) indicates the space of valued functions in X defined on
the interval [0, T] that are integrable in the Bochner sense, and its norm will be denoted
by ‖ · ‖Lp(X). For simplicity, one defines Lp(Q) := Lp(0, T; Lp(Ω)) if p 6= ∞ and its norm
by ‖ · ‖Lp(Q). In the case p = ∞, L∞(Q) means L∞((0, T)×Ω) and its norm is denoted by
‖ · ‖L∞(Q). It is denoted by C([0, T]; X) the space of continuous functions from [0, T] into a
Banach space X, whose norm is given by ‖ · ‖C(X). The topological dual space of a Banach
space X will be denoted by X′, and the duality for a pair X and X′ by 〈·, ·〉X′ or simply by
〈·, ·〉 unless this leads to ambiguity. In particular H−1(Ω) will denote the dual space of
H1

0(Ω) and H′σ the dual of Hσ. Moreover, the letters C, C0, C1,..., denote positive constants,
independent of u and w, but its value may be change from line to line.

In order to define a weak formulation of micropolar fluids systems (1)–(3), we consider
the Stokes operator A := −P∆ with domain

D(A) = {u ∈ H2(Ω) ∩Hσ : [D(u)n]tang = 0 on Γ},

where P : L2(Ω) → H is the Leray projector and the strongly elliptic Lamé operator
L := −ν2∆− ν3∇div, with domain D(L) = H2(Ω) ∩H1

0(Ω). We recall that operator A
establish a one-to-one correspondence of D(A) onto Hσ, is positive-definite on D(A),
self-adjoint and its inverse operator is compact (see [26,27]). Thus, its spectrum is discrete,
positive and of finite multiplicity, the eigenvalues λk converges to ∞, the eigenfunctions
{φk}∞

k=1 are orthogonal and complete in Hσ and satisfy [D(φk)n]tang = 0 on Γ.
Additionally, we introduce the trilinear forms b1 : Hσ × Hσ × Hσ → R and b2 :

Hσ ×H1(Ω)×H1
0(Ω)→ R by

b1(u1, v1, w1) = ((u1 · ∇)v1, w1), b2(u2, v2, w2) = ((u2 · ∇)v2, w2), (4)

which satisfy the following properties (see, for instance, [36]):

b1(u1, v1, w1) = −b1(u1, w1, v1) ∀u1, v1, w1 ∈ Hσ, (5)

b1(u1, v1, v1) = 0 ∀u1, v1 ∈ Hσ, (6)

b2(u2, v2, w2) = −b2(u2, w2, v2) ∀u2 ∈ Hσ, v2 ∈ H1(Ω), w2 ∈ H1
0(Ω), (7)

b2(u2, v2, v2) = 0 ∀u2 ∈ Hσ, v2 ∈ H1
0(Ω). (8)
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These trilinear forms induce the bilinear operators B1 : Hσ × Hσ → H′σ and B2 :
Hσ ×H1(Ω)→ H−1(Ω) defined by{

〈B1(u1, v1), w1〉H′σ = b1(u1, v1, w1) ∀w1 ∈ Hσ,
〈B2(u2, v2), w2〉H−1 = b2(u2, v2, w2) ∀w2 ∈ H1

0(Ω).
(9)

Remark 1. From the classical interpolation inequality in 3D domains ‖u‖L4 ≤ C‖u‖1/4‖u‖3/4
H1

for all u ∈ H1(Ω), Poincaré inequality, and properties (5) and (7) we can deduce that

B1(u, u) ∈ L4/3(H′σ) and B2(u, v) ∈ L4/3(H−1(Ω)). (10)

Moreover, since w = 0 on Γ it holds Pcurl w = curl w. In fact, let curl w = w̃ +∇q with
w̃ ∈ H and q ∈ H1(Ω) the Helmholtz decomposition of curl w in L2(Ω) (see [35]). Then,

‖∇q‖2 + (w̃,∇q) =
∫

Γ
(w× n) · ∇q = 0.

Thus, ∇q = 0 and, consequently, w̃ = Pcurl w = curl w.

Then, applying the Leray projector to (1)1 and considering the above notations, we
can rewrite systems (1)–(3) in the following equivalent system

∂tu + ν1 Au + PB1(u, u) = 2νrcurl w + Pf in Q,
∂tw + Lw + B2(u, w) + 4νrw = 2νrcurl u + g in Q,

u(x, 0) = u0(x), w(x, 0) = w0(x) in Ω,
[D(u)n]tang = 0, u · n = 0, w = 0 on Σ.

(11)

Lemma 1 ([30]). Let (u, v) ∈ H2(Ω)×H1(Ω) with divergence free and tangent to the boundary.
Then,

−
∫

Ω
∆u · v = 2

∫
Ω

D(u) : D(v)− 2
∫

Γ
[D(u)n]tang · v

= 2(D(u), D(v))− 2
∫

Γ
[D(u)n]tang · v.

Now, we establish the concept of weak solutions of systems (1)–(3) (equivalently
problem (11)).

Definition 1. Let (f, g) ∈ L2(Q)× L2(Q) and the initial data (u0, w0) ∈ H× L2(Ω). We say
that the pair (u, w) is a weak solution of (11) in (0, T), if

u ∈ Wu := {u ∈ L∞(H) ∩ L2(Hσ) : ∂tu ∈ L4/3(H′σ)}, (12)

w ∈ Ww := {w ∈ L∞(L2(Ω)) ∩ L2(H1
0(Ω)) : ∂tw ∈ L4/3(H−1(Ω))}, (13)

and satisfies the following variational formulation
〈∂tu, v〉H′σ + ν1〈Au, v〉H′σ + 〈PB1(u, u), v〉H′σ = 2νr(curl w, v) + (Pf, v),

〈∂tw, z〉H−1 + 〈Lw, z〉H−1 + 〈B2(u, w), z〉H−1 + 4νr(w, z) = 2νr(curl u, z) + (g, z),
u(x, 0) = u0(x) in H,
w(x, 0) = w0(x) in L2(Ω),

(14)

for all (v, z) ∈ Hσ ×H1
0(Ω) and almost every t ∈ (0, T).
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Remark 2. From Lemma 1, the Equations (14)1 and (14)2 are understood in the following sense∫ t

0
〈∂tu, v〉H′σ + 2ν1

∫ t

0
(D(u), D(v)) +

∫ t

0
〈PB1(u, u), v〉H′σ

= 2νr

∫ t

0
(curl w, v) +

∫ t

0
(Pf, v) ∀v ∈ Hσ, (15)∫ t

0
〈∂tw, z〉H−1 +

∫ t

0
(L1/2w, L1/2z) +

∫ t

0
〈B2(u, w), z〉H−1 + 4νr

∫ t

0
(w, z)

= 2νr

∫ t

0
(curl u, z) +

∫ t

0
(g, z) ∀z ∈ H1

0(Ω), (16)

for almost every t ∈ (0, T). Here, L1/2 := ν1/2
2 ∇+ ν1/2

3 div.

3. Existence of Weak Solutions of Problems (1)–(3)

This section is dedicated to prove the existence of weak solutions of problems (1)–(3).
The proof is carry out using the Galerkin method. Specifically we will prove the follow-
ing result.

Theorem 1. (Existence) Let (f, g) ∈ L2(Q)× L2(Q) and (u0, w0) ∈ H× L2(Ω). There exists
at least one weak solution of system (11) in sense of Definition 1.

Proof. To prove the existence of solution of problem (11) we will use the Galerkin method.

Step 1: Construction of the approximate solutions.

Let {(vi, zi)}∞
i=1 be a sequence of orthonormal functions, such that its linear hull is

dense in the product space Hσ ×H1
0(Ω). Now, for each m ∈ N, we consider the spaces

Hm
σ and Hm, which are spanned by {v1, . . . , vm} and {z1, . . . , zm}, respectively. Then, we

define the approximate solution (um, wm) ∈ Hm
σ ×Hm of problem (11) as follows:

um(x, t) :=
m

∑
i=1

λim(t)vi(x), wm(x, t) :=
m

∑
i=1

ηim(t)zi(x),

satisfying

〈∂tum, v〉H′σ + 2ν1(D(um), D(v)) + 〈PB1(um, um), v〉H′σ
= 2νr(curl wm, v) + (Pmf, v) ∀v ∈ Hσ, (17)

〈∂twm, z〉H−1 + (L1/2wm, L1/2z) + 〈B2(um, wm), z〉H−1 + 4νr(wm, z)

= 2νr(curl um, z) + (g, z) ∀z ∈ H1
0(Ω), (18)

um(x, 0) = Pmum
0 , wm(x, 0) = P̃mwm

0 , (19)

where Pm and P̃m denote, respectively, the orthogonal projection from H onto Hm
σ and from

L2(Ω) onto Hm.
We observe that the systems (17)–(19) can be regarded as Cauchy problem for a first-

order ordinary differential system, where the unknowns are the functions λim(·) and ηim(·).
Therefore, the classical existence and uniqueness theory for ordinary differential systems
can be applied; thus, we deduce that, for each m ∈ N, there exists a unique pair (um, wm)
solutions of (17)–(19) on a time interval [0, Tm]. If Tm < T, then ‖(um, wm)‖2

Hσ×H1
0

must be

tend to ∞, as t goes to Tm; then, the uniform estimates show that this does not happen, and,
thus, Tm = T (for more details, see ([35], Chapter 3)).

Step 2: A priori estimates.
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The aim in this step is to obtain uniform estimates of (um, wm) and (∂tum, ∂twm).
Indeed, making v = um in (17) and z = wm in (18), then adding the respective equations,
and taking into account properties (6) and (8), we can obtain

1
2

d
dt
(‖um‖2 + ‖wm‖2) + 2ν1‖D(um)‖2 + ν2‖wm‖2

H1
0
+ 4νr‖wm‖2

≤ 2νr|(curl wm, um)|+ 2νr|(curl um, wm)|
+|(Pmf, um)|+ |(g, wm)|. (20)

Now, we will bound the right-hand side of (20). In fact, applying the Hölder, Poincaré,
and Young inequalities we obtain

|(Pmf, um)| ≤ C‖f‖‖um‖ ≤ C
ν1
‖f‖2 + ν1‖um‖2, (21)

|(g, wm)| ≤ ‖g‖‖wm‖ ≤ C
νr
‖g‖2 + 4νr‖wm‖2. (22)

Furthermore, since (curl wm, um) = (curl um, wm) and ‖curl z‖ ≤
√

2‖∇z‖, for each
vector field z ∈ H1(Ω); then from the Hölder and Young inequalities we have

2νr|(curl wm, um)| ≤ 2νr‖curl wm‖‖um‖ ≤ 2
√

2νr‖wm‖H1
0
‖um‖

≤ ν2

4
‖wm‖2

H1
0
+

ν2
r C
ν2
‖um‖2, (23)

2νr|(curl um, wm)| = 2νr|(curl wm, um)| ≤ 2
√

2νr‖wm‖H1
0
‖um‖

≤ ν2

4
‖wm‖2

H1
0
+

ν2
r C
ν2
‖um‖2. (24)

Therefore, replacing (21)–(24) in (20) and adding 2ν1‖um‖2 to both sides in the result-
ing inequality, we can obtain

d
dt
(‖um‖2 + ‖wm‖2) + 4ν1(‖D(um)‖2 + ‖um‖2) + ν2‖wm‖2

H1
0

≤
(

6ν1 +
4ν2

r
ν2

C
)
‖um‖2 + C(‖f‖2 + ‖g‖2)

≤
(

6ν1 +
4ν2

r
ν2

C
)
(‖um‖2 + ‖wm‖2) + C(‖f‖2 + ‖g‖2). (25)

From the Korn inequality (see, for instance, ([8], p. 52)) we have that there exists
a positive constant CK, such that CK‖um‖2

Hσ
≤ (‖D(um)‖2 + ‖um‖2). Thus, from (25)

we obtain

d
dt
(‖um‖2 + ‖wm‖2) + 4ν1CK‖um‖2

Hσ
+ ν2‖wm‖2

H1
0

≤
(

6ν1 +
4ν2

r
ν2

C
)
(‖um‖2 + ‖wm‖2) + C(‖f‖2 + ‖g‖2). (26)

Moreover, recalling that Pm : H → Hm
σ and P̃m : L2(Ω) → Hm are the orthogonal

projections (see (19)) we have

‖um(0)‖2 = ‖Pmum
0 ‖2 ≤ ‖u0‖2,

‖w2(0)‖2 = ‖P̃mwm
0 ‖2 ≤ ‖w0‖2.

Then, from (26) and Gronwall lemma deduce the following estimate
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‖um‖2
L∞(H) + ‖w

m‖2
L∞(L2) ≤ C exp

(
6ν1T +

4ν2
r

ν2
T
)(
‖um(0)‖2 + ‖wm(0)‖2 + ‖f‖2

L2(Q) + ‖g‖
2
L2(Q)

)
≤ C exp

(
6ν1T +

4ν2
r

ν2
T
)(
‖u0‖2 + ‖w0‖2 + ‖f‖2

L2(Q) + ‖g‖
2
L2(Q)

)
. (27)

Hence, integrating over [0, T] in (26) and using (27) we conclude that there exists a
positive constant C1, independent of m, such that

‖um‖L∞(H)∩L2(Hσ)
+ ‖wm‖L∞(L2)∩L2(H1

0)
≤ C1.

Consequently,{
{um}m≥1 is bounded in L∞(H) ∩ L2(Hσ),
{wm}m≥1 is bounded in L∞(L2(Ω)) ∩ L2(H1

0(Ω)).
(28)

Now, in order to obtain uniform estimates for ∂tum and ∂twm, we observe that from
(14)1 and (14)2, (17) and (18) we have

〈∂tum, v〉H′σ = 〈2νrcurl wm + Pmf− ν1 Aum − PB1(um, um), v〉H′σ ,

〈∂twm, z〉H−1 = 〈2νrcurl um + g− Lwm − B2(um, wm)− 4νrwm, z〉H−1 ,

which jointly to (10) and (28) implies that

‖∂tum‖L4/3(H′σ) = ‖2νrcurl wm + Pmf− ν1 Aum − B1(um, um)‖L4/3(H′σ)

≤ 2νr‖curl wm‖L4/3(H′σ) + ‖Pmf‖L4/3(H′σ) + ν1‖Aum‖L4/3(H′σ)

+‖PB1(um, um)‖L4/3(H′σ)

≤ C2, (29)

‖∂twm‖L4/3(H−1) = ‖2νrcurl um + g− Lwm − B2(um, wm)− 4νrwm‖L4/3(H−1)

≤ 2νr‖curl um‖L4/3(H−1) + ‖g‖L4/3(H−1) + ‖Lw‖L4/3(H−1)

+‖B2(um, wm)‖L4/3(H−1) + 4νr‖wm‖L4/3(H−1)

≤ C3. (30)

Thus, from (29) and (30) we conclude that

{(∂tum, ∂twm)}m≥1 is bounded in L4/3(H′σ)× L4/3(H−1(Ω)). (31)

Step 3: Passage to the limit.

From (28) and (31) we deduce that there exists a limit element (u, w) ∈ Wu ×Ww,
such that for some subsequence of {(um, wm)}m≥1, still denoted by {(um, wm)}m≥1, the
following convergences hold, as m goes to ∞:

um → u weakly in L2(Hσ) and weakly* in L∞(H),
wm → w weakly in L2(H1

0(Ω)) and weakly* in L∞(L2(Ω)),
(∂tum, ∂twm) → (∂tu, ∂tw) weakly* in L4/3(H′σ)× L4/3(H−1(Ω)).

(32)

Moreover, from (32), the Aubin–Lions lemma (see ([37], Theorem 5.1, p. 58)) and a
Simon compactness result in Bochner spaces (see ([38], Corollary 4)), we have{

um → u strongly in L2(H) ∩ C([0, T]; H′σ),
wm → w strongly in L2(Q) ∩ C([0, T]; H−1(Ω));

(33)
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which imply that (um(0), wm(0)) converges to (u(0), w(0)) in H′σ ×H−1(Ω), and consider-
ing that (um(0), wm(0)) = (Pmum

0 , P̃mwm
0 ), for each m, and that (Pmum

0 , P̃mwm
0 )→ (u0, w0)

strongly in H × L2(Ω); from the uniqueness of the limit we deduce the identification
(u(0), w(0)) = (u0, w0) in the space H× L2(Ω), which are the initial conditions given in
(14)3 and (14)4.

Therefore, the convergences (32) and (33), and a standard procedure allows us pass to
the limit in (17)–(19), as m goes to ∞; and thus, we conclude that (u, w) is a weak solution
of system (11).

4. Strong Solutions

In this section, we present a Prodi–Serrin type regularity result that allow us obtain
global-in-time strong solutions of system (11).

Firstly, we will establish the concept of strong solution of problem (11).

Definition 2. (Strong solutions) Let (f, g) ∈ L2(Q)× L2(Q) and (u0, w0) ∈ Hσ ×H1
0(Ω).

We say that the pair (u, w) is a strong solution of system (11) in the time interval (0, T), if

u ∈ Su := {u ∈ L∞(Hσ) ∩ L2(H2(Ω)) : ∂tu ∈ L2(H)}, (34)

w ∈ Sw := {w ∈ L∞(H1
0(Ω)) ∩ L2(H2(Ω)) : ∂tw ∈ L2(Q)}, (35)

satisfies pointwisely a.e. (x, t) ∈ Q the problem{
∂tu + ν1 Au + PB1(u, u) = 2νrcurl w + Pf,

∂tw + Lw + B2(u, w) + 4νrw = 2νrcurl u + g,
(36)

jointly to initial and boundary conditions (11)3 and (11)4, respectively.

Thus, we have the following result.

Theorem 2. Let (u, w) ∈ Wu ×Ww be a weak solution of (11). If, in addition (u0, w0) ∈
Hσ ×H1

0(Ω) and

u ∈ L
2r

r−3 (Lr(Ω)), (37)

with r ∈ (3, ∞). Then, (u, w) is the unique strong solution of system (11) in sense of Definition 2.

Proof. We separate te proof in two steps.

Regularity: We fix w ∈ Ww; then, first we improve the regularity for u and after
for w. In fact, we perform formally the estimates that strong solution (u, w) must satisfy.
An exhaustive proof would be performed using Galerkin approximation for each pair of
functions (u, w).

Testing (36)1 by Au and applying Lemma 1 we have

1
2

d
dt
‖D(u)‖2 + ν1‖Au‖2 ≤ |〈PB1(u, u), Au〉H′σ |+ 2νr|(curl w, Au)|+ |(Pf, Au)|. (38)

Now we will bound the right-hand side of (38). In fact, from the Hölder inequality
we obtain

|〈PB1(u, u), Au〉H′σ | ≤ C‖u‖Lr‖∇u‖Ls‖Au‖, (39)

with 1
r +

1
s = 1

2 . Additionally, we observe that from the Gagliardo–Nirenberg interpo-
lation inequality (see, for instance, [39]) and taking into account the equivalent norms
‖u‖H2 ≡ ‖Au‖ (cf. [26]), we can deduce

‖∇u‖Ls ≤ C‖∇u‖
6−s
2s ‖Au‖

3s−6
2s ,
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which, jointly to (39) and Young inequality, imply

|〈PB1(u, u), Au〉H′σ | ≤ C‖u‖Lr‖∇u‖
6−s
2s ‖Au‖

5s−6
2s

≤ C‖u‖
4s

6−s
Lr ‖∇u‖2 +

ν1

6
‖Au‖2.

Moreover, since 1
r +

1
s = 1

2 , we have s = 2r
r−2 ; thus, 4s

6−s = 2r
r−3 . Consequently, we

obtain the following estimate

|〈PB1(u, u), Au〉H′σ | ≤ C‖u‖
2r

r−3
Lr ‖∇u‖2 +

ν1

6
‖Au‖2. (40)

On the other hand, using again the Hölder and Young inequalities we have

2νr|(curl w, Au)| ≤ 2νr‖curl w‖‖Au‖ ≤ C‖curl w‖2 +
ν1

6
‖Au‖2

≤ C‖w‖2
H1

0
+

ν1

6
‖Au‖2, (41)

|(Pf, Au)| ≤ C‖f‖‖Au‖ ≤ C‖f‖2 +
ν1

6
‖Au‖2. (42)

Then, replacing (40)–(42) in (38) we obtain

d
dt
‖D(u)‖2 + ν1‖Au‖2 ≤ C‖u‖

2r
r−3
Lr ‖∇u‖2 + C(‖w‖2

H1
0
+ ‖f‖2)

≤ C‖u‖
2r

r−3
Lr ‖Du‖2 + C(‖w‖2

H1
0
+ ‖f‖2). (43)

Therefore, from (43), Gronwall lemma, the equivalence ‖u‖H2 ≡ ‖Au‖ and taking
into account the hypothesis (37), we deduce that

u ∈ L∞(Hσ) ∩ L2(H2(Ω)) ↪→ L10(Q). (44)

Furthermore, from (44) and interpolating we have ∇u ∈ L∞(L2(Ω)) ∩ L2(H1(Ω)) ↪→
L10/3(Q), which jointly to (44) imply

B1(u, u) ∈ L5/2(Q). (45)

Hence, using that Au ∈ L2(H), from (45) and (36)1 we conclude that ∂tu ∈ L2(H).
Thus, u ∈ Su.

Now, we will improve the regularity for w. Testing (36)2 by −∆w we have

1
2

d
dt
‖w‖2

H1
0
+(Lw,−∆w)+ 4νr‖w‖2

H1
0
≤ |〈B2(u, w), ∆w〉H−1 |+ 2νr|(curl u, ∆w)|+ |(g, ∆w)|. (46)

From the Hölder and Young inequalities we have

2νr|(curl u, ∆w)| ≤ 2νr‖curl u‖‖∆w‖ ≤ 2
√

2νr‖∇u‖‖∆w‖

≤ C‖D(u)‖2 +
ν2

6
‖∆w‖, (47)

|(g, ∆w)| ≤ ‖g‖‖∆w‖ ≤ C‖g‖2 +
ν2

6
‖∆w‖. (48)

Additionally, arguing as in (40) we can obtain

|〈B2(u, w), ∆w〉H−1 | ≤ C‖u‖
2r

r−3
Lr ‖w‖2

H1
0
+

ν2

6
‖∆w‖2. (49)
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On the other hand, taking into account that the operator Lw = −ν2∆w− ν3∇div w is
strongly elliptic, there exists a positive constant C̃ := C̃(ν2, ν3, Γ), such that (see [23])

(Lw,−∆w) ≥ ν2‖∆w‖2 − C̃‖w‖2
H1

0
. (50)

Thus, using the estimates (47)–(50) in (46) we have

1
2

d
dt
‖w‖2

H1
0
+

ν2

2
‖∆w‖2 + 4νr‖w‖2

H1
0
≤ C‖D(u)‖2 + C‖g‖2 + C̃‖w‖2

H1
0
+ C‖u‖

2r
r−3
Lr ‖w‖2

H1
0
;

hence,

d
dt
‖w‖2

H1
0
+ C‖w‖2

H2 ≤ C‖D(u)‖2 + C
(
‖u‖

2r
r−3
Lr + 1

)
‖w‖2

H1
0
+ C‖g‖2. (51)

Therefore, from (51), Gronwall lemma and hypothesis (37) we deduce that

w ∈ L∞(H1
0(Ω)) ∩ L2(H2(Ω)) ↪→ L10(Q);

and, since ∇w ∈ L∞(L2(Ω)) ∩ L2(H1(Ω)) ↪→ L10/3(Q) we have B2(u, w) ∈ L5/2(Q).
Then, using that ∆w ∈ L2(Q), from (36)2 we deduce that ∂tw ∈ L2(Q). Thus, we conclude
that w ∈ Sw.

Uniqueness: We will apply a classical comparison argument. Indeed, let
(u1, w1), (u2, w2) ∈ Su × Sw two possible solutions of problem (36). Then, subtracting
equations in (36) for (u1, w1) and (u2, w2), and making u := u1 − u2 and w := w1 −w2

we can obtain the following system
∂tu + ν1 Au + P(B1(u1, u) + B1(u, u2)) = 2νrcurl w in Q,

∂tw + Lw + B2(u1, w) + B2(u, w2) = 2νrcurl u in Q,
u(x, 0) = 0, w(x, 0) = 0 in Ω,

[D(u)n]tang = 0, u · n = 0, w = 0 on Σ.

(52)

Testing (52)1 by u and (52)2 by w, and using (6) and (8) we have

1
2

d
dt
(‖u‖2 + ‖w‖2) + 2ν1‖D(u)‖2 + ν2‖w‖2

H1
0

≤ |(PB1(u, u2), u)|+ |(B2(u, w2), w)|+ 2νr|(curl w, u)|+ 2νr|(curl u, w)|. (53)

From the Hölder, Young, and Poincaré inequalities, arguing as in (40) and taking into
account the 3D interpolation estimate ‖u‖L4 ≤ C‖u‖1/4‖D(u)‖3/4 we obtain

|(PB1(u, u2), u)| = |(PB1(u, u), u2)| ≤ C‖u‖Ls‖∇u‖‖u2‖Lr

≤ ν1

2
‖Du‖2 + C‖u‖2‖u2‖

2r
r−3
Lr , (54)

|(B2(u, w2), w)| = |(B2(u, w), w2)| ≤ ‖u‖L4‖w‖H1
0
‖w2‖L4

≤ ν1

2
‖D(u)‖2 +

ν2

6
‖w‖2

H1
0
+ C‖u‖2‖w2‖8

H1
0
, (55)

2νr|(curl w, u)| ≤ 2νr‖curl w‖‖u‖ ≤ 2
√

2νr‖w‖H1
0
‖u‖

≤ ν2

6
‖w‖2

H1
0
+ C‖u‖2, (56)

2νr|(curl u, w)| = 2νr|(curl w, u)| ≤ ν2

6
‖w‖2

H1
0
+ C‖u‖2. (57)



Symmetry 2021, 13, 1348 12 of 14

Replacing (54)–(57) into (53), adding 2ν1‖u‖2 to both sides in the resulting inequality
and applying the Korn inequality, we can obtain the following estimate

d
dt
(‖u‖2 + ‖w‖2) + 3ν1CK‖u‖2

Hσ
+ ν2‖w‖2

H1
0
≤ C

(
‖u2‖

2r
r−3
Lr + ‖w2‖8

H1
0

)
‖u‖2. (58)

Therefore, considering hypothesis (37) we have that u2 ∈ L
2r

r−3 (Lr(Ω)) and that
w2 ∈ L∞(H1

0(Ω)), from Gronwall lemma, (58) and using that (u0, w0) = (0, 0), we deduce
that u = w = 0, and the uniqueness follows.

Remark 3. In Theorem 2, we observe that for r ∈ (3, ∞) the exponent 2r
r−3 ∈ (2, ∞). Thus,

making s := 2r
r−3 we can reformulated Theorem 2 under assumption u ∈ Ls(Lr(Ω)), with

2
s
+

3
r
≤ 1, r ∈ (3, ∞), s ∈ (2, ∞). (59)

A pair (r, s) satisfying (59) is called a Prodi–Serrin pair [17,18].

5. Conclusions

In this paper we have analyzed a 3D non-stationary micropolar fluids equations
considering Navier boundary conditions without friction (perfect slip boundary conditions)
for the velocity field and homogeneous Dirichlet boundary conditions for the angular
velocity. The main results obtained are: existence of global-in-time weak solutions at finite
time and a Prodi–Serrin type regularity criterion, imposed only for the velocity field, which
allow us obtain global-in-time strong solutions and, as consequence, their uniqueness.
The existence of weak solutions is obtained by applying the Galerkin method and energy
estimates and the improvement of their regularity is obtained through energy estimates and
interpolation inequalities in Sobolev spaces (Gagliardo–Nirenberg, Korn, among others).

This work was inspired by the study developed by professors Loayza and Rojas-
Medar [23], in which the authors obtain a weak-Lp Prodi–Serrin type regularity criterion
for the micropolar fluids system with homogeneous Dirichlet boundary conditions for the
velocity field and angular velocity, assuming that both external forces f and g belong to
weak-Lr spaces. Here we have improved the regularity of the weak solutions without the
need to change the classical spaces for f and g; that is, we have kept (f, g) ∈ L2(Q)× L2(Q).
The key to this has been to carefully employ the Gagliardo–Nirenberg interpolation in-
equality (see estimates (39) and (40)). Finally, for future research, we will consider the
following topics:

• The analysis of the Boussinesq system with Navier boundary conditions;
• The study of optimal control problems related to systems (1)–(3) and find the existence

of global optimal solutions and derive the respective optimality system;
• The numerical analysis of systems (1)–(3).

Author Contributions: C.D.-L., S.L., E.M.-Z. contributed to each part of this study equally. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: C.D.-L. has been supported by postgraduate scholarship Apoyo Institucional
para Magíster Académicos de la Universidad de Tarapacá, Universidad de Tarapacá, Chile. S.L. has
been supported by Proyecto UTA-Mayor 4744-19, Universidad de Tarapacá, Chile. E.M.-Z. has been
supported by Proyecto UTA-Mayor 4751-20, Universidad de Tarapacá, Chile. Moreover, the authors
would like to thank the anonymous referees for their kind and helpful remarks and comments.



Symmetry 2021, 13, 1348 13 of 14

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eringen, A.C. Simple microfluids. Int. J. Engrg. Sci. 1964, 2, 205–217. [CrossRef]
2. Eringen, A.C. Theory of micropolar fluids. J. Math. Mech. 1966, 16, 1–16. [CrossRef]
3. Le Roux, C. Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions. Arch. Ration. Mech. Anal.

1999, 148, 309–356. [CrossRef]
4. Navier, C.L. Sur le lois du mouvement des fluides. Mem. Acad. R. Sci. Inst. France 1823, 6, 389–416.
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