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Abstract: In this paper, we investigate thick branes generated by a scalar field in mimetic gravity
theory, which is inspired by considering the conformal symmetry under the conformal transformation
of an auxiliary metric. By introducing two auxiliary super-potentials, we transform the second-order
field equations of the system into a set of first-order equations. With this first-order formalism,
several types of analytical thick brane solutions are obtained. Then, tensor and scalar perturbations
are analyzed. We find that both kinds of perturbations are stable. The effective potentials for the
tensor and scalar perturbations are dual to each other. The tensor zero mode can be localized on the
brane while the scalar zero mode cannot. Thus, the four-dimensional Newtonian potential can be
recovered on the brane.

Keywords: thick brane; mimetic gravity; first-order formalism

1. Introduction

Modified gravity theories have obtained great development and performance in the
study of some unsolved problems in general relativity such as the dark energy problem, the
dark matter problem, the singularity problem, etc. The symmetry of the theory is crucial in
modifying the general relativity. By isolating the conformal degree of freedom of general
relativity, Chamseddine and Mukhanov proposed a theory called mimetic gravity [1].
In this theory, an auxiliary metric is introduced, and the physical metric has conformal
symmetry under the conformal transformation of an auxiliary metric. This theory was
studied from the view of variational principle [2]. It was shown that after introducing the
scalar potential, this conformal degree of freedom becomes dynamical and can mimic cold
dark matter [1,3] or dark energy [4–7] and can resolve the singularity problem [8] and the
cosmic coincidence problem [9]. The extension of mimetic gravity was used to investigate
the inflationary solution [10]. In Ref. [11], the authors proposed mimetic Einstein–Cartan
gravity and proved that torsion is a non-propagating field in this mimetic gravity. Mimetic
gravity theory was also extended to Horava-like theory and applied to galactic rotation
curves [12]. It was also applied to other gravity theories such as f (R) gravity [13–19],
Horndeski gravity [20–22] and Gauss–Bonnet gravity [23,24].

On the other hand, in order to solve the gauge hierarchy problem and the cosmological
constant problem, Randall and Sundrum (RS) proposed that our four-dimensional world
could be a brane embedded in five-dimensional space-time [25]. With the warped extra
dimension, it was further found that the size of extra dimension can be infinitely large
without conflicting with Newtonian gravitational law [26]. This charming idea has attracted
substantial researches in particle physics, cosmology, gravity theory, and other related
fields [27–37]. In the RS model, the brane is geometrically thin, therefore the space-time
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is singular at the brane. The singularity at a finite distance from the brane is investigated
in Refs. [38–41]. Hence, the thick brane model as a generalization of the RS II model is
investigated, and various matter fields can be localized on the thick brane [42–48].

Recently, one of the interesting works appeared in Ref. [49], which applied mimetic
gravity theory to the thin RSII brane model [26]. It was shown that the mimetic scalar field
can mimic the dark sectors on the brane and explain the late time cosmic expansion in the
favor of observational data, and it has the capability to explain initial time cosmological
inflation [49]. Later, other related topics about thick branes in mimetic gravity were studied
in Refs. [50–53]. Thick branes with the inner structure and the stability of the perturbations
were first investigated in Ref. [52]. Besides, it is known that first-order formalism is a very
powerful tool to obtain analytical brane solutions [54–56]. With this formalism, the second-
order coupled field equations can be written as a set of first-order ones by introducing one
or more auxiliary super-potentials. Very recently, Bazeia et al. used first-order formalism to
find brane solutions in mimetic gravity [53,57]. In this paper, we would like to investigate
thick branes in mimetic gravity with the help of first-order formalism by including two
super-potentials. In order to show the systematicness and effectiveness of the first-order
formalism on finding analytical brane solutions, we will utilize polynomial, period, and
mixed super-potentials. We will also investigate the stabilities of the tensor and scalar
perturbations, as well as the relationship between the localizations of the tensor and scalar
zero modes.

The paper is organized as follows. In Section 2, we give a review of the thick brane
model and reduce the second-order field equations to the first-order ones by introducing
two auxiliary super-potentials. In Section 3, we obtain three types of analytical brane
solutions by considering different forms of super-potentials. In Sections 4 and 5, we focus
on tensor and scalar perturbations, respectively. Finally, the conclusion and discussion are
given in Section 6.

2. First-Order Formalism for Thick Brane Models

We consider thick branes generated by a scalar field in five-dimensional mimetic
gravity. The corresponding action is given by

S=
∫

d4xdy
√
−g
(

R
2
+ Lφ

)
, (1)

where R is the five-dimensional scalar curvature, the Lagrangian of the mimetic scalar field
φ is

Lφ = λ
[

gMN∂Mφ∂Nφ−U(φ)
]
−V(φ). (2)

Here λ represents the Lagrange multiplier, U(φ) and V(φ) are two potentials. In this
paper, xM and xµ denote, respectively, the five-dimensional bulk coordinates and the four-
dimensional brane ones, where the indices M, N, · · · = 0, 1, 2, 3, 5 and µ, ν, · · · = 0, 1, 2, 3.

The variations of the action (1) with respect to the background metric gMN , the scalar
field φ, and the Lagrange multiplier λ lead to the following field equations

GMN + 2λ∂Mφ∂Nφ− LφgMN = 0, (3)

2λ�(5)φ + 2∇Mλ∇Mφ + λ
∂U
∂φ

+
∂V
∂φ

= 0, (4)

gMN∂Mφ∂Nφ−U(φ) = 0. (5)

Here the five-dimensional d’Alembert operator is defined as �(5) = gMN∇M∇N .
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The line-element ansatz for a flat brane which preserves the four-dimensional Poincaré
symmetry is

ds2 = e2A(y)ηµνdxµdxν + dy2 (6)

= a2(y)ηµνdxµdxν + dy2. (7)

Using the line-element (6), and considering that the scalar field is static and depends
only on the extra-dimensional coordinate, we can get the following second-order nonlinear
coupled differential field equations

6A′2 + λ
(

U(φ) + φ′2
)
+ V(φ) = 0, (8)

6A′2 + 3A′′ + λ
(

U(φ)− φ′2
)
+ V(φ) = 0, (9)

λ

(
8A′φ′ + 2φ′′ +

∂U
∂φ

)
+ 2λ′φ′ +

∂V
∂φ

= 0, (10)

φ′2 −U(φ) = 0. (11)

Here, the primes denote derivatives with respect to the extra-dimensional coordinate y.
It can be seen that it is not easy to analytically solve the above second-order field equations
directly. However, one can reduce them to first-order field equations by introducing two
auxiliary super-potentials [53]

Q = Q(φ), W = W(φ), (12)

and providing the potential

V(φ) = QφWφ −
2
3

W2, (13)

where Qφ = dQ
dφ and Wφ = dW

dφ . The resulting first-order field equations can be written as

A′ = −1
3

W(φ), (14)

φ′ = Qφ, (15)

U(φ) = Q2
φ, (16)

λ(φ) = −1
2

Wφ

Qφ
. (17)

These equations would be helpful to give analytical brane solutions. One can see
from (16) that the scalar potential U(φ) is related with the super-potential Q(φ), which
is a function of the scalar field φ. The other potential V(φ) is determined by the two
super-potentials Q and W (see Equation (13)).

Note that the first-order Equations (14)–(16) can be divided into two groups. One
is Equation (14) related with A and W, the other is Equations (15) and (16) related with
φ, Q, U. Therefore, these equations can be solved with different approaches by giving
different combinations from (A, W) and (φ, Q, U). For example, we can choose W(φ) and
Q(φ), or W(φ) and φ(y).

The energy density of the brane is given by

ρ(y) = TMNuMuN , (18)

where uM = (u0, 0, 0, 0, 0) is the velocity of a static observer, and the energy momentum
tensor of the mimetic scalar field is given by TMN = 2λ∂Mφ∂Nφ − LφgMN . From the
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condition of the velocity gMNuMuN = −1, we have u0 = e−A. Thus, using Equation (11),
the energy density can be written as

ρ(y) =
1
2

V(φ(y)), (19)

which shows that the potential V(φ) and the profile of the scalar φ(y) determine the
distribution of the thick brane along the extra dimension.

On the other hand, in order to localize gravity on the brane, the warp factor e2A(y)

should tend to zero rapidly enough as y → ±∞, such that the condition
∫

e2Ady < ∞
is satisfied. This will be derived in Section 4. Usually, we consider the solutions with
e2A(y)|y→±∞ → e−2k|y|, which corresponds to the branes embedded in an AdS spacetime
with a negative cosmological constant. It should be pointed out that the contribution of the
cosmological constant has been included in the energy density (19) for this case. Therefore,
the net energy density should be

ρ(y) =
1
2

V(φ(y))−Λ. (20)

3. The Thick Brane Solutions

Next, we will take focus on finding some specific analytical solutions of the thick
brane model by solving the first-order Equations (14)–(17). Our main motivation here is
to show the systematization and effectiveness of the first-order formalism, which is also
called the super-potential method [34,35,58]. In the symmetric thick brane scenario,the
warped factor a(y) is an odd function. Furthermore, the scalar field is a kink that connected
two vacuum, Combining with Equations (13)–(15), W(φ(y)) must be an odd function of y,
Qφ(φ(y)) must be an even function of y, and the potential V(φ) must have a multi-vacuum.
In order to be compatible with the above analysis, we consider the polynomial and period
super-potentials.

3.1. Polynomial Super-Potentials
3.1.1. Solution I

First, supposing that one of the super-potentials, Q, has the following polynomial
form considered in Ref. [53]:

Q(φ) = k
(

vφ− φ3

3v

)
, (21)

and solving Equation (15), we can easily get the solution of the scalar field φ

φ(y) = v tanh(ky). (22)

The solution of the potential U can be read directly from Equation (16) as

U(φ) =
k2

v2

(
φ2 − v2

)2
. (23)

The other super-potential, W, is chosen as

W(φ) =
3kn

v
φ, (24)

where n is a non-vanishing parameter. Then, from Equation (14), we obtain a simple
solution for the warp factor

A(y) = ln sechn(ky). (25)
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The other functions are given by

λ(y) = − 3n
2v2 cosh2(ky), (26)

V(φ) =
3nk2

v2

[
v2 − (2n + 1)φ2

]
. (27)

The energy density of the brane including the cosmological constant is

ρ(Λ) =
V
2

= 3k2n
(

1− (2n + 1) tanh2(ky)
)

. (28)

From the solution (25), we can calculate the cosmological constant and hence the net
energy density

ρ(y) = ρ(Λ) −Λ =
3
2

k2n(2n + 1)sech2(ky). (29)

The shapes of the warp factor a(y) = eA(y) and the energy density ρ(y) are plotted in
Figure 1, which shows that the parameter n affects the warp factor and the energy density.
With the increase of n, the warp factor becomes narrower while the energy density becomes
larger and narrower. The maximum of the energy density is given by ρmax = 3

2 k2n(2n + 1)
for n > 0 or n < −1/2. It is obvious that the parameter v does not affect the warp factor
and the energy density, it only affects the amplitude of the scalar field φ and hence the
localization of a bulk fermion Ψ when one introduces the Yukawa coupling ηΨ̄φΨ [59]. In
fact, v is the vacuum expectation value of the scalar potential U(φ) given in (23).

-4 -2 2 4

ky

0.2

0.4

0.6

0.8

1.0

eA

-4 -2 2 4

ky

20

40

60

80

Ρ

Figure 1. The shapes of the warp factor a(y) and the energy density ρ(y) of the first brane model.
The parameter n is set as n = 1, 3, 5 for the thick red, dashed blue, and thin black lines, respectively.

3.1.2. Solution II

Next, we also consider the same polynomial super-potential Q as in previous subsection:

Q(φ) = k
(

vφ− φ3

3v

)
. (30)

Therefore, we will get the same φ and U(φ) as solution I:

φ(y) = v tanh(ky), (31)

U(φ) =
k2

v2 (φ
2 − v2)2. (32)

However, different from last model, we fix W(φ) = Q(φ), which results in the constant
solution of the Lagrange multiplier:

λ(y) = −1
2

Wφ

Qφ
= −1

2
. (33)
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Then, we get a different form of the warp factor via Equation (14):

A(y) =
v2

18
sech2(ky) +

2v2

9
ln sech(ky). (34)

The scalar potential V has the following φ6 form:

V(φ) =
k2

v2

(
φ2 − v2

)2
− 2k2

9v2

(
φ2 − 3v2

)2
φ2. (35)

In this case, the energy density of the brane is

ρ(y) =
k2v2

108

(
27 + 10v2 + 3(9 + 2v2)cosh(2ky)

)
× sech6(ky). (36)

In this model, the vacuum expectation value v of the scalar potential U(φ) has an
explicit effect on the warp factor and the energy density. The shapes of the scalar field, the
warp factor, and the energy density do not change with non-vanishing v. Note that

A(|y| → ∞) → 2
9

v2
(

e−2k|y| − k|y|
)

→ −2
9

v2k|y|. (37)

Therefore, the five-dimensional spacetime is also asymptotic AdS.

3.2. Period Super-Potential
3.2.1. Solution III

Next, we try to construct another form of brane solution by giving a period super-
potential, such as

W(φ) = 3kn sin
1
p
(φ

v

)
. (38)

At the same time, the warp factor A(y) is assumed to be

A(y) = ln sechn(ky). (39)

Then, the scalar field can be solved from Equation (14) as

φ(y) = vs.arcsin[tanhp(ky)], (40)

which is a kink and a double kink for p = 1 and p = 2n + 1 with positive integer n,
respectively. Furthermore, from Equation (15) we know that the super-potential Q is

Q(φ) = kp2v2[F (p, φ) +F (−p, φ)]. (41)

where

F (p, φ) = (−1)
1

2p sec
1
p
(φ

v

)
× 2F1

(
1

2p
,

1
2p

; 1 +
1

2p
; sec2

(φ

v

))
.
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Here, 2F1 is the hypergeometric function. The Lagrange multiplier and the two
potentials can also be solved:

λ(y) =
3n cot2

(
φ
v

)
sin

2
p
(

φ
v

)
2p2v2

[
sin

2
p
(

φ
v

)
− 1
] , (42)

V(φ) = 3k2n
[

1− (1 + 2n) sin
2
p
(φ

v

)]
, (43)

U(φ) = k2 p2v2sech2
(φ

v

)
(44)

×
[

sin1+ 1
p
(φ

v

)
− sin1− 1

p
(φ

v

)]2
. (45)

The energy density in this case is given by

ρ(y) =
3
2

k2n(2n + 1)sech2(ky), (46)

which is the same as Equation (29) for the first model. In fact, from the definition of the
energy density ρ = TMNuMuN = (1/2)GMNuMuN , we know that the energy density will
have the same configuration for the same warp factor. Here, the warp factors in this model
and the first model have the same form, and hence so do the energy densities.

3.2.2. Solution IV

Similarly, for the period super-potentials

Q(φ) = W(φ) = kv2 sin
(φ

v

)
, (47)

we can obtain the following solution

A(y) =
v2

3
ln
[
sech(ky)

]
, (48)

φ(y) = vs.arctan
[

sinh(ky)
]
, (49)

λ(y) = −1
2

, (50)

V(φ) = k2v2
(

cos2
(

φ

v

)
− 2

3
v2 sin2

(
φ

v

))
, (51)

U(φ) = k2v2 cos2 φ

v
, (52)

ρ(y) =
1
6

k2v2(2v2 + 3)sech2(ky). (53)

3.2.3. Solution V

Next, we consider different period super-potentials W(φ) and Q(φ):

W(φ) = 3kn tan
(φ

v

)
, (54)

Q(φ) =
1
2

kv2 sin
(2φ

v

)
, (55)

The warp factor and the scalar field will have the following explicit forms

A(y) = ln
[
sechn(ky)

]
, (56)

φ(y) = vs. arctan[tanh(ky)]. (57)
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The other functions are given by

λ(y) = − 3n
2v2 sec[2 arctan tanh(ky)],

× (1 + tanh2(ky)), (58)

V(φ) = 3k2n sec2
(

φ

v

)[
(1 + n) cos

(
2φ

v

)
− n

]
, (59)

U(φ) = k2v2 cos2
(2φ

v

)
. (60)

3.3. Mixed Super-Potential
3.3.1. Solution VI

Finally, we would like to generate the brane model by giving the pair of super-
potentials Q(φ) and W(φ) as the mixed of polynomial and period, for example

Q(φ) = W(φ) = kv
[
φ + vs. sin

(φ

v

)]
, (61)

which results in the constant Lagrange multiplier

λ(y) = −1
2

. (62)

Then, governed by Equation (15), the scalar field φ is determined as

φ(y) = 2v arctan(ky), (63)

from which one can see that the asymptotic behavior of φ is limy→±∞ φ(y) = π. The
potentials U and V are

U(φ) = 4k2v2 cos4
( φ

2v

)
, (64)

V(φ) = k2v2
[

4 cos4
( φ

2v

)
− 2

3

(
φ + v sin

(φ

v

))2
]

. (65)

The warp factor and the energy density read as

A(y) = −2
3

v2ky arctan(ky), (66)

ρ(y) =
1
3

k2v2

[
6

(k2y2 + 1)2 + π2v2

− v2
(

2 arctan(ky) + sin(2 arctan(ky))
)2
]

. (67)

The asymptotic behavior of A(y) is A(|y| → ±∞→ −πv2k|y|/3 .

4. Tensor Perturbation

In this section, we consider the linear tensor fluctuation of the metric around the
background. Following the previous research works in Refs. [33,52,53], we perform the
following coordinate transformation

dz = e−A(y)dy, (68)

to get a conformally flat metric

ds2 = e2A(z)(ηµνdxµdxν + dz2). (69)
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To simplify the fluctuations of the metric around the background, we only consider
the transverse and traceless part of the metric fluctuation, i.e., we consider the following
tensor perturbation of the metric:

ds2 =
(

e2A(z)ηµν + ĥµν(x, z)
)

dxµdxν + e2A(z)dz2

= e2A(z)
[(

ηµν + hµν(x, z)
)
dxµdxν + dz2

]
. (70)

Here, hµν is the tensor perturbation of the metric, and it satisfies the transverse and
traceless conditions [34]: hµ

µ = ∂νhµν = 0. The non-vanishing part of the perturbation
of Einstein tensor in Equation (3) is the µν components (since h55 = 0 and δG55 = 0) and
it reads

δGµν = −1
2
�(4)hµν + (6A′2 + 3A′′)e2Ahµν

− 2A′e2Ah′µν −
1
2

e2Ah′′µν, (71)

where the four-dimensional d’Alembertian is defined as �(4) ≡ ηµν∂µ∂ν. Using Equation (10),
we get the perturbation equation

−1
2
�(4)hµν − 2A′e2Ah′µν −

1
2

e2Ah′′µν = 0. (72)

Considering Equation (68), we rewrite the above equation under the coordinate z as

�(4)hµν + 3Ȧḣµν + ḧµν = 0, (73)

where the dot represents the derivative with respect to the coordinate z. By performing the
following decomposition,

hµν(x, z) = εµνeikxh(z)e−
3
2 A, (74)

Equation (73) leads to a kind of Schrödinger equation:(
− ∂2

z + VT(z)
)

h(z) = m2h(z), (75)

where k2 = −m2 with m the four-dimensional mass of a graviton KK mode, and the
effective potential given by

VT(z) =
3
2

Ä(z) +
9
4

Ȧ2(z). (76)

The effective potential of the tensor perturbation under the physical coordinate y is

VT(z(y)) = e2A(y)
(

3
2

A′′(y) +
15
4

A′2(y)
)

. (77)

The zero mode of the tensor perturbation reads as

h0(z) = e3A(z)/2
(

c1 + c2

∫
e−3A(z)dz

)
. (78)

This general form of the zero mode was first found in f (R)-brane model in Ref. [60].
One can see that the effective potentials and the zero mode of the tensor perturbation
are only determined by the warp factor A(y). It is easy to show that the tensor zero
mode (78) can be localized on the brane with the choice of c2 = 0 for all brane solutions
in this paper (with n > 0 for solutions I, III and V and v 6= 0 for solutions II, IV and VI).
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The figures for solutions I, III and V are the same, and they are similar for solutions II,
IV and VI. So, without loss of generality, we plot two of them for the brane solutions I
and II in Figures 2 and 3, respectively. These potentials have a volcano-like shape. As the
parameters n and v increase, the potential wells in Figures 2 and 3 become narrower and
deeper, respectively.

-4 -2 2 4

ky

-5

5

10

15

20

VT�k
2

-4 -2 2 4

ky

0.2

0.4

0.6

0.8

1.0

h0

Figure 2. The effective potential VT and the non-normalized zero mode of the tensor perturbation for
brane models I, III and V. The parameter is set as n = 1 (red solid thick lines), n = 3 (blue dashed
lines), and n = 5 (black solid thin lines).

-4 -2 2 4

ky

-2

2

4

VT�k
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-10 -5 5 10

ky
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h0

Figure 3. The effective potential VT and the non-normalized zero mode of the tensor perturbation for
brane model II. The parameter is set as v = 1 (red solid thick lines), v = 1.5 (blue dashed lines), and
v = 2 (black solid thin lines).

It is easy to verify that the zero modes for the above brane models are localized around
the brane. So the four-dimensional Newtonian potential can be realized on the brane. There
is no tensor tachyon mode, thus the brane is stable against the tensor perturbation.

5. Scalar Perturbation

At last, we come to the scalar perturbation in this section. The perturbed metric is
given by

ds2 = e2A(z)
[
(1 + 2ψ)ηµνdxµdxν + (1 + 2Φ)dz2

]
. (79)

The scalar perturbation equations can be derived as

e2A
(

1
2

Uφφ −Uφ
φ̈

φ̇2 + 2
Ȧ
φ̇

Uφ −
4
3

e−2Aλφ̇2
)

δφ

+

(
1
2

e2A

φ̇
Uφ +

φ̈

φ̇
− 2Ȧ

)
˙δφ− δ̈φ = 0, (80)

and

Φ =
˙δφ

φ̇
− e2A

2φ̇2 Uφδφ, (81)

Φ = −2ψ. (82)
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It can be seen that there is only one degree of freedom for the scalar perturbation.
Finally, by using the background Equations (3)–(5), we can replace the potential U and
λ in Equation (80) with the functions A and φ and obtain the final form of the scalar
perturbation δφ: (

3Ȧ
φ̈

φ̇
− 3Ä− 2

φ̈2

φ̇2 +

...
φ

φ̇

)
δφ

+

(
2

φ̈

φ̇
− 3Ȧ

)
˙δφ− δ̈φ = 0. (83)

Redefining

δφ(xµ, z) = δφ(xµ)s(z)A−3/2(z)φ̇(z), (84)

with the four-dimensional part of δφ satisfying �(4)δφ(xµ) = 0, we get the perturbation
equation for the scalar degree of freedom s(z) from Equation (83):(

−∂2
z + VS(z)

)
s(z) = 0, (85)

where the effective potential is given by

VS(z) = −
3
2

Ä(z) +
9
4

Ȧ2(z) (86)

in the z coordinate or

VS(z(y)) = −e2A
(

3
2

A′′(y) +
3
4

A′2(y)
)

(87)

in the y coordinate. Note that the corresponding effective potential of (86) in Ref. [52] is not
right since there is an error in the matter Equation (45) in that paper (the term +2λ(∂zφ)2

should be −2λ(∂zφ)2).
Comparing (86) with (76), one can see that the effective potential of the scalar per-

turbation VS is dual to that of the tensor perturbation VT: VS = VT (A → −A), and
Equations (85) and (75) can be rewritten as

P†Ps(z) = 0, (88)

PP†h(z) = 0, (89)

where P = ∂z +
3
2 Ȧ. The above two equations ensure that both the scalar and tensor

perturbations are stable. The zero mode can be obtained by replacing A→ −A from the
solution of the tensor zero mode (78):

s(z) = e−3A(z)/2
(

c1 + c2

∫
e3A(z)dz

)
. (90)

This will lead to the conclusion that only one of the tensor and scalar zero modes can
be localized on the brane.

The effective potential (87) for solution I is given by

VS =
3
8

k2nsech2(ky)
(

4 + n− n cosh(2ky)
)

, (91)

which is shown in Figure 4. From this figure, it can be seen that, the value of the effective
potential at z = 0 will increase with the parameter n. This can be checked from the
expression VS(0) = 3k2n

2 . The potential has two very shallow wells, and approaches 0−

when y→ ±∞.
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Figure 4. The effective potential VS(z(y)) for solution I. The parameter is set as n = 1 (red solid thick
lines), n = 3 (blue dashed lines), and n = 5 (black solid thin lines).

For the brane solution I in (25) with n > 0, it is easy to show that the zero mode (90)
of the scalar perturbation cannot be localized on the brane. Thus, there is no additional
fifth force coming from the scalar perturbation. For other brane solutions, we have also the
same conclusion.

6. Conclusions

In this work, we investigated the super-potential method with which the second-order
equations can be reduced to the first-order ones for thick brane models in modified gravity
with Lagrange multiplier. The main step of this method is to introduce a pair of auxiliary
super-potentials, i.e., W(φ) and Q(φ). With these two super-potentials, the field equations
are rewritten as Equations (13)–(17). Then we try to use the method to find a series of
analytical brane solutions via some polynomial super-potentials, period super-potentials,
and mixed super-potentials. The warp factor has the same shape and the same asymptotic
behavior at the boundary of the extra dimension for all those solutions, and all of these
branes are embedded in five-dimensional AdS spacetime. The scalar field φ is a double
kink for (40) with odd integer p ≥ 3 or a single kink for other solutions. These shapes of
the scalar field will affect the localization properties of fermions on the brane through the
Yukawa coupling ηΨ̄φΨ [59].

We also considered the tensor and scalar perturbations of the brane system. It
was shown that both equations of motion of the perturbations can be transformed into
Schrödinger-like equations. Furthermore, these equations can be recast as the forms of
(88) and (89), which show that both the perturbations are stable. The effective potential
of the tensor perturbation is dual to that of the scalar perturbation. Therefore, only one
of the tensor and scalar zero modes can be localized on the brane. For all of our brane
solutions, the tensor zero mode can be localized on the brane while the scalar zero mode
cannot. Thus, the four-dimensional Newtonian potential can be recovered on the brane
and there is no additional fifth force contradicting with the experiments.
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