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Abstract: Families of discrete quantum models that describe a free non-relativistic quantum particle
propagating on rescaled and shifted dual weight lattices inside closures of Weyl alcoves are developed.
The boundary conditions of the presented discrete quantum billiards are enforced by precisely
positioned Dirichlet and Neumann walls on the borders of the Weyl alcoves. The amplitudes of the
particle’s propagation to neighbouring positions are determined by a complex-valued dual-weight
hopping function of finite support. The discrete dual-weight Hamiltonians are obtained as the sum
of specifically constructed dual-weight hopping operators. By utilising the generalised dual-weight
Fourier–Weyl transforms, the solutions of the time-independent Schrödinger equation together with
the eigenenergies of the quantum systems are exactly resolved. The matrix Hamiltonians, stationary
states and eigenenergies of the discrete models are exemplified for the rank two cases C2 and G2.

Keywords: quantum dot; discrete quantum billiard; Weyl group; Fourier–Weyl transform

1. Introduction

The goal of this article is to assemble families of tight-binding models [1–3] by describ-
ing a free non-relativistic quantum particle which propagates on shifted and rescaled dual
weight lattices inside closures of scaled Weyl alcoves. Similarly to the recently developed
dual-root lattice models [1], the boundary conditions of the presented discrete quantum
billiards [4,5] are enforced by precisely positioned Dirichlet and Neumann walls.

The quantum billiard systems of multiform shapes that include 2D stadium [6], Hecke
triangular domains [7], equilateral triangle on a spherical surface [8] and polygons [9] have
been investigated. The quantum billiards on 2D triangles [10–12] and 3D Weyl chamber [13]
realise the closest versions of the current simplex-shaped models. From the viewpoint of
position restrictions, the discrete quantum billiards [4,14] involve the propagating particle
on quantum dots [15–17]. Single particle properties of the quantum dots are commonly
studied via the discrete tight-binding Hamiltonians [3,15,17]. Specifically for the studied
class of tight-binding atomic lattice models [3,15], the atoms are coupled to neighbours of
a predetermined fixed degree and possible overlaps among atom orbitals are neglected.
The multivariate discrete Fourier transform provides a fundamental tool for deriving
eigenenergies and momentum bases of these discrete tight-binding models. By utilising
the underlying symmetries of the developed discrete quantum systems for implement-
ing boundary conditions, it appears that generalised dual weight lattice Fourier–Weyl
transforms [18–20] provide similarly crucial connections between position and momentum
bases together with exact eigenenergies and time evolutions.

Representing a ubiquitous class of the discrete Fourier–Weyl transforms [21–24], the
generalised dual-weight Fourier–Weyl transforms [18–20] form extensions of the classical
trigonometric transforms [25] to the crystallographic root systems [26]. Symmetrised and
signed by the actions of the Weyl groups together with the sign homomorphisms [27], the
four types of Weyl orbit functions [19,20] that are characterised by labels from the weight
lattices shifted by admissible shifts [18] serve as kernels of the generalised dual-weight

Symmetry 2021, 13, 1338. https://doi.org/10.3390/sym13081338 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0271-1095
https://orcid.org/0000-0001-8501-971X
https://orcid.org/0000-0002-6174-0518
https://doi.org/10.3390/sym13081338
https://doi.org/10.3390/sym13081338
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13081338
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13081338?type=check_update&version=2


Symmetry 2021, 13, 1338 2 of 25

and dual-root Fourier–Weyl transforms. The closure of the Weyl alcove, which forms
an exactly determined simplex in the Euclidean space and represents a suitably chosen
fundamental domain of the affine Weyl group, comprises the point sets of dual-weight
Fourier–Weyl transforms. These point sets are determined as admissibly shifted dual
weight lattices which are refined by a suitable magnifying factor and intersected with
the signed fundamental domains of the affine Weyl groups [18]. The point sets of the
dual-weight Fourier–Weyl transforms, which are scaled by a fixed length factor, represent
discrete positions of the quantum particle inside the scaled closures of the Weyl alcoves.
As demonstrated on the current C2 models and the C2 dual-root cases from [1], the relative
positions of the point sets of the dual-weight lattice transforms with respect to the Weyl
alcove essentially differ from the locations of the dual root lattice points. Thus, the collection
of the discrete quantum models is substantially enhanced.

Common to both dual-weight and dual-root quantum systems, the faces of the signed
fundamental domain inside the scaled closure of the Weyl alcove form the Neumann
walls of perfect mirrors and the remaining boundaries constitute the Dirichlet walls of
ideal barriers. Labelled by the point sets of the generalised dual-weight Fourier–Weyl
transforms, the orthonormal position bases span the associated finite-dimensional Hilbert
spaces of the quantum systems and represent the particle positioned at the given lattice
point. The dual-weight coupling sets, which are attached to any two positions from the
point sets, are utilised to characterise the hopping of the particle to neighbouring positions
of a fixed degree along with action of the boundary walls via affine Weyl group orbits of
the target positions. Finite sums of the dual-weight hopping operators [1] on the Hilbert
spaces determine the final form of the discrete dual-weight tight-binding Hamiltonian [3]
associated to each model. It appears that the normalised stationary state vectors, which
represent solutions of the time-independent Schrödinger equation, are obtained by the
inverse generalised dual-weight Fourier–Weyl transforms [18–20] of the orthonormal
position bases. Moreover, the eigenenergies of the dual-weight quantum billiard systems
are exactly calculated by adding together the symmetric Weyl orbit sums [28] corresponding
to the chosen degree of coupling.

The developed dual-weight quantum models, together with their exact time-evolutions
provided by the generalised dual-weight Fourier–Weyl transforms, produce a systematic
method for description of a vast collection of discrete quantum billiard systems [1,4,5,14,17,29].
The presented dual-weight Fourier–Weyl methods of the rank two and three crystallo-
graphic root systems are anticipated to be applicable principally in analysis of electronic
properties of 2D and 3D materials [30,31]. Both dual-weight and dual-root methods offer rig-
orous Hamiltonian treatment of the coupling between neighbouring lattice positions to any
fixed degree [1]. Combining dual-root with dual-weight Fourier–Weyl transforms [18–20]
and the corresponding quantum systems potentially produces Hamiltonian descriptions of
the A2 triangular graphene quantum dots [15,17] together with the A3 tetrahedral diamond
structures [32]. Furthermore, the developed discrete quantum models potentially serve as
a foundation for the description of quantum field lattice models [32], ultracold atoms in
optical lattices [33], dynamics of particles in potential traps with interactions [34], quantum
gates [13], discrete space-time models [35] and quantum waveguides [36].

This paper is organised as follows. In Section 2, the prerequisite facts concerning
the root systems, affine Weyl groups, χ-function and Weyl orbit functions are outlined.
Section 3 is dedicated to the description of the dual-weight hopping function and hopping
operators, discrete Hamiltonians and time evolution of the proposed quantum systems.
In Section 4, examples of the dual-weight models with the implemented nearest and next-
to-nearest coupling are presented for the root systems C2 and G2. Comments and follow-up
questions are included in the last section.
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2. Dual-Weight Fourier–Weyl Transforms
2.1. Weyl Groups and Invariant Shifted Lattices

The mathematical exposition and notations of this article are established in papers [19–22].
Each simple Lie algebra from the classical four series An (n ≥ 1), Bn (n ≥ 3), Cn (n ≥ 2)
and Dn (n ≥ 4) and from the five exceptional cases E6, E7, E8, F4, G2 determines the set
∆ = {α1, . . . , αn} of the simple roots [37,38]. For the simple Lie algebras Bn, Cn, F4 and G2,
the set ∆ is disjointly decomposed into the set ∆s of the short simple roots and the set ∆l of
the long simple roots,

∆ = ∆s ∪ ∆l . (1)

The vectors of the set ∆ span the Euclidean space Rn equipped with the standard
scalar product 〈·, ·〉. The simple roots αi, i ∈ {1, . . . , n}, rescaled by the length factor
2/〈αi, αi〉, produce the set ∆∨ of dual simple roots α∨i . The dual basis for the basis of simple
roots ∆ is formed by dual fundamental weights ω∨i , which are given by

〈
ω∨i , αj

〉
= δij,

i, j ∈ {1, . . . , n}, and the dual basis corresponding to the basis of the dual simple roots ∆∨

consists of fundamental weights ωi satisfying 〈ωi, α∨j 〉 = δij.
The reflection ri, associated to each simple root αi ∈ ∆, is specified by the following

standard formula,
ria = a−

〈
a, α∨i

〉
αi, a ∈ Rn.

The reflections ri, i ∈ {1, . . . , n} generate the finite Weyl group W. The action of the
Weyl group W on the set of simple roots ∆ produces the entire root system Π = W∆ which
contains a unique highest root ξ ∈ Π of the following form,

ξ = m1α1 + · · ·+ mnαn.

The set of dual simple roots ∆∨ induces via the Weyl group action the entire dual root
system Π∨ = W∆∨ that includes the highest dual root of the following form,

η = m∨1 α∨1 + · · ·+ m∨n α∨n .

The marks of the highest root m1, . . . , mn and the dual marks of the highest dual root
m∨1 , . . . , m∨n are summarised in Table 1 in [20].

The opposite involution w0 ∈W that is uniquely associated to each set of simple roots
∆ attains for the types A1, Bn(n ≥ 3), Cn(n ≥ 2), D2k(k ≥ 2), E7, E8, F4, G2 the form of
the negative identity, w0 = −1. The opposite involutions of the remaining cases [37] are
obtained, by expressing any vector a ∈ Rn in the ω∨-basis:

a = a1ω∨1 + · · ·+ anω∨n = (a1, . . . , an),

as follows,

An(n ≥ 2) : w0(a1, a2, . . . , an) = −(an, an−1, . . . , a1) ,

D2k+1(k ≥ 2) : w0(a1, a2, . . . , a2k−1, a2k, a2k+1) = −(a1, a2, . . . , a2k−1, a2k+1, a2k) , (2)

E6 : w0(a1, a2, a3, a4, a5, a6) = −(a5, a4, a3, a2, a1, a6) .

Any homomorphism σ : W → U2 from the Weyl group W to the multiplicative group
U2 = {±1} is called a sign homomorphism [19]. The identity 1 and the determinant σe

sign homomorphisms are, for any Weyl group W, defined on the generating reflections
ri as follows,

1(ri) = −σe(ri) = 1.
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For the sets ∆ with two root-lengths (1), the short σs and long σl sign homomorphisms
are determined on the generating reflections ri as follows,

σs(ri) = −σl(ri) =

{
−1, αi ∈ ∆s,
1, αi ∈ ∆l .

Four classical Weyl group invariant lattices [37] comprise the root lattice Q, the dual
weight lattice P∨, the dual root lattice Q∨ and the weight lattice P. These lattices are defined
as the Z-spans of the following basis vectors of Rn,

Q =Zα1 + · · ·+Zαn,

P∨=Zω∨1 + · · ·+Zω∨n ,

Q∨=Zα∨1 + · · ·+Zα∨n ,

P =Zω1 + · · ·+Zωn.

The dual weight lattice P∨ is Z-dual to the root lattice Q, and the weight lattice is
Z-dual to the dual root lattice Q∨. The orders of the quotient groups P/Q and P∨/Q∨

equal the determinant c of the Cartan matrix Cij =
〈

αi, α∨j

〉
,

c = det C = |P/Q| =
∣∣P∨/Q∨

∣∣.
The cone of the positive dual weights P∨+ that comprises all points from the dual

weight lattice P∨ in the fundamental Weyl chamber, is explicitly given as the following [37],

P∨+ = Z≥0ω∨1 + · · ·+Z≥0ω∨n .

Since the fundamental Weyl chamber contains precisely one point of each W-orbit, the
action of the Weyl group W on the cone P∨+ produces the entire lattice P∨ as follows,

WP∨+ = P∨. (3)

A vector $ ∈ Rn, for which the Weyl group invariance condition holds as follows:

W($ + P) = $ + P, (4)

constitutes an admissible shift of the weight lattice [18]. Similarly, a vector $∨ ∈ Rn,
such that the following is the case:

W($∨ + P∨) = $∨ + P∨, (5)

represents an admissible shift of the dual weight lattice [18]. The equivalent admissible
shifts induce identical shifted weight and dual weight lattices, respectively. The admissible
shifts of the weight and dual weight lattices are listed up to equivalence in Table I of [18].

2.2. Signed Fundamental Domains

The affine Weyl group is the following semidirect product of the translation group Q∨

and the Weyl group W,
Waff = Q∨ oW. (6)

For any translation by the vector q∨ ∈ Q∨ and any w ∈ W, the affine Weyl group
element z = T(q∨)w ∈Waff acts canonically on Rn as follows,

z · a = wa + q∨, a ∈ Rn.
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The fundamental domain F ⊂ Rn of Waff, which contains exactly one point from each
Waff-orbit, forms a simplex explicitly described by the following,

F =
{

a1ω∨1 + · · ·+ anω∨n | a0 + m1a1 + · · ·+ mnan = 1, ai ≥ 0, i = 0, . . . , n
}

.

The stabiliser StabWaff(a) is the subgroup of Waff that comprises the elements stabilis-
ing a ∈ Rn and the associated discrete ε-function ε : Rn → N is defined by the following,

ε(a) =
|W|

|StabWaff(a)| . (7)

The algorithm for the calculation of the coefficients ε(a) is detailed in ([20], §3.7).
The retraction homomorphism ψ : Waff → W and the mapping τ : Waff → Q∨ are

determined for any element z = T(q∨)w ∈Waff by the following relations,

ψ(z) = w, τ(z) = q∨. (8)

The mapping τ induces, for any admissible shift $ of the weight lattice P, the dual
shift homomorphism θ$ : Waff → U2 given in [18] as follows,

θ$(z) = e2πi〈τ(z), $〉. (9)

The dual shift homomorphism θ$, restricted to the Weyl group W, evaluates as
the following,

θ$(w) = 1, w ∈W. (10)

For any sign homomorphism σ and any admissible shift $ of the weight lattice P, the
homomorphism γσ

$ : Waff → U2 is built from the retraction and dual shift homomorphisms
as the following product,

γσ
$ (z) = θ$(z) [σ ◦ ψ(z)]. (11)

The values of γσ
$ on the generators of Waff are listed in Table II in [18].

Since F is a fundamental domain of Waff, for any a ∈ Rn there exist exactly one point
a′ ∈ F and z[a] ∈Waff satisfying the following,

a = z[a] · a′. (12)

Employing relation (12), the function χσ
$ : Rn → {−1, 0, 1} is introduced in [1] for any

a ∈ Rn by the following,

χσ
$ (a) =

{
γσ

$ (z[a]), γσ
$ (StabWaff(a)) = 1,

0, γσ
$ (StabWaff(a)) = U2.

(13)

To each sign homomorphism σ and admissible shift $ of the weight lattice corresponds
a signed fundamental domain Fσ($) ⊂ F given by the following,

Fσ($) =
{

a ∈ F | χσ
$ (a) = 1

}
. (14)

In particular, it holds that F1(0) = F and Fσe
(0) = int(F). Two subsets Hσ($), Bσ($) ⊂

∂F of the boundary ∂F are described by the following,

Hσ($) =
{

a ∈ ∂F
∣∣ χσ

$ (a) = 0
}

, (15)

Bσ($) =
{

a ∈ ∂F
∣∣ χσ

$ (a) = 1
}

. (16)
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The following σ, $-dependent disjoint decompositions of the fundamental domain F
and its boundary ∂F are obtained by specialising Proposition 2.7 from [18],

F = Fσ($) ∪ Hσ($), (17)

∂F = Bσ($) ∪ Hσ($). (18)

2.3. Signed Dual Fundamental Domains

The dual affine Weyl group is the following semidirect product of the translation
group Q and the Weyl group W,

Ŵaff = Q oW. (19)

For any translation by the vector q ∈ Q and any w ∈ W, the dual affine Weyl group
element y = T(q)w ∈ Ŵaff acts canonically on Rn as follows,

y · b = wb + q, b ∈ Rn. (20)

The dual fundamental domain F∨ ⊂ Rn of the dual affine Weyl group Ŵaff is a simplex
explicitly described below,

F∨ =
{

b1ω1 + · · ·+ bnωn | b0 + b1m∨1 + · · ·+ bnm∨n = 1, bi ≥ 0, i = 0, . . . , n
}

. (21)

The stabiliser StabŴaff(b) is the subgroup of Ŵaff that consists of elements stabilising
b ∈ Rn and the associated discrete function h∨M : Rn → N is for any magnifying factor
M ∈ N provided by the following,

h∨M(b) =
∣∣∣StabŴaff

(
b
M

)∣∣∣. (22)

The algorithm for the calculation of the discrete function h∨M is described in ([20], §3.7).
The dual retraction homomorphism ψ̂ : Ŵaff → W and the mapping τ̂ : Ŵaff → Q are

determined for any element y = T(q)w ∈ Ŵaff as follows,

ψ̂(y) = w, τ̂(y) = q. (23)

The mapping τ̂ induces, for any admissible shift $∨ of the dual weight lattice P∨, the
shift homomorphism θ̂$∨ : Ŵaff → U2 given in [18] as follows,

θ̂$∨(y) = e2πi〈τ̂(y), $∨〉. (24)

For any sign homomorphism σ and any admissible shift $∨ of the dual weight lattice
P∨, the homomorphism γ̂σ

$∨ : Ŵaff → U2 is constructed from the dual retraction and shift
homomorphisms as the following product,

γ̂σ
$∨(y) = θ̂$∨(y)

[
σ ◦ ψ̂(y)

]
. (25)

The values of γ̂σ
$∨ on the generators of Ŵaff are listed in Table II from [18]. The

associated signed dual fundamental domains Fσ∨($∨) ⊂ F∨ are of the following form,

Fσ∨($∨) =
{

b ∈ F∨ | γ̂σ
$∨(StabŴaff(b)) = 1

}
. (26)

2.4. Dual-Weight Discretization of Weyl Orbit Functions

The kernels of the developed discrete transforms are formed by the Weyl orbit func-
tions ϕσ

b : Rn → C [27,28,39] that are induced from the sign homomorphisms σ as
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(anti)symmetrised multivariate exponential functions and given for argument a ∈ Rn

and label b ∈ Rn by the following expression,

ϕσ
b (a) = ∑

w∈W
σ(w) e2πi〈wb, a〉. (27)

For the identity sign homomorphism σ = 1, restricting the summation in relation (27)
to the Weyl group label orbit yields the C-functions [28],

Cb(a) = ∑
µ∈Wb

e2πi〈µ, a〉. (28)

The correspondence of the C-functions with the symmetric Weyl orbit functions ϕ1 is
expressed by the following renormalisation,

ϕ1
b = |StabW(b)|Cb. (29)

The fundamental properties of the Weyl orbit functions comprise the duality, hermitic-
ity and scaling symmetry given by the following,

ϕσ
b (a) = ϕσ

a (b), (30)

ϕσ
b (−a) = ϕσ∗

b (a), (31)

ϕσ
b (ka) = ϕσ

kb(a), k ∈ R, (32)

where ∗ denotes the complex conjugation. Product-to-sum decomposition formulas of any
function ϕσ

b and the symmetric function ϕ1
b are of the following form,

ϕσ
b (a)ϕ1

b (a′) = ∑
w∈W

ϕσ
b (a + wa′). (33)

The Weyl orbit functions ϕσ
λ with discretized labels λ ∈ $ + P gain additional symme-

try with respect to the affine Weyl group Waff described for any a ∈ Rn and z ∈ Waff by
the following,

ϕσ
λ(z · a) = γσ

$ (z) ϕσ
λ(a). (34)

Symmetry relation (34) implies that the functions ϕσ
λ take zero values on the boundary

Hσ($),
ϕσ

λ(a′) = 0, a′ ∈ Hσ($). (35)

The χσ
$ -function allows the reformulation of the properties (34) and (35) for any a′ ∈ F

and a ∈Waffa′ as follows,
ϕσ

λ(a) = χσ
$ (a)ϕσ

λ(a′). (36)

For any sign homomorphism σ ∈ {1, σe, σs, σl} and admissible shifts $ and $∨ of the
weight and dual weight lattices, the finite sets of points Fσ

P∨ ,M($, $∨) contain the points
from the shifted and rescaled dual weight lattice that belong to the signed fundamental
domain Fσ($),

Fσ
P∨ ,M($, $∨) = 1

M ($∨ + P∨) ∩ Fσ($). (37)

The finite sets of labels Λσ
Q,M($, $∨) of orbit functions consist of the labels from the

shifted weight lattice that belong to the magnified signed dual fundamental domain
MFσ∨($∨),

Λσ
Q,M($, $∨) = ($ + P) ∩MFσ∨($∨). (38)

The cardinalities of the point and label sets coincide ([18], Thm. 3.4),∣∣∣Λσ
Q,M($, $∨)

∣∣∣ = ∣∣∣Fσ
P∨ ,M($, $∨)

∣∣∣.
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Note that the notation of the finite sets of points and labels from [18] has been modified
to reflect the notation introduced in [21].

Discrete orthogonality relations of the Weyl orbit functions restricted to the finite point
sets Fσ

P∨ ,M($, $∨) are for any labels λ, λ′ ∈ Λσ
Q,M($, $∨) derived in ([18], Thm. 4) as follows,

∑
a∈Fσ

P∨ ,M
($,$∨)

ε(a) ϕσ
λ(a)ϕσ∗

λ′ (a) = c|W|Mnh∨M(λ) δλ,λ′ . (39)

The corresponding Plancherel formulas [18] yield the following complementary or-
thogonality relations for any points a, a′ ∈ Fσ

P∨ ,M($, $∨),

∑
λ∈Λσ

Q,M($,$∨)

(
h∨M(λ)

)−1
ϕσ

λ(a)ϕσ∗
λ (a′) = c|W|Mnε−1(a) δa,a′ . (40)

For any fixed ordering of the label and point sets Λσ
Q,M($, $∨) and Fσ

P∨ ,M($, $∨), the
unitary transform matrices Iσ

P∨ ,M($, $∨) of the generalised discrete dual-weight lattice
Fourier–Weyl transforms are determined from the discrete orthogonality relations (39) by
their entries for λ ∈ Λσ

Q,M($, ν∨) and a ∈ Fσ
Q∨ ,M($, ν∨) as follows,

Iσ
P∨ ,M($, $∨)λa =

√
ε(a)

c|W|Mnh∨M(λ)
ϕσ∗

λ (a). (41)

3. Dual Weight Lattice Models
3.1. Dual-Weight Dots

The dual-weight hopping function is realised by a fixed complex-valued function
P∨ : P∨ → C that is defined on the points from the dual weight lattice P∨ and required to
have a finite support as follows,

supp(P∨) ⊂ P∨, (42)∣∣supp(P∨)
∣∣ < +∞. (43)

Crucially, the admissible dual-weight hopping function P∨ is constrained to be W-
invariant and Hermitian. Thus, for any p∨ ∈ P∨ and w ∈W, the following holds,

P∨(wp∨) = P∨(p∨), (44)

P∨(−p∨) = P∨∗(p∨). (45)

The following symmetries of the finite support of P∨ are directly deduced from the
properties (44) and (45),

W supp(P∨) = supp(P∨), (46)

− supp(P∨) = supp(P∨). (47)

The dominant support supp+(P∨) of the dual-weight hopping function P∨ contains
the dual weight lattice elements from the support supp(P∨), which belong to the cone of
the positive dual weights P∨+,

supp+(P∨) = supp(P∨) ∩ P∨+.

The action of the Weyl group W on the cone of positive weights (3) guarantees that the
action on the dominant support of P∨ generates the entire support supp(P∨) as follows,

W supp+(P∨) = supp(P∨). (48)
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The W-invariance condition (44), together with support conditions (42) and (43),
implies that the hopping function P∨ suffices to define on a finite number of points from
the dominant support p∨ ∈ supp+(P∨) for which the coordinates in ω∨-basis are non-
negative integers,

p∨ = (a1, . . . , an), a1, . . . , an ∈ Z≥0.

Since the opposite involution equals negative identity w0 = −1 ∈W for the cases A1,
Bn(n ≥ 3), Cn(n ≥ 2), D2k(k ≥ 2), E7, E8, F4 and G2, the Hermiticity condition (45) and
W-invariance symmetry (44) guarantee realness of the dual-weight hopping function for
these root systems,

P∨(a1, . . . , an) ∈ R.

For the remaining cases, explicit formulas for the opposite involutions (2) imply that
the dual-weight hopping function P∨ is determined by prescribing finitely many complex
values P∨(a1, . . . , an) ∈ C that satisfy the admissibility conditions given by the following,

An(n ≥ 2) : P∨(a1, a2, . . . , an) = P∨∗(an, an−1, . . . , a1) ,

D2k+1(k ≥ 2) : P∨(a1, a2, . . . , a2k−1, a2k, a2k+1) = P∨∗(a1, a2, . . . , a2k−1, a2k+1, a2k) , (49)

E6 : P∨(a1, a2, a3, a4, a5, a6) = P∨∗(a5, a4, a3, a2, a1, a6) .

Possible positions of a non-relativistic quantum particle are represented by the points
P∨l,M($∨) of the shifted dual weight lattice that is scaled by a length factor l ∈ R together
with the scaling factor M ∈ N,

P∨l,M($∨) = l
M ($∨ + P∨).

The particle jumps from the position at point x ∈ P∨l,M($∨) to the position x′ ∈ P∨l,M($∨)

with an amplitude IM(x, x′) ∈ C per unit time. Assuming that a fixed admissible dual-
weight hopping function P∨ is given, any amplitude IM(x, x′) is determined by the
following relation,

IM(x, x′) = i
h̄P
∨
(

M
l (x′ − x)

)
.

By placing mirrors and barriers on the boundaries of the scaled fundamental domain
lF, the positions of the quantum particle are further restricted to the dual-weight dot
Dσ

P∨ ,l,M($, $∨) given as follows,

Dσ
P∨ ,l,M($, $∨) = l Fσ

P∨ ,M($, $∨).

The boundaries lBσ($) of lF in the boundary decomposition (18) represent perfect mir-
rors (Neumann walls) and the boundaries lHσ($) represent ideal barriers (Dirichlet walls).

3.2. Schrödinger Equations

Any ordered set of points Fσ
P∨ ,M($, $∨) induces the orthonormal position basis |a〉,

a ∈ Fσ
P∨ ,M($, $∨) of the finite-dimensional complex Hilbert spaceHσ

P∨ ,M($, $∨). The state
determined by the vector from the position basis |a〉 ∈ Hσ

P∨ ,M($, $∨), a ∈ Fσ
P∨ ,M($, $∨)

represents the quantum particle positioned at la ∈ Dσ
P∨ ,l,M($, $∨). The counting formulas

for the dimensions of the Hilbert spacesHσ
P∨ ,M($, $∨) are as follows:

dimHσ
P∨ ,M($, $∨) =

∣∣∣Fσ
P∨ ,M($, $∨)

∣∣∣ = ∣∣∣Λσ
Q,M($, $∨)

∣∣∣, (50)

which are for the trivial shifts $ = $∨ = 0 listed in ([20], Thm 3.3) and ([19], Thm. 5.2). The
cases with non-trival admissible shifts are detailed in ([18], Thm 3.3).
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Each dual weight from the dominant support of the admissible hopping function
p∨ ∈ supp+(P∨) induces, for any two points a, a′ ∈ Fσ

P∨ ,M($, $∨), the corresponding
dual-weight coupling set Np∨ ,M(a, a′) as follows,

Np∨ ,M(a, a′) = Waffa′ ∩
(

a +
1
M

W p∨
)

. (51)

The dual-weight hopping operator Âσ
p∨ ,M($, $∨) : Hσ

P∨ ,M($, $∨) → Hσ
P∨ ,M($, $∨),

which incorporates interactions of the particle with the boundary walls via the χ-function
summing over coupling sets Np∨ ,M(a, a′), is determined by its matrix elements in the
position basis as the following,〈

a
∣∣ Âσ

p∨ ,M($, $∨)
∣∣ a′
〉
= −ε

1
2 (a)ε−

1
2 (a′)P∨

(
p∨
)

∑
d∈Np∨ ,M(a,a′)

χσ
$ (d). (52)

The value of the hopping function at the origin P∨(0) = −E0 6= 0 yields directly from
definition (52) the diagonal operator Âσ

0,M($, $∨) as follows,〈
a
∣∣ Âσ

0,M($, $∨)
∣∣ a′
〉
= E0 δa,a′ . (53)

Hermiticity condition (45) enforces that E0 is real-valued and represents the on-site
energy of the particle at an arbitrary position of the dot Dσ

P∨ ,l,M($, $∨).
The Hamiltonian

Ĥσ
P∨ ,M($, $∨) : Hσ

P∨ ,M($, $∨)→ Hσ
P∨ ,M($, $∨)

of the quantum particle propagating on the dual-weight dot Dσ
P∨ ,l,M($, $∨) is established

as the sum of all dual-weight hopping operators,

Ĥσ
P∨ ,M($, $∨) = ∑

p∨∈ supp+(P∨)
Âσ

p∨ ,M($, $∨). (54)

Representing time as the real-valued parameter t ∈ R, the time evolution of the
state vectors |ψ(t)〉 ∈ Hσ

P∨ ,M($, $∨) of the particle on the dual-weight dot Dσ
P∨ ,l,M($, $∨) is

governed by the following standard Schrödinger equation,

ih̄
d
dt
|ψ(t)〉 = Ĥσ

P∨ ,M($, $∨)|ψ(t)〉. (55)

3.3. Time Evolution

The orthonormal momentum bases |λ〉 ∈ Hσ
P∨ ,M($, $∨), corresponding to the ordered

label sets λ ∈ Λσ
Q,M($, $∨), are given by the following relations:

|λ〉 = ∑
a∈Fσ

P∨ ,M
($,$∨)

|a〉〈a|λ〉, (56)

with the scalar products 〈a|λ〉 defined by the inverse of the unitary matrix Iσ
P∨ ,M($, $∨) of

the generalised discrete dual-weight lattice Fourier–Weyl transform (41) as follows,

〈a|λ〉 =
√

ε(a)
c|W|Mnh∨M(λ)

ϕσ
λ(a). (57)
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In the following theorem, the vectors of the orthonormal momentum basis |λ〉 ∈
Hσ

P∨ ,M($, $∨), λ ∈ Λσ
Q,M($, $∨) are demonstrated to solve the time-independent

Schrödinger equation,

Ĥσ
P∨ ,M($, $∨)|λ〉 = Eσ

P∨ ,λ,M($, $∨) |λ〉. (58)

Theorem 1. The vectors (56) of the orthonormal basis |λ〉 ∈ Hσ
P∨ ,M($, $∨), λ ∈ Λσ

Q,M($, $∨) sat-
isfy the time-independent Schrödinger Equation (58). The corresponding eigenenergies Eσ

P∨ ,λ,M($, $∨)

are real-valued and determined for any admissible dual-weight hopping function P∨ by summation of
the C-functions (28) over the dominant support,

Eσ
P∨ ,λ,M($, $∨) = − ∑

p∨∈ supp+(P∨)
P∨(p∨)Cp∨

(
λ
M

)
. (59)

Proof. Equivalent reformulation of the time-independent Schrödinger Equation (58) via
coordinates in the position basis yields for any a ∈ Fσ

P∨ ,M($, $∨) the following condition,

∑
a′∈Fσ

P∨ ,M
($,$∨)

〈
a
∣∣ Ĥσ

P∨ ,M($, $∨)
∣∣ a′
〉〈

a′
∣∣ λ
〉
= Eσ

P∨ ,λ,M($, $∨)
〈

a
∣∣ λ
〉
. (60)

By utilising the hopping function W-invariance (44) together with the W-orbit decom-
position (48) of its support supp(P∨), the matrix elements of the Hamiltonian Ĥσ

P∨ ,M($, $∨)

are, for any a, a′ ∈ Fσ
P∨ ,M($, $∨), calculated from each hopping operator elements (52) and

summation (54) as follows,〈
a
∣∣ Ĥσ

P∨ ,M($, $∨)
∣∣ a′
〉
= −ε

1
2 (a)ε−

1
2 (a′) ∑

d∈Waffa′∩(a+ 1
M supp(P∨))

P∨(M(d− a))χσ
$ (d). (61)

The scalar products 〈a|λ〉 that are for λ ∈ Λσ
Q,M($, $∨) and a ∈ Fσ

P∨ ,M($, $∨) defined
by relation (57), together with the matrix elements of the Hamiltonian (61), are substi-
tuted into the time-independent Schrödinger Equation (60) and produce the following
equivalent relation,

∑
a′∈Fσ

P∨ ,M($,$∨)
∑

d∈Waffa′∩(a+ 1
M supp(P∨))

P∨(M(d− a))χσ
$ (d)ϕσ

λ(a′) = −Eσ
P∨ ,λ,M($, $∨) ϕσ

λ(a). (62)

Vanishing property of the orbit functions (35) and decomposition of the fundamental
domain (17) provide extension of the summation in relation (62) to the following points:

a′ ∈ 1
M ($∨ + P∨) ∩ F

and argument symmetry relation (36) guarantees the following simplification,

∑
a′∈ 1

M ($∨+P∨)∩F

∑
d∈Waffa′∩(a+ 1

M supp(P∨))
P∨(M(d− a))ϕσ

λ(d) = −Eσ
P∨ ,λ,M($, $∨) ϕσ

λ(a). (63)

Since the point set 1
M ($∨ + P∨) ∩ F contains exactly one point from each Waff-orbit of

the refined shifted dual weight lattice 1
M ($∨ + P∨), the double summation in (63) actually

represents the summation over the following set:

1
M ($∨ + P∨) ∩

(
a + 1

M supp(P∨)
)
= a + 1

M supp(P∨)
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and the reformulated time-independent Schrödinger equation (63) is further facilitated
as follows,

∑
d∈a+ 1

M supp(P∨)
P∨(M(d− a))ϕσ

λ(d) = −Eσ
P∨ ,λ,M($, $∨) ϕσ

λ(a). (64)

Focusing on the reformulation of the eigenenergies (59), duality formula (30), the
scaling symmetry (32) and renormalisation property (29) of the symmetric orbit functions
yield the following,

Eσ
P∨ ,λ,M($, $∨) = − ∑

p∨∈ supp+(P∨)
P∨(p∨)

∣∣StabW(p∨)
∣∣−1

ϕ1
λ

(
p∨
M

)
. (65)

The W-invariance of each term P∨(p∨)ϕ1
λ

(
p∨
M

)
, which is deduced from relations (10),

(34) and (44), enables retracting the summation over W-orbits in eigenenergy expression (65)
and permits using orbit-stabiliser theorem the following equivalent form,

Eσ
P∨ ,λ,M($, $∨) = − 1

|W| ∑
p∨∈ supp(P∨)

P∨(p∨)ϕ1
λ

(
p∨
M

)
. (66)

Consequently, the product-to-sum decomposition of the orbit functions (33) provides
the following simplification,

−Eσ
P∨ ,λ,M($, $∨) ϕσ

λ(a) = 1
|W| ∑

p∨∈ supp(P∨)
P∨(p∨)ϕ1

λ

(
p∨
M

)
ϕσ

λ(a)

= 1
|W| ∑

p∨∈ supp(P∨)
∑

w∈W
P∨(p∨)ϕσ

λ

(
a + w p∨

M

)
. (67)

The W-invariance requirement (44) of the dual-weight hopping function P∨, together
with the W-invariance (46) of the support supp(P∨), further simplifies (67) as follows,

1
|W| ∑

p∨∈ supp(P∨)
∑

w∈W
P∨(p∨)ϕσ

λ

(
a + w p∨

M

)
= ∑

p∨∈ supp(P∨)
P∨(p∨)ϕσ

λ

(
a + p∨

M

)
= ∑

d∈a+ 1
M supp(P∨)

P∨(M(d− a))ϕσ
λ(d). (68)

Substituting the resulting expression (68) into the reformulation of the time-independent
Schrödinger Equation (64) proves its original version (58).

The Hermiticity conditions (31), (45) and (47) of both orbit functions ϕσ
λ and hopping

function P∨ guarantee from relation (66) the following calculation:

−|W|Eσ∗
P∨ ,λ,M($, $∨) = ∑

p∨∈ supp(P∨)
P∨∗(p∨)ϕ1∗

λ

(
p∨
M

)
= ∑

p∨∈ supp(P∨)
P∨(−p∨)ϕ1

λ

(
− p∨

M

)
=− |W|Eσ

P∨ ,λ,M($, $∨),

which demonstrates that the eigenenergies Eσ
P∨ ,λ,M($, $∨), λ ∈ Λσ

Q,M($, $∨) are indeed
real-valued.

For any initial state determined by the normalised vector |ψ(0)〉 ∈ Hσ
P∨ ,M($, $∨):

〈ψ(0)|ψ(0)〉 = 1, (69)
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the normalised time-evolved state vector |ψ(t)〉 ∈ Hσ
P∨ ,M($, $∨) is provided by the combi-

nation of the stationary states:

exp
(
− it

h̄ Eσ
P∨ ,λ,M($, $∨)

)
|λ〉 (70)

as follows,
|ψ(t)〉 = ∑

λ∈Λσ
Q,M($,$∨)

exp
(
− it

h̄ Eσ
P∨ ,λ,M($, $∨)

)
|λ〉〈λ|ψ(0)〉. (71)

The coordinates 〈λ|ψ(0)〉 are calculated from the position coordinates 〈a|ψ(0)〉 via the
generalised dual-weight lattice Fourier–Weyl transform (41),

〈λ|ψ(0)〉 = ∑
a∈Fσ

P∨ ,M
($,$∨)

Iσ
P∨ ,M($, $∨)λa〈a|ψ(0)〉.

The probability Pσ,$,$∨

P∨ ,M (a, t) of finding the particle in the time-evolved state (71) at
position la ∈ Dσ

P∨ ,l,M($, $∨) is determined as follows,

Pσ,$,$∨

P∨ ,M (a, t) = |〈a|ψ(t)〉|2. (72)

Summing all time-dependent probabilities over the entire dual-weight dot Dσ
P∨ ,l,M($, $∨),

while taking into account the normalisation condition of the initial state vector (69), substan-
tiates the trapping of the quantum particle,

∑
a∈Fσ

P∨ ,M($,$∨)
Pσ,$,$∨

P∨ ,M (a, t) = ∑
a∈Fσ

P∨ ,M($,$∨)
λ′ ,λ∈Λσ

Q,M($,$∨)

e−
it
h̄

(
Eσ

P∨ ,λ,M($,$∨)−Eσ
P∨ ,λ′ ,M($,$∨)

)

× 〈λ′|a〉〈a|λ〉〈ψ(0)|λ′〉〈λ|ψ(0)〉 = ∑
λ∈Λσ

Q,M($,$∨)
〈ψ(0)|λ〉〈λ|ψ(0)〉 = 1. (73)

The time-independent probability Pσ,$,$∨

P∨ ,M [λ](a) of finding the particle in the stationary
state (70) at position la ∈ Dσ

P∨ ,l,M($, $∨) is provided directly by the amplitude (57),

Pσ,$,$∨

P∨ ,M [λ](a) = |〈a|λ〉|2 =
∣∣∣Iσ

P∨ ,M($, $∨)λa

∣∣∣2 =
ε(a)

c|W|Mnh∨M(λ)
|ϕσ

λ(a)|2. (74)

4. Dual Weight Lattice Models of C2 and G2

4.1. Case C2

The root system C2 admits, in addition to the trivial zero shifts, also the non-trivial
shift $ = ω2/2 of the weight lattice and the shift $∨ = ω∨1 /2 of the dual weight lattice [18].
Considering only the nearest and next-to-nearest neighbour coupling, the three non-zero
dual-weight hopping function P∨ values are specified by the zero energy level E0 and two
non-zero parameters A, B ∈ R, as follows,

P∨(0) = −E0,

P∨
(
ω∨2
)
= A,

P∨
(
ω∨1
)
= B.

(75)

The energy functions E1, E2 : F∨ → R, which characterise the total eigenenergies of
the quantum particle, are given for b ∈ F∨ by the following relations,

E1(b) = −ACω∨2
(b), (76)

E2(b) = −BCω∨1
(b). (77)
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The 3D plots of energy functions E1 and E2 for the C2 case are depicted in Figure 1.

E1

0

ω1

ω2
2

E2

0

ω1

ω2
2

Figure 1. The 3D plots of the energy functions E1 (left panel) and E2 (right panel) of C2. The grey
triangle, which is placed at the zero energy level, represents the dual fundamental domain F∨.

The total eigenenergies of the quantum particle propagating on the dots Dσ
P∨ ,l,M($, $∨)

are determined for λ ∈ Λσ
Q,M($, $∨) from relation (59) by the energy functions as follows,

Eσ
P∨ ,λ,M

(
$, $∨

)
= E0 + E1

(
λ
M

)
+ E2

(
λ
M

)
. (78)

Dots Dσ
P∨ ,l,M

(
0, 1

2 ω∨1

)
For the fixed scaling factor M = 5, the trivial admissible shift of the weight lattice

$ = 0 and the admissible shift of the dual weight lattice $∨ = ω∨1 /2, the point sets are
determined in ω∨-basis as follows:

F1
P∨ ,5

(
0, 1

2 ω∨1

)
=
{(

1
10 , 4

5

)
,
( 3

10 , 2
5
)
,
(

1
2 , 0
)

,
(

1
10 , 3

5

)
,
(

3
10 , 1

5

)
,
(

1
10 , 2

5

)
,( 3

10 , 0
)
,
(

1
10 , 1

5

)
,
(

1
10 , 0

)}
, (79)

Fσe

P∨ ,5

(
0, 1

2 ω∨1

)
=
{(

1
10 , 3

5

)
,
(

3
10 , 1

5

)
,
(

1
10 , 2

5

)
,
(

1
10 , 1

5

)}
, (80)

Fσs

P∨ ,5

(
0, 1

2 ω∨1

)
=
{(

1
10 , 4

5

)
,
( 3

10 , 2
5
)
,
(

1
2 , 0
)

,
(

1
10 , 3

5

)
,
(

3
10 , 1

5

)
,
(

1
10 , 2

5

)
,( 3

10 , 0
)
,
(

1
10 , 1

5

)
,
(

1
10 , 0

)}
, (81)

Fσl

P∨ ,5

(
0, 1

2 ω∨1

)
=
{(

1
10 , 3

5

)
,
(

3
10 , 1

5

)
,
(

1
10 , 2

5

)
,
(

1
10 , 1

5

)}
(82)

and the corresponding label sets are given in ω-basis by the relations

Λ1
Q,5

(
0, 1

2 ω∨1

)
= {(0, 2), (2, 1), (4, 0), (1, 1), (3, 0), (0, 1), (2, 0), (1, 0), (0, 0)}, (83)

Λσe

Q,5

(
0, 1

2 ω∨1

)
= {(1, 2), (3, 1), (2, 1), (1, 1)}, (84)

Λσs

Q,5

(
0, 1

2 ω∨1

)
= {(1, 2), (3, 1), (5, 0), (2, 1), (4, 0), (1, 1), (3, 0), (2, 0), (1, 0)}, (85)

Λσl

Q,5

(
0, 1

2 ω∨1

)
= {(0, 2), (2, 1), (1, 1), (0, 1)}. (86)

The determinant σe sign homomorphism dot Dσe

P∨ ,1,5

(
0, 1

2 ω∨1

)
is depicted in Figure 2.
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ω∨1

ω1

ω∨2 = ω2

α∨1

α∨2

Figure 2. The dot Dσe

P∨ ,1,5

(
0, 1

2 ω∨1

)
of C2. The light blue triangle represents the fundamental do-

main Fσe
(0). The boundary black dashed lines represent the Dirichlet walls Hσe

(0). The point set

Fσe

P∨ ,5

(
0, 1

2 ω∨1

)
, representing possible positions of the quantum particle, is formed by the dark dots.

The lines connecting the dots symbolise the nearest neighbour coupling characterised by the hopping

operator Âσe

ω∨2 ,5

(
0, 1

2 ω∨1

)
.

The matrices of the two dual-weight hopping operators (52) for the identity sign
homomorphism, which is calculated in the position basis |a〉 ordered as points from
list (79), are of the following form:

Â1
ω∨2 ,5

(
0, 1

2 ω∨1

)
= −A



2 0 0
√

2 0 0 0 0 0
0 0 0

√
2
√

2 0 0 0 0
0 0 0 0 2 0 0 0 0√
2
√

2 0 1 0 1 0 0 0
0
√

2 2 0 0 1
√

2 0 0
0 0 0 1 1 1 0 1 0
0 0 0 0

√
2 0 0

√
2 0

0 0 0 0 0 1
√

2 1
√

2
0 0 0 0 0 0 0

√
2 2


and

Â1
ω∨1 ,5

(
0, 1

2 ω∨1

)
= −B



1 1 0
√

2 0 0 0 0 0
1 0

√
2 0 0

√
2 0 0 0

0
√

2 0 0 0 0
√

2 0 0√
2 0 0 1 1 1 0 0 0

0 0 0 1 2 0 0 1 0
0
√

2 0 1 0 0
√

2 1 0
0 0

√
2 0 0

√
2 0 0 1

0 0 0 0 1 1 0 1
√

2
0 0 0 0 0 0 1

√
2 1


.

Calculated in the position basis |a〉 ordered as points from list (80), the matrices of
the two dual-weight hopping operators for the determinant sign homomorphism σe are
determined as follows:

Âσe

ω∨2 ,5

(
0, 1

2 ω∨1

)
= −A

(
−1 0 1 0
0 0 1 0
1 1 −1 1
0 0 1 −1

)

and

Âσe

ω∨1 ,5

(
0, 1

2 ω∨1

)
= −B

(
−1 1 −1 0
1 −2 0 1
−1 0 0 −1
0 1 −1 −1

)
.

Calculated in the position basis |a〉 ordered as points from list (81), the matrices of
the two dual-weight hopping operators for the short sign homomorphism σs are given
as follows:
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Âσs

ω∨2 ,5

(
0, 1

2 ω∨1

)
= −A



−2 0 0
√

2 0 0 0 0 0
0 0 0

√
2
√

2 0 0 0 0
0 0 0 0 2 0 0 0 0√
2
√

2 0 −1 0 1 0 0 0
0
√

2 2 0 0 1
√

2 0 0
0 0 0 1 1 −1 0 1 0
0 0 0 0

√
2 0 0

√
2 0

0 0 0 0 0 1
√

2 −1
√

2
0 0 0 0 0 0 0

√
2 −2


and

Âσs

ω∨1 ,5

(
0, 1

2 ω∨1

)
= −B



1 1 0 −
√

2 0 0 0 0 0
1 0

√
2 0 0

√
2 0 0 0

0
√

2 0 0 0 0
√

2 0 0
−
√

2 0 0 1 1 −1 0 0 0
0 0 0 1 2 0 0 1 0
0
√

2 0 −1 0 0
√

2 −1 0
0 0

√
2 0 0

√
2 0 0 1

0 0 0 0 1 −1 0 1 −
√

2
0 0 0 0 0 0 1 −

√
2 1


.

The matrices of the two dual-weight hopping operators for the long sign homomor-
phism σl , which are calculated in the position basis |a〉 ordered as points from list (82), are
of the following form:

Âσl

ω∨2 ,5

(
0, 1

2 ω∨1

)
= −A

( 1 0 1 0
0 0 1 0
1 1 1 1
0 0 1 1

)
and

Âσl

ω∨1 ,5

(
0, 1

2 ω∨1

)
= −B

(
−1 1 1 0
1 −2 0 1
1 0 0 1
0 1 1 −1

)
.

The four Hamiltonians of the quantum particle on the dual-weight dots Dσ
P∨ ,l,5

(
0, 1

2 ω∨1

)
are then given as follows,

Ĥ1
P∨ ,5

(
0, 1

2 ω∨1

)
= Â1

0,5

(
0, 1

2 ω∨1

)
+ Â1

ω∨2 ,5

(
0, 1

2 ω∨1

)
+ Â1

ω∨1 ,5

(
0, 1

2 ω∨1

)
,

Ĥσe

P∨ ,5

(
0, 1

2 ω∨1

)
= Âσe

0,5

(
0, 1

2 ω∨1

)
+ Âσe

ω∨2 ,5

(
0, 1

2 ω∨1

)
+ Âσe

ω∨1 ,5

(
0, 1

2 ω∨1

)
,

Ĥσs

P∨ ,5

(
0, 1

2 ω∨1

)
= Âσs

0,5

(
0, 1

2 ω∨1

)
+ Âσs

ω∨2 ,5

(
0, 1

2 ω∨1

)
+ Âσs

ω∨1 ,5

(
0, 1

2 ω∨1

)
,

Ĥσl

P∨ ,5

(
0, 1

2 ω∨1

)
= Âσl

0,5

(
0, 1

2 ω∨1

)
+ Âσl

ω∨2 ,5

(
0, 1

2 ω∨1

)
+ Âσl

ω∨1 ,5

(
0, 1

2 ω∨1

)
.

The set of (rounded) eigenenergies of the particle on the identity homomorphism
dot D1

Q∨ ,l,5

(
0, 1

2 ω∨1

)
is calculated from relation (78) in the ordering of the label set (83)

as follows:{
E1

P∨ ,λ,5

(
0, 1

2 ω∨1

)
| λ ∈ Λ1

Q,5

(
0, 1

2 ω∨1

)}
= E0{1, 1, 1, 1, 1, 1, 1, 1, 1}

+ A{−0.382, 1, 3.236,−1, 1.236,−2.618,−1.236,−3.236,−4}
+ B{3.236, 1,−2.618, 1,−0.382,−1.236,−0.382,−2.618,−4}

and on the determinant sign homomorphism dot Dσe

Q∨ ,l,5

(
0, 1

2 ω∨1

)
in the ordering of the

label set (84) as follows:{
Eσe

P∨ ,λ,5

(
0, 1

2 ω∨1

)
| λ ∈ Λσe

Q,5

(
0, 1

2 ω∨1

)}
=E0{1, 1, 1, 1}

+ A{0.382, 2.618, 1,−1}
+ B{3.236,−1.236, 1, 1}.

For the short homomorphism dot Dσs

Q∨ ,l,5

(
0, 1

2 ω∨1

)
, the set of rounded eigenenergies

of the quantum particle in the ordering of the label set (85) is calculated as follows:
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{
Eσs

P∨ ,λ,5

(
0, 1

2 ω∨1

)
| λ ∈ Λσs

Q,5

(
0, 1

2 ω∨1

)}
= E0{1, 1, 1, 1, 1, 1, 1, 1, 1}

+ A{0.382, 2.618, 4, 1, 3.236,−1, 1.236,−1.236,−3.236}
+ B{3.236,−1.236,−4, 1,−2.618, 1,−0.382,−0.382,−2.618}

and for the long homomorphism dot Dσl

Q∨ ,l,5

(
0, 1

2 ω∨1

)
in the ordering of the label set (86)

as the following:{
Eσl

P∨ ,λ,5

(
0, 1

2 ω∨1

)
| λ ∈ Λσl

Q,5

(
0, 1

2 ω∨1

)}
= E0{1, 1, 1, 1}

+ A{−0.382, 1,−1,−2.618}
+ B{3.236, 1, 1,−1.236}.

The probabilities P
σ,0, 1

2 ω∨1
P∨ ,35 [λ] of finding the particle on the dots Dσ

P∨ ,1,35

(
0, 1

2 ω∨1

)
,

σ ∈ {1, σe, σs, σl} corresponding to several lower stationary states |λ〉 are depicted in
Figure 3.

4.2. Case G2

The root system G2 admits only the trivial shifts for both weight and dual weight
lattices [18]. Considering only the nearest and next-to-nearest neighbour coupling, the
three non-zero values of the dual-weight hopping function P∨ are determined by the zero
energy level E0 and two non-zero parameters A, B ∈ R as follows,

P∨(0) = −E0,

P∨(ω∨1 ) = A,

P∨(ω∨2 ) = B.

(87)

The energy functions E1, E2 : F∨ → R that characterise the total eigenenergies of the
quantum particle are specified for b ∈ F∨ by the following relations,

E1(b) = −ACω∨1
(b), (88)

E2(b) = −BCω∨2
(b). (89)

The 3D plots of the energy functions E1 and E2 are depicted in Figure 4.
Stemming from relation (59), the total eigenenergies are for λ ∈ Λσ

Q,M(0, 0) determined
by the energy functions E1 and E2 as the following,

Eσ
P∨ ,λ,M(0, 0) = E0 + E1

(
λ
M

)
+ E2

(
λ
M

)
. (90)
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P
1,0, 1

2 ω∨1
P∨ ,35

[(1, 1)]

0

ω1

ω2

P
1,0, 1

2 ω∨1
P∨ ,35

[(1, 2)]

0

ω1

ω2

P
1,0, 1

2 ω∨1
P∨ ,35

[(1, 3)]

0

ω1

ω2

P
σe ,0, 1

2 ω∨1
P∨ ,35

[(1, 1)]

0

ω1

ω2

P
σe ,0, 1

2 ω∨1
P∨ ,35

[(1, 2)]

0

ω1

ω2

P
σe ,0, 1

2 ω∨1
P∨ ,35

[(1, 3)]

0

ω1

ω2

P
σs ,0, 1

2 ω∨1
P∨ ,35

[(1, 1)]

0

ω1

ω2

P
σs ,0, 1

2 ω∨1
P∨ ,35

[(1, 2)]

0

ω1

ω2

P
σs ,0, 1

2 ω∨1
P∨ ,35

[(1, 3)]

0

ω1

ω2

P
σl ,0, 1

2 ω∨1
P∨ ,35

[(1, 1)]

0

ω1

ω2

P
σl ,0, 1

2 ω∨1
P∨ ,35

[(1, 2)]

0

ω1

ω2

P
σl ,0, 1

2 ω∨1
P∨ ,35

[(1, 3)]

0

ω1

ω2

Figure 3. The probability plots for Dσ
Q∨ ,1,35

(
0, 1

2 ω∨1

)
of C2. The dots display the probabilities (74) of

finding the particle in the stationary states |(1, 1)〉, |(1, 2)〉 and |(1, 3)〉 over their respective positions

from Dσ
Q∨ ,1,35

(
0, 1

2 ω∨1

)
, σ ∈ {1, σe, σs, σl}. The red dots illustrate probabilities over the particle’s

positions on the Neumann walls.

E1

0
ω1
3

ω2
2

E2

0
ω1
3

ω2
2

Figure 4. The 3D plots of the energy functions E1 (left panel) and E2 (right panel) of G2. The grey
triangle, which is placed at the zero energy level, represents the dual fundamental domain F∨.
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Dots Dσ
P∨ ,l,M(0, 0)

The four point sets (37) are for the fixed scaling factor M = 10 expressed in ω∨-basis as
the following:

F1
P∨ ,10(0, 0) =

{(
1
5 , 1

5

)
,
(

1
2 , 0
)

,
(

0, 3
10

)
,
(

3
10 , 1

10

)
,
(

1
10 , 1

5

)
,
(

2
5 , 0
)

,
(

1
5 , 1

10

)
,
(

0, 1
5

)
,(

3
10 , 0

)
,
(

1
10 , 1

10

)
,
(

1
5 , 0
)

,
(

0, 1
10

)
,
(

1
10 , 0

)
, (0, 0)

}
, (91)

Fσe

P∨ ,10(0, 0) =
{(

3
10 , 1

10

)
,
(

1
10 , 1

5

)
,
(

1
5 , 1

10

)
,
(

1
10 , 1

10

)}
, (92)

Fσs

P∨ ,10(0, 0) =
{(

1
5 , 1

5

)
,
(

0, 3
10

)
,
(

3
10 , 1

10

)
,
(

1
10 , 1

5

)
,
(

1
5 , 1

10

)
,
(

0, 1
5

)
,
(

1
10 , 1

10

)
,
(

0, 1
10

)}
, (93)

Fσl

P∨ ,10(0, 0) =
{(

3
10 , 1

10

)
,
(

1
10 , 1

5

)
,
(

2
5 , 0
)

,
(

1
5 , 1

10

)
,
(

3
10 , 0

)
,
(

1
10 , 1

10

)
,
(

1
5 , 0
)

,
(

1
10 , 0

)}
(94)

and the label sets (38) are determined in ω-basis as the following:

Λ1
Q,10(0, 0) = {(0, 5), (2, 2), (1, 3), (3, 0), (0, 4), (2, 1), (1, 2), (0, 3), (2, 0), (1, 1),

(0, 2), (1, 0), (0, 1), (0, 0)}, (95)

Λσe

Q,10(0, 0) = {(1, 3), (2, 1), (1, 2), (1, 1)}, (96)

Λσs

Q,10(0, 0) = {(1, 3), (0, 4), (2, 1), (1, 2), (0, 3), (1, 1), (0, 2), (0, 1)}, (97)

Λσl

Q,10(0, 0) = {(2, 2), (1, 3), (3, 0), (2, 1), (1, 2), (2, 0), (1, 1), (1, 0)}. (98)

The long sign homomorphism dual-weight dot Dσl

P∨ ,1,10(0, 0) is depicted in Figure 5.

1
3 ω∨2 = ω2

1
2 ω∨1 = 1

2 ω1

Figure 5. The dot Dσl

P∨ ,1,10(0, 0) of G2. The light triangle depicts the fundamental domain Fσl
(0) and

its boundary black dashed lines correspond to the Dirichlet walls Hσl
(0) and boundary black line to

the Neumann wall Bσl
(0). The point set Fσl

P∨ ,10(0, 0), representing possible positions of the quantum
particle, is formed by the dark dots. The lines connecting the dots symbolise the nearest neighbour
coupling characterised by the hopping operator Âσl

ω∨1 ,10(0, 0).
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Calculated in the position basis |a〉 that is ordered as the points listed in expres-
sion (91), the two identity sign homomorphism dual-weight hopping operators (52) are
determined as follows:

Â1
ω∨1 ,10(0, 0) = −A



0 0 2
√

2
√

2 0 0 0 0 0 0 0 0 0
0 0 0 2 0

√
2 0 0 0 0 0 0 0 0

2 0 2 0
√

2 0 0 0 0 0 0 0 0 0√
2 2 0 1 1

√
2 1 0 0 0 0 0 0 0√

2 0
√

2 1 1 0 1
√

2 0 0 0 0 0 0
0
√

2 0
√

2 0 0
√

2 0 1 0 0 0 0 0
0 0 0 1 1

√
2 0

√
2
√

2 1 0 0 0 0
0 0 0 0

√
2 0

√
2 0 0

√
2 0 0 0 0

0 0 0 0 0 1
√

2 0 0
√

2 1 0 0 0
0 0 0 0 0 0 1

√
2
√

2 1
√

2
√

2 0 0
0 0 0 0 0 0 0 0 1

√
2 0 2 1 0

0 0 0 0 0 0 0 0 0
√

2 2 0 2 0
0 0 0 0 0 0 0 0 0 0 1 2 2

√
6

0 0 0 0 0 0 0 0 0 0 0 0
√

6 0


and

Â1
ω∨2 ,10(0, 0) = −B



0
√

2 1 0
√

2 0
√

2 0 0 0 0 0 0 0√
2 0 0 0 0 0 2 0 0 0 0 0 0 0

1 0 0
√

2
√

2 0 0 1 0 0 0 0 0 0
0 0

√
2 1 1

√
2 0

√
2
√

2 0 0 0 0 0√
2 0

√
2 1 0

√
2 1 0 0 1 0 0 0 0

0 0 0
√

2
√

2 0 0 0 0
√

2 0 0 0 0√
2 2 0 0 1 0 1 0 0 1

√
2 0 0 0

0 0 1
√

2 0 0 0 0 2 0 0 1 0 0
0 0 0

√
2 0 0 0 2 0 0 0 2 0 0

0 0 0 0 1
√

2 1 0 0 1
√

2 0
√

2 0
0 0 0 0 0 0

√
2 0 0

√
2 0 0 2 0

0 0 0 0 0 0 0 1 2 0 0 2 0
√

6
0 0 0 0 0 0 0 0 0

√
2 2 0 2 0

0 0 0 0 0 0 0 0 0 0 0
√

6 0 0


.

Calculated in the position basis |a〉 that is ordered as the points listed in expression (92),
the two determinant sign homomorphism dual-weight hopping operators are given as
the following:

Âσe

ω∨1 ,10(0, 0) = −A

(
−1 1 1 0
1 −1 1 0
1 1 0 1
0 0 1 −1

)
and

Âσe

ω∨2 ,10(0, 0) = −B

(
−1 −1 0 0
−1 0 −1 1
0 −1 −1 −1
0 1 −1 −1

)
.

The two short sign homomorphism dual-weight hopping operators, which are cal-
culated in the position basis |a〉 ordered as the points from the list (93), are given as
the following:

Âσs

ω∨1 ,10(0, 0) = −A



0 2
√

2
√

2 0 0 0 0
2 2 0

√
2 0 0 0 0√

2 0 1 1 1 0 0 0√
2
√

2 1 1 1
√

2 0 0
0 0 1 1 0

√
2 1 0

0 0 0
√

2
√

2 0
√

2 0
0 0 0 0 1

√
2 1

√
2

0 0 0 0 0 0
√

2 0


and

Âσs

ω∨2 ,10(0, 0) = −B



0 1 0
√

2
√

2 0 0 0
1 0

√
2
√

2 0 1 0 0
0
√

2 −1 1 0
√

2 0 0√
2
√

2 1 0 1 0 1 0√
2 0 0 1 −1 0 1 0

0 1
√

2 0 0 0 0 1
0 0 0 1 1 0 −1 0
0 0 0 0 0 1 0 −2

.
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The two long sign homomorphism dual-weight hopping operators, which are cal-
culated in the position basis |a〉 ordered as the points from the list (94), are given as
the following:

Âσl

ω∨1 ,10(0, 0) = −A



−1 1
√

2 1 0 0 0 0
1 −1 0 1 0 0 0 0√
2 0 0

√
2 1 0 0 0

1 1
√

2 0
√

2 1 0 0
0 0 1

√
2 0

√
2 1 0

0 0 0 1
√

2 −1
√

2 0
0 0 0 0 1

√
2 0 1

0 0 0 0 0 0 1 −2


and

Âσl

ω∨2 ,10(0, 0) = −B



1 −1 −
√

2 0
√

2 0 0 0
−1 0

√
2 −1 0 1 0 0

−
√

2
√

2 0 0 0
√

2 0 0
0 −1 0 1 0 −1

√
2 0√

2 0 0 0 0 0 0 0
0 1

√
2 −1 0 1 −

√
2
√

2
0 0 0

√
2 0 −

√
2 0 −2

0 0 0 0 0
√

2 −2 2

.

The Hamiltonians of the quantum particle on the dual-weight dots D1
P∨ ,l,10(0, 0),

Dσe

P∨ ,l,10(0, 0), Dσs

P∨ ,l,10(0, 0) and Dσl

P∨ ,l,10(0, 0) are the sums (54) of the corresponding hop-
ping operators,

Ĥ1
P∨ ,10(0, 0) = Â1

0,10(0, 0) + Â1
ω∨1 ,10(0, 0) + Â1

ω∨2 ,10(0, 0),

Ĥσe

P∨ ,10(0, 0) = Âσe

0,10(0, 0) + Âσe

ω∨1 ,10(0, 0) + Âσe

ω∨2 ,10(0, 0),

Ĥσs

P∨ ,10(0, 0) = Âσs

0,10(0, 0) + Âσs

ω∨1 ,10(0, 0) + Âσs

ω∨2 ,10(0, 0),

Ĥσl

P∨ ,10(0, 0) = Âσl

0,10(0, 0) + Âσl

ω∨1 ,10(0, 0) + Âσl

ω∨2 ,10(0, 0).

The set of (rounded) eigenenergies of the particle on the identity sign homomor-
phism dot D1

P∨ ,l,10(0, 0) is computed from relation (90) in the ordering of the label set (95)
as follows:

{ E1
P∨ ,λ,10(0, 0) | λ ∈ Λ1

Q,10(0, 0)
}
= E0{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

+ A{2, 2.618, 2, 2.854, 1.236, 2, 0.618,−0.764, 0.382,−1.618,−3.236,−3.854,−5.236,−6}
+ B{2,−3.236, 0.618,−5.236, 2.618,−1.618, 2, 2.854, 1.236, 2, 0.382,−0.764,−3.854,−6}

and on the determinant sign homomorphism dot Dσe

P∨ ,l,10(0, 0) in the ordering of the label
set (96) as follows:{

Eσe

P∨ ,λ,10(0, 0) | λ ∈ Λσe

Q,10(0, 0)
}
=E0{1, 1, 1, 1}

+ A{2, 2, 0.618,−1.618}
+ B{0.618,−1.618, 2, 2}.

The set of eigenenergies of the particle on the short sign homomorphism dot Dσs

P∨ ,l,10(0, 0)
in the ordering of the label set (97) is provided by the following:{

Eσs

P∨ ,λ,10(0, 0) | λ ∈ Λσs

Q,10(0, 0)
}
=E0{1, 1, 1, 1, 1, 1, 1, 1}

+ A{2, 1.236, 2, 0.618,−0.764,−1.618,−3.236,−5.236}
+ B{0.618, 2.618,−1.618, 2, 2.854, 2, 0.382,−3.854}
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and on the long sign homomorphism dot Dσl

P∨ ,l,10(0, 0) in the ordering of the label set (98) by
the following:{

Eσl

P∨ ,λ,10(0, 0) | λ ∈ Λσl

Q,10(0, 0)
}
=E0{1, 1, 1, 1, 1, 1, 1, 1}

+ A{2.618, 2, 2.854, 2, 0.618, 0.382,−1.618,−3.854}
+ B{−3.236, 0.618,−5.236,−1.618, 2, 1.236, 2,−0.764}.

The probabilities Pσ,0,0
P∨ ,60[λ] of finding the particle in several lower stationary states

|λ〉 at the positions of the four dual-weight dots a ∈ Dσ
P∨ ,1,60(0, 0), σ ∈ {1, σe, σs, σl} are

depicted in Figure 6.

P1,0,0
P∨ ,60

[(1, 1)]

0
ω1
2

ω2

P1,0,0
P∨ ,60

[(1, 2)]

0
ω1
2

ω2

P1,0,0
P∨ ,60

[(1, 3)]

0
ω1
2

ω2

Pσe ,0,0
P∨ ,60

[(1, 1)]

0
ω1
2

ω2

Pσe ,0,0
P∨ ,60

[(1, 2)]

0
ω1
2

ω2

Pσe ,0,0
P∨ ,60

[(1, 3)]

0
ω1
2

ω2

Pσs ,0,0
P∨ ,60

[(1, 1)]

0
ω1
2

ω2

Pσs ,0,0
P∨ ,60

[(1, 2)]

0
ω1
2

ω2

Pσs ,0,0
P∨ ,60

[(1, 3)]

0
ω1
2

ω2

Pσl ,0,0
P∨ ,60

[(1, 1)]

0
ω1
2

ω2

Pσl ,0,0
P∨ ,60

[(1, 2)]

0
ω1
2

ω2

Pσl ,0,0
P∨ ,60

[(1, 3)]

0
ω1
2

ω2

Figure 6. The probability plots for Dσ
Q∨ ,1,60(0, 0) of G2. The dots display the probabilities (74) of finding the particle in the

stationary states |(1, 1)〉, |(1, 2)〉 and |(1, 3)〉 over their respective positions from Dσ
Q∨ ,1,60(0, 0), σ ∈ {1, σe, σs, σl}. The red

dots illustrate probabilities over the particle’s positions on the Neumann walls.
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5. Conclusions

• The developed one-particle dual-weight discrete quantum billiard systems describe
the non-relativistic quantum particle propagating on the dots Dσ

P∨ ,l,M($, $∨), which
comprise finitely-many positions located inside the scaled closure of the Weyl alcove
lF ⊂ Rn. The precise arrangements (15) and (16) of the Dirichlet and Neumann walls
lHσ($) and lBσ($) that realise the quantum trapping of the particle and coincide with
the dual-root billiards [1] constitute the boundaries of the simplex lF. Any predeter-
mined admissible dual-weight hopping function P∨, which encodes the amplitude
propagation to the neighbouring positions, directly provides explicit formulas for the
eigenenergies of the systems (59) via its Fourier transform by the symmetric Weyl orbit
sums over its finite dominant support supp+(P∨). The vectors of the orthonormal
momentum basis, |λ〉 ∈ Hσ

P∨ ,M($, $∨), λ ∈ Λσ
Q,M($, $∨), determined independently

on the dual-weight hopping function P∨ by their explicit form (56) constitute solu-
tions of the time-independent Schrödinger equation (58). The time evolution of the
dual-weight quantum systems from any normalised initial state vector given in the
position basis |a〉, a ∈ Fσ

P∨ ,M($, $∨) is exactly determined (71) .
• The presence of the affine Weyl group orbits of the target positions a′ ∈ Fσ

P∨ ,M($, $∨)
in the coupling sets (51) represent the first essential symmetry component for imple-
menting the interactions enforced by the boundaries of lF. Secondly, the addition of
the sign χ-function (13) values over the affine-reflected positions Waffa′ in the cou-
pling set Np∨ ,M(a, a′) counts the number and type of amplitude reflections between
the source position a ∈ Fσ

P∨ ,M($, $∨) and the target position a′ ∈ Fσ
P∨ ,M($, $∨). The

χ-function generalises the sign functions from [40] that are necessary for describing
the Galois symmetries of Weyl orbit functions. The square roots of the stabiliser
ε-functions (7) present as factors in defining relation of the dual-weight hopping
operators Âσ

p∨ ,M($, $∨) matrix elements in the position basis (52) and manifest a direct
consequence of the weighted discrete orthogonality relations (39). The ε-function
subsequently straightforwardly regulates the probabilities (74) of finding the particle
in a stationary state on the Neumann walls of the simplex lF. The Neumann boundary
effect, which is observed similarly in dual-root models [1], is pointedly evident in
Figures 3 and 6.

• Considering an electron as the quantum particle propagating in the current discrete
quantum systems, a novel class of the tight-binding models [3] with the electron prop-
agating among atoms positioned at the points of the dual-weight dot Dσ

P∨ ,l,M($, $∨) is
obtained. The hopping integrals [15] between the coupled neighbouring positions in
the atomic lattice, which might be estimated from theoretical considerations and/or
fine-tuned experimentally, directly enter the present models as the values of the dual-
weight hopping function P∨. Analogously to the dual-root models, the physical
interpretation of the dual-weight models coincides with the inductively developed
electron propagation in a crystal lattice [41]. Since the dual-weight Fourier–Weyl trans-
forms of the current one-dimensional A1 model of a linear crystal specialise to the four
types I–IV of the discrete cosine and sine transforms [18,25], the current stationary
state vectors represent boundary-dependent (anti)symmetric alternatives to the peri-
odic exponential solutions [41]. Moreover, the discrete Hamiltonian approach used
for dual-weight and dual-root models produces strictly defined boundary-dependent
forms of the energy spectra (59).

• Similarly to the dual-root models, the dual-weight models employ the generalised
dual-weight Fourier–Weyl transforms (41) to construct the momentum basis (56)
together with the stationary states (70) and time-evolutions (71). The utilisation of
the weight lattice transforms [23] as well as the dual-weight E-transforms [42] for the
description of analogous discrete quantum systems deserves further study. Potentially
resulting in the generalisation of the present models to the prominent honeycomb-
type (pseudo)lattices [17,32], the intricate composition of the weight and root lattice
transforms demands a specific construction of extension coefficients of the extended
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Weyl orbit functions [43]. The calculation of the extension coefficients is determined by
the desired form of product-to-sum decomposition formulas (33), which characterise
the coupling of the considered (pseudo)lattice model. Since the extended Weyl orbit
function approach potentially represents alternative description to the (pseudo)spinor
wavefunctions approach [17], the Fourier–Weyl transforms induced by the extended
Weyl orbit functions, together with the discrete symmetry analysis of the associated
quantum systems, deserve further study.
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