
symmetryS S

Article

Numerical Solution of Two-Dimensional Fredholm–Volterra
Integral Equations of the Second Kind

Sanda Micula

����������
�������

Citation: Micula, S. Numerical

Solution of Two-Dimensional

Fredholm–Volterra Integral Equations

of the Second Kind. Symmetry 2021,

13, 1326. https://doi.org/

10.3390/sym13081326

Academic Editors: Samad

Noeiaghdam and Denis N. Sidorov

Received: 28 June 2021

Accepted: 21 July 2021

Published: 23 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania;
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Abstract: The paper presents an iterative numerical method for approximating solutions of two-
dimensional Fredholm–Volterra integral equations of the second kind. As these equations arise
in many applications, there is a constant need for accurate, but fast and simple to use numerical
approximations to their solutions. The method proposed here uses successive approximations of the
Mann type and a suitable cubature formula. Mann’s procedure is known to converge faster than the
classical Picard iteration given by the contraction principle, thus yielding a better numerical method.
The existence and uniqueness of the solution is derived under certain conditions. The convergence
of the method is proved, and error estimates for the approximations obtained are given. At the
end, several numerical examples are analyzed, showing the applicability of the proposed method
and good approximation results. In the last section, concluding remarks and future research ideas
are discussed.
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MSC: 45H05; 47H10; 47H09; 65D32

1. Preliminaries

Fredholm–Volterra equations are integral equations of the following type:

u(t, x) =

t∫
0

∫
Ω

K
(
t, x, τ, y, u(τ, y)

)
dy dτ + f (t, x),

for (t, x) ∈ [0, T]×Ω, Ω a closed subset of Rn, n = 1, 2, 3.
One encounters these equations in many applications in areas of physics, engineering

or biology. In addition, many reformulations of boundary value problems can be written
as Volterra–Fredholm integral equations. They are also used to model the progress of an
epidemic and various other biological and physical problems. Integral equations with
symmetric kernels are of frequent occurrence in the formulation of electronic and optic
problems, as well as in optimization and spectral analysis.

In this paper, we consider mixed Fredholm–Volterra integral equations of the following form:

u(t, x) =
t∫
0

b∫
a

K
(
t, x, τ, y, u(τ, y)

)
dy dτ + f (t, x), (1)

(t, x) ∈ D = [0, T]× [a, b], where K ∈ C(D× D×R) and f ∈ C(D).
Given the wide variety of applications, there have been substantial works on the

solvability of these equations and on studying their properties. Numerical approxima-
tions of their solutions have been studied via collocation methods [1–3], block-pulse func-
tions [4,5], Adomian decomposition methods [6], wavelet-based methods [7–9], iterative
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methods [10–15], differential quadratures [16], meshless procedures [17], etc. A simplified,
one-dimensional case was studied in [18]. More details and considerations can be found,
for example, in [19–22].

The aim of the present work is to develop a simple but quite accurate numerical
method for approximating the solution of such equations. We derive a method based on
fixed point theory for the existence and uniqueness of the solution, and on the use of an
appropriate cubature formula for the numerical approximation. As such, the advantage
of this new method consists mainly in the fact that it is easy to use and implement but
gives good approximations of the solution at a given set of nodes. Compared to other
classical methods used for integral equations, such as projection, Nyström or decomposition
methods, this procedure does not require solving in the end an algebraic system for the
values of the unknown function at the grid points. Such systems can be ill-conditioned, and
may require additional procedures, which increase the computational and implementation
cost of the resulting method, while decreasing its area of applicability. Instead, the proposed
scheme finds the approximations at the nodes iteratively, using previously found values.

The rest of the paper is organized as follows: in Section 2, we discuss the solvability
of Equation (1), via fixed point theory. Altman’s algorithm [23] is employed instead of
the classical Banach’s theorem. This uses a Mann-type iteration (see [24]), which, by
means of some parameters (the sequences εn and yn, respectively, from Theorem 1 below),
allows better control over the speed of convergence. With an appropriate choice of those
parameters, we obtain faster successive approximations than the ones provided by the
Picard-type iteration. In Section 3, we present a numerical method for approximating
the solution of Equation (1), using a suitable cubature formula. Then, we analyze the
convergence and give error estimates for the case when the two-dimensional trapezium
rule is used for the numerical approximation of the iterates. In Section 4 we apply the
proposed method to several numerical examples that are discussed in detail, showing
good agreement between the theoretical results and the practical ones. Section 5 contains
the concluding remarks on the procedure presented, and a discussion of ideas for future
research in this area.

2. Solvability of the Integral Equation

We analyze the solvability of Equation (1) via fixed point results. To this end, we define
the integral operator F : C(D)→ C(D) associated with Equation (1) by the following:

Fu(t, x) :=
t∫
0

b∫
a

K
(
t, x, τ, y, u(τ, y)

)
dy dτ + f (t, x). (2)

Then, we find a solution of the Equation (1) by finding a fixed point of the operator F:

u = Fu. (3)

Let X = C(D), endowed with the Chebyshev norm:

||u|| := max
(t,x)∈D

|u(t, x)|, u ∈ X.

Then, it is known that (X, || · ||) is a Banach space and for some ρ > 0, the ball
Bρ := {u ∈ C(D)

∣∣ ||u− f || ≤ ρ} ⊆ X is a closed subset. The well-known contraction
principle holds for F : X → X. The speed of convergence can be improved by using the
following result due to Mann [24], also known as Altman’s algorithm [23]:
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Theorem 1. Consider (X, || · ||) a Banach space and T : X → X a q−contraction. Let 0 < εn ≤ 1
be a sequence of numbers satisfying the following:

∞

∑
n=0

εn = ∞. (4)

Then, we have the following:

(a) Equation u = Tu has exactly one solution u∗ ∈ X.
(b) The sequence of successive approximations

un+1 = (1− εn)un + εnTun, n = 0, 1, . . . (5)

converges to the solution u∗, for any u0 ∈ X.
(c) For every n ∈ N, the following error estimate holds:

||un − u∗|| ≤ e1−q

1− q
e−(1−q)yn ||u0 − Tu0|| (6)

where y0 = 0, yn =
n−1

∑
i=0

εi, for n ≥ 1.

The error estimate in Equation (6) is better than the classical error
qn

1− q
given by the

contraction principle. We will use this result for our integral operator F with εn =
1

n + 1
,

which satisfies the requirements of Theorem 1. Then, we have the following:

Theorem 2. Let K ∈ C(D× D×R), f ∈ C(D) and ρ1 := min
(t,x)∈D

f (t, x), ρ2 := max
(t,x)∈D

f (t, x).

Assume the following:

(i) there exists a constant L > 0 such that∣∣K(t, x, τ, y, u)− K(t, x, τ, y, v)
∣∣ ≤ L||u− v||, (7)

for all (t, x), (τ, y) ∈ D and all u, v ∈ [ρ1 − ρ, ρ2 + ρ];
(ii)

q := LT(b− a) < 1; (8)

(iii)

MKT(b− a) ≤ ρ, (9)

where MK := max |K(t, x, τ, y, u)| over all (t, x), (τ, y) ∈ D and all u, v ∈ [ρ1− ρ, ρ2 + ρ].

Then, the operator F in Equation (2) has exactly one fixed point, i.e., Equation (3) has exactly
one solution u∗ ∈ BR, which can be obtained as the limit of the sequence of successive approximations
as follows:

un+1 =

(
1− 1

n + 1

)
un +

1
n + 1

Fun, n = 0, 1, . . . , (10)

starting with any arbitrary initial point u0 ∈ BR. Moreover, for every n ∈ N, the following error
estimate holds:

||un − u∗|| ≤ e1−q

1− q
e−(1−q)yn ||u0 − Fu0|| (11)



Symmetry 2021, 13, 1326 4 of 12

where the sequence {yn} is defined by the following:

y0 = 0, yn =
n−1

∑
i=0

1
i + 1

, n ≥ 1. (12)

Proof. Let u be any arbitrary point in Bρ. For a fixed (t, x) ∈ D, we have the following:

|Fu(t, x)− f (t, x)| ≤
t∫
0

b∫
a

∣∣∣K(t, x, τ, y, u(τ, y)
)∣∣∣ dy dτ ≤ MKT(b− a).

Then, by Equation (9), Fu ∈ Bρ and, thus, F(Bρ) ⊆ Bρ. Now, for every fixed (t, x) ∈ D,
we use Equation (7) to obtain the following:

|Fu(t, x)− Fv(t, x)| ≤
t∫
0

b∫
a

∣∣∣K(t, x, τ, y, u(τ, y)
)
− K

(
t, x, τ, y, v(τ, y)

)∣∣∣ dy dτ

≤ L||u− v||
t∫
0

b∫
a

dy dτ

≤ q||u− v||.

Thus,

||Fu− Fv|| ≤ q||u− v||

and since q < 1, all the conclusions follow from Theorem 1.

Remark 1. Let us note that the Lipschitz and contraction conditions (7) and (8) can be quite
restrictive if required on the entire space. This is why we use only a local existence and uniqueness
result so that these conditions need only be satisfied for u ∈ Bρ, for some ρ > 0, which is much
more reasonable. This observation will also be important in the next section, when we discuss the
numerical approximation of the solution at the nodes (see Remark 2).

For more considerations and details on fixed points, see [21,24].

3. A Numerical Method for Solving the Integral Equation

In order to use the iterative procedure Equation (10), we have to approximate the
integrals numerically. Consider the following numerical integration scheme:

b∫
a

d∫
c

ϕ(s, w) dw ds =
m1

∑
i=0

m2

∑
j=0

aij ϕ(si, wj) + Rϕ, (13)

with nodes a = s0 < s1 < · · · < sm1 = b, c = w0 < w1 < · · · < wm2 = d, coefficients
aij ∈ R, i = 0, 1, . . . , m1, j = 0, 1, . . . , m2, such that there exists M > 0 with the following:

|Rϕ| ≤ M, (14)

where M→ 0 as m1, m2 → ∞.
For our purposes, let 0 = t0 < t1 < · · · < tm1 = T and a = x0 < x1 < · · · <

xm2 = b be partitions of [0, T] and [a, b], respectively, and let u0 = ũ0 ≡ f be the initial
approximation. We will use the successive iterations (10) and the numerical integration
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formula (13) to approximate un(tl , xk) by ũn(tl , xk), for l = 0, m1, k = 0, m2 and n = 0, 1, . . .
Let l ∈ {0, 1, . . . . , m1} and k ∈ {0, 1, . . . . , m2} be fixed. The following approximations hold:

u1(tl , xk) = Fu0(tl , xk)

=

tl∫
0

b∫
a

K
(
tl , xk, τ, y, f (τ, y)

)
dy dτ + f (tl , xk)

=
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, f (ti, xj)

)
+ RK + f (tl , xk)

= ũ1(tl , xk) + R̃1,

where

ũ1(tl , xk) =
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, f (ti, xj)

)
+ f (tl , xk).

We make the following notation for the maximum error at the nodes:

err(un, ũn) := max
(tl ,xk)∈D

|un(tl , xk)− ũn(tl , xk)|.

Then, by Equation (14), we have the following:

err(u1, ũ1) ≤ |R̃1| ≤ M. (15)

We continue with the next iteration:

u2(tl , xk) =

(
1− 1

2

)
u1(tl , xk) +

1
2

 tl∫
0

b∫
a

K
(
tl , xk, τ, y, u1(τ, y)

)
dy dτ + f (tl , xk)


=

(
1− 1

2

)
ũ1(tl , xk) +

(
1− 1

2

)(
u1(tl , xk)− ũ1(tl , xk)

)
+

1
2

(
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, u1(ti, xj)

)
+ RK + f (tl , xk)

)

=

(
1− 1

2

)
ũ1(tl , xk) +

(
1− 1

2

)(
u1(tl , xk)− ũ1(tl , xk)

)
+

1
2

(
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, ũ1(ti, xj)

)
+ RK + f (tl , xk) (16)

+
l

∑
i=0

m2

∑
j=0

aijK
(

tl , xk, ti, xj, u1(ti, xj)− ũ1(ti, xj)
))

=

(
1− 1

2

)
ũ1(tl , xk) +

1
2

(
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, ũ1(ti, xj)

)
+ f (tl , xk)

)

+

(
1− 1

2

)(
u1(tl , xk)− ũ1(tl , xk)

)
+

1
2

(
l

∑
i=0

m2

∑
j=0

aijK
(

tl , xk, ti, xj, u1(ti, xj)− ũ1(ti, xj)
)
+ RK

)
= ũ2(tl , xk) + R̃2,
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with

ũ2(tl , xk) =

(
1− 1

2

)
ũ1(tl , xk) +

1
2

(
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, ũ1(ti, xj)

)
+ f (tl , xk)

)
,

R̃2 =

(
1− 1

2

)(
u1(tl , xk)− ũ1(tl , xk)

)
+

1
2

(
l

∑
i=0

m2

∑
j=0

aijK
(

tl , xk, ti, xj, u1(ti, xj)− ũ1(ti, xj)
)
+ RK

)
.

The values ũ2(tl , xk) can be then computed from the values obtained in the previous

step. For the error estimate, let θ := L
m1

∑
i=0

m2

∑
j=0

∣∣aij
∣∣. We have, by Equation (15), the following:

err(u2, ũ2) ≤ |R̃2|

≤
(

1− 1
2

)
|R̃1|+

1
2

(
k

∑
i=0

m

∑
j=0
|aij| · L · |R̃1|+

∣∣RK
∣∣)

≤
(

1− 1
2

)
M +

1
2

(
LM

m

∑
i=0

m

∑
j=0

∣∣aij
∣∣+ M

)
(17)

= M +
1
2

Mθ

≤ M(1 + θ).

Again, in a similar way, denoting by

ũn(tl , xk) =

(
1− 1

n

)
ũn−1(tl , xk)

+
1
n

(
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, ũn−1(ti, xj)

)
+ f (tl , xk)

)
, (18)

for l = 0, 1, . . . , m1, k = 0, 1, . . . , m2, by induction, we find the following:

err(un, ũn) ≤ |R̃n|

≤
(

1− 1
n

)
|R̃n−1|+

1
n

(
θ|R̃n−1|+ M

)
≤ M

(
1 + θ + · · ·+ θn−2)(1− 1

n
+

1
n

)
+

1
n

Mθn−1 (19)

≤ M
(
1 + θ + · · ·+ θn−2)+ Mθn−1

= M
(
1 + θ + · · ·+ θn−1).

Then, we have the following approximation result:

Theorem 3. Assume the conditions of Theorem 2 hold. In addition, assume that the coefficients in
the numerical integration formula (13) satisfy the following:

θ = L
m1

∑
i=0

m2

∑
j=0

∣∣aij
∣∣ < 1. (20)
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Then, the following error estimate holds for every n ∈ N:

err(u∗, ũn) ≤
e1−q

1− q
e−(1−q)yn ||u0 − Fu0||+

M
1− θ

(21)

where u∗ is the true solution of Equation (3), ũn is the approximation given by Equation (18) and
the sequence {yn} is defined in Equation (12).

Proof. By Equations (19) and (20), for all l = 0, 1, . . . , m1 and k = 0, 1, . . . , m2

|un(tl , xk)− ũn(tl , xk)| ≤
M

1− θ
. (22)

Since∣∣u∗(tl , xk)− ũn(tl , xk)
∣∣ ≤ ∣∣u∗(tl , xk)− un(tl , xk)

∣∣+ ∣∣un(tl , xk)− ũn(tl , xk)
∣∣,

the estimate in Equation (21) now follows from Equation (22) and Theorem 2.

Remark 2. Let us discuss condition (20), which can seem to be quite restrictive, especially since
it also involves the constant L. As we will see below, when the quadrature scheme used is the
trapezoidal rule, this condition reduces to the contraction condition (8) (whose applicability was
discussed earlier in Remark 1), and, thus, does not introduce any new restrictions. In fact, the
same thing is true for other fairly easy quadrature formulas, such as the midpoint or Simpson’s rule
(see [25]).

A Numerical Method Based on the Trapezoidal Rule

As discussed previously, we can use any numerical integration formula to approximate
the iterates un(xk), as long as it satisfies condition (20). In what follows, we propose one of
the simplest formulas, the two-dimensional trapezoidal rule:

b∫
a

d∫
c

ϕ(τ, y) dy dτ =
(b− a)(d− c)

4m1m2

[
ϕ(a, c) + ϕ(b, c) + ϕ(a, d) + ϕ(b, d)

+ 2
m1−1

∑
i=1

(
ϕ(τi, c) + ϕ(τi, d)

)
(23)

+ 2
m2−1

∑
j=1

(
ϕ(a, yj) + ϕ(b, yj)

)
+ 4

m1−1

∑
i=1

m2−1

∑
j=1

ϕ
(
τi, yj)

)]
+Rϕ,

using the nodes si = a +
b− a
m1

i, wj = c +
d− c
m2

j, i = 0, m1, j = 0, m2. The remainder is

the following:

Rϕ = −
[
(b− a)3(d− c)

12m2
1m2

ϕ(2,0)(ξ, η1) +
(b− a)(d− c)3

12m1m2
2

ϕ(0,2)(ξ1, η) (24)

+
(b− a)3(d− c)3

144m2
1m2

2
ϕ(2,2)(ξ, η)

]
, ξ, ξ1 ∈ (a, b), η, η1 ∈ (c, d),

where we use the notation ϕ(α,β)(t, x) =
∂α+β ϕ

∂tα∂xβ
(t, x).
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For fixed m1, m2, we consider the nodes tl =
T

m1
l, xk = a+

b− a
m2

k, l = 0, m1, k = 0, m2.

For simplicity, we will use the notation Kl,k,i,j = K
(
tl , xk, ti, xj, un(ti, xj)

)
. Then we have

the following:

tl∫
0

b∫
a

K
(
tl , xk, τ, y, un(τ, y)

)
dy dτ =

tl(b− a)
4lm2

[
Kl,k,0,0 + Kl,k,l,0 + Kl,k,0,m2

+Kl,k,l,m2 + 2
l−1

∑
i=0

(
Kl,k,i,0 + Kl,k,i,m2

)
+2

m2−1

∑
j=0

(
Kl,k,0,j + Kl,k,l,j

)
(25)

+4
l−1

∑
i=0

m2−1

∑
j=0

Kl,k,i,j

]
+ RK,

for each l = 0, 1, . . . , m1, k = 0, 1, . . . , m2. Since
tl
l
=

T
m1

, in this case, θ ≤ LT(b− a) = q,

which, by Equation (8) is strictly less than 1.
Next, let us discuss the bound M from Equation (14). By Equation (24), if K(2,0)(τ, y,

un(τ, y)
)
, K(0,2)(τ, y, un(τ, y)

)
and K(2,2)(τ, y, un(τ, y)

)
are bounded, then the remainder

RK is of the form O
(

1
m2

1

)
+ O

(
1

m2
2

)
. For simplicity, we write the function K emphasizing

only the variables that it is to be differentiated with respect to, i.e., K(τ, y, u(τ, y)). We have
the following:

K(2,0)(τ, y, un(τ, y)
)

=
∂2K
∂τ2

(
τ, y, un(τ, y)

)
+ 2

∂2K
∂τ∂u

(
τ, y, un(τ, y)

) ∂u
∂τ

(τ, y)

+
∂2K
∂u2

(
τ, y, un(τ, y)

)( ∂u
∂τ

(τ, y)
)2

+
∂K
∂u
(
τ, y, un(τ, y)

) ∂2u
∂τ2 (τ, y),

K(0,2)(τ, y, un(τ, y)
)

=
∂2K
∂y2

(
τ, y, un(τ, y)

)
+ 2

∂2K
∂y∂u

(
τ, y, un(τ, y)

) ∂u
∂y

(τ, y)

+
∂2K
∂u2

(
τ, y, un(τ, y)

)( ∂u
∂y

(τ, y)
)2

+
∂K
∂u
(
τ, y, un(τ, y)

) ∂2u
∂y2 (τ, y),

and a similar (albeit much longer) formula can be found for K(2,2)(τ, y, un(τ, y)
)
, involving

partial derivatives of K and un of up to order 4. For the partial derivatives of un, we have
the following:

un(t, x) =

t∫
0

b∫
a

K
(
t, x, τ, y, un−1(τ, y)

)
dy dτ + f (t, x),

∂un

∂x
(t, x) =

t∫
0

b∫
a

∂K
∂x
(
t, x, τ, y, un−1(τ, y)

)
dy dτ +

∂ f
∂x

(t, x),

∂un

∂t
(t, x) =

b∫
a

K
(
t, x, t, y, un−1(t, y)

)
dy

+

t∫
0

b∫
a

∂K
∂t
(
t, x, τ, y, un−1(τ, y)

)
dy dτ +

∂ f
∂t

(t, x),
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and so on, up to the partial derivatives of order 4.
It is now obvious that if K and f are C4 functions with bounded fourth order partial

derivatives, then there exists M > 0, independent of n, such that

|RK| ≤ M, (26)

with M→ 0 as m1, m2 → ∞. Thus, under these assumptions and those in Theorem 2, we
have the following error estimate:

err(u∗, ũn) ≤
e1−q

1− q
e−(1−q)yn ||u0 − Fu0||+

M
1− θ

, (27)

for all n = 1, 2, . . . , and {yn} given in Equation (12).

4. Numerical Examples

We now illustrate the applicability of the proposed method on several numerical
examples. All computations are completed in Matlab, in double precision arithmetic. In
general, the number of nodes is chosen such that the mesh size is around 0.05, which
is small enough to achieve good accuracy but not so small as to increase the number
of operations.

Example 1. First, let us consider the linear mixed Fredholm–Volterra equation:

u(t, x) =

t∫
0

2∫
0

xe−yu(τ, y) dy dτ + t(ex − tx), t ∈ [0, 1], (28)

with exact solution u∗(t, x) = tex.

We take ρ = 15.5. We have K(t, x, τ, y, u) = xe−yu,
∂K
∂u

= xe−y and the following:

LT(b− a) ≈ 0.74 < 1,

MKT(b− a) ≈ 15.37 ≤ ρ,

so all the hypotheses of Theorem 3 are satisfied. Additionally, for ρ = 15.5, we have that
u∗ ∈ Bρ.

We consider the two-dimensional trapezoidal rule with m1 = 18 and m2 = 36, with

the corresponding nodes ti =
1

m1
i, i = 0, m1 and xj =

2
m2

j, j = 0, m2. Table 1 contains the

errors err(u∗, ũn), with initial approximation u0(t, x) = f (t, x) = t(ex − tx). The CPU time
per iteration is approximately 1.01.

Table 1. Errors for Example 1, m1 = 18, m2 = 36.

n err(u∗, ũn)

1 1.080492× 10−1

5 1.210778× 10−4

10 5.837723× 10−6

Example 2. Next, consider the following nonlinear integral equation:

u(t, x) = 2
t∫
0

1∫
0

x2yτe−τeu(τ,y) dy dτ + x2(1− e−t), t ∈ [0, 1/4], (29)

whose exact solution is u∗(t, x) = tx2.
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Here, K =
∂K
∂u

= 2x2yτe−τeu Thus, for ρ = 1, we have the following:

LT(b− a) ≈ 0.33 < 1,

MKT(b− a) ≈ 0.33 ≤ ρ,

thus, Theorem 3 is applicable and u∗ ∈ Bρ.

Again, we use the trapezoidal rule with m1 = m2 = 18 and nodes ti =
1

4m1
i, i = 0, m1,

xj =
1

m2
j, j = 0, m2. The errors err(u∗, ũn) are given in Table 2, with initial approximation

u0(t, x) = f (t, x) = x2(1− e−t). The CPU time per iteration is approximately 0.89.

Table 2. Errors for Example 2, m1 = m2 = 18.

n err(u∗, ũn)

1 2.034743× 10−1

5 9.354733× 10−4

10 3.077314× 10−5

Example 3. Last, consider the nonlinear mixed Fredholm–Volterra equation as follows:

u(t, x) = 2
t∫
0

1∫
0

x cos τ(u(τ, y))2 dy dτ +
x sin t

9
(9− sin2 t), (30)

for t ∈ [0, 1/2]. The exact solution of Equation (30) is u∗(t, x) = x sin t.

We have K(t, x, τ, y, u) = 2xu2 cos τ and
∂K
∂u

= 4xu cos τ. Choosing ρ = 0.3, we obtain
the following:

LT(b− a) ≈ 0.53 < 1,

MKT(b− a) ≈ 0.28 ≤ ρ,

so Theorem 3 can be used and u∗ ∈ Bρ.

Again, the trapezoidal rule is used with m1 = m2 = 18 and nodes ti =
1

2m1
i, i = 0, m1

and xj =
1

m2
j, j = 0, m2. In Table 3 we give the errors err(u∗, ũn) with initial approximation

u0(t, x) = f (t, x) =
x sin t

9
(9− sin2 t). The CPU time per iteration is approximately 0.98.

Table 3. Errors for Example 3, m1 = m2 = 18.

n err(u∗, ũn)

1 2.733605× 10−1

5 7.890241× 10−4

10 2.766358× 10−5

5. Conclusions

We presented a numerical method for approximating solutions of two-dimensional
mixed Fredholm–Volterra integral equations of the second kind, using a combination of
successive approximations for fixed points and cubature formulas. In this paper, we used
Altman’s algorithm and the Mann iteration for finding fixed points of an integral operator
and the two-dimensional trapezium rule for the numerical integration of the iterates. This
has many advantages: in the first place, the fixed point result we used not only guarantees
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the existence of a unique solution, but also gives a procedure for finding it by successive
iterations. Moreover, Mann iterates converge faster than Picard ones (see [24]), so better
accuracy is obtained with fewer iterations. In addition, by using the trapezoidal rule,
the contraction condition for the integral operator also guarantees the convergence of
the numerical approximations. Secondly, the choice of the trapezoidal scheme makes the
method easy to use and implement since most mathematical software have this rule built-in.
Last, but not least, many popular approximation methods, such as Nyström, collocation,
Galerkin or Adomian decomposition methods, lead to difficult-to-solve systems of algebraic
equations that are many times ill-conditioned. Such problems are avoided here since the
computation of an approximate value only requires the values obtained at the previous step.
This reduces the computational and implementation cost of the method. Still, the method

proposed converges with order O
(

e−(1−q)yn
)
+O

(
1

m2
1

)
+ O

(
1

m2
2

)
(with {yn} given in

Equation (12)), producing good resulting approximations as the numerical examples show.
On the downside, there are some limitations to the types of equations that this method can
be applied to, due to the constraints in Theorem 2.

These ideas can be continued in studying other types of mixed integral equations,
such as equations in higher dimensions (Ω ⊆ R2 or R3), equations with singular kernels
(arising, for example, in reformulations of the heat equation), or kernels with modified
argument, etc. Other types of successive approximations or other numerical integration
schemes can also be explored.
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21. Bacoţiu, C. Picard Operators and Applications; Napoca Star: Cluj-Napoca, Romania, 2008.
22. Sidorov, D.N. Existence and blow-up of Kantorovich principal continuous solutions of nonlinear integral equations. Diff. Equat.

2014, 50, 1217–1224.
23. Altman, M. A Stronger Fixed Point Theorem for Contraction Mappings. preprint. 1981.
24. Berinde, V. Iterative Approximation of Fixed Points, Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York,

NY, USA, 2007.
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