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1. Introduction

The famous Huygens inequality for trigonometric functions states that for any

0 < x <
π

2
one has

2
sin x

x
+

tan x
x

> 3 (1)

while the Wilker inequality asserts that(
sin x

x

)2
+

tan x
x

> 2. (2)

In [1], S.-H. Wu and H. M. Srivastava established the following inequality, which is
sometime known as the second Wilker inequality:

2
x

sin x
+

x
tan x

> 3, 0 < |x| < π

2
(3)

and the following inequality, which is also sometime known as the second Wilker inequality:( x
sin x

)2
+

x
tan x

> 2, 0 < x <
π

2
. (4)

In [2], the inequality (3) is established with another bound

2
x

sin x
+

x
tan x

− 3 >
1

60
x3 sin x, (5)

for |x| ∈
(
0, π

2
)
.

In [3], the inequality (4) is written with another bound( x
sin x

)2
+

x
tan x

− 2 >
2

45
x3 sin x, (6)

for |x| ∈
(
0, π

2
)
.
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In [4], E. Neumann and J. Sándor proved the following inequality

3
x

sin x
+ cos x > 4 for 0 < x <

π

2
. (7)

In the paper [2], the inequality (7) is established with another bound

3
x

sin x
+ cos x− 4 >

1
10

x3 sin x, (8)

for |x| ∈
(
0, π

2
)
.

In the same work, [4], E. Neumann and J. Sándor also showed the hyperbolic variants
of the inequalities (3) and (4)

2
x

sinh x
+

x
tanh x

− 3 > 0, for all x 6= 0 (9)

and ( x
sinh x

)2
+

x
tanh x

− 2 > 0, for all x 6= 0. (10)

In the paper [3], the inequality (10) is written with another bound( x
sinh x

)2
+

x
tanh x

− 2 <
2

45
x3 sinh x, (11)

for x > 0.
The hyperbolic counterpart of the inequality (7) is:

3
x

sinh x
+ cosh x− 4 > 0, for all x 6= 0. (12)

These inequalities were extended in different forms in the recent past. We refer to [1–17]
and closely related references therein. Some of the recent improvements were obtained using
Taylor’s expansion or Padé approximation of the trigonometric functions involved.

In [6], we improved the Huygens and Wilker inequalities using the cosine polyno-
mial method.

The aim of this work is to reformulate the inequalities (3)–(12) using again the cosine
polynomial method. The main idea is that the functions involved in the above inequalities
are even, so can be expanded in trigonometric series:

2
x

sin x
+

x
tan x

− 3 = a1 + b1 cos x + c1 cos 2x + ...,

( x
sin x

)2
+

x
tan x

− 2 = a2 + b2 cos x + c2 cos 2x + ...,

3
x

sin x
+ cos x− 4 = a3 + b3 cos x + c3 cos 2x + ...,

2
x

sinh x
+

x
tanh x

− 3 = a4 + b4 cos x + c4 cos 2x + ... ,( x
sinh x

)2
+

x
tanh x

− 2 = a5 + b5 cos x + c5 cos 2x + ...,

3
x

sinh x
+ cosh x− 4 = a6 + b6 cos x + c6 cos 2x + ... .

The above functions can be also expanded as hyperbolic cosine polynomials:

2
x

sinh x
+

x
tanh x

− 3 = a7 + b7 cosh x + c7 cosh 2x + ...,

( x
sinh x

)2
+

x
tanh x

− 2 = a8 + b8 cosh x + c8 cosh 2x + ...,
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3
x

sin x
+ cos x− 4 = a9 + b9 cosh x + c9 cosh 2x + ... .

In the following we will present our method for the first function.
We introduce the function F1(x) by

F1(x) = a1 + b1 cos x + c1 cos 2x.

The power series expansion of 2
x

sin x
+

x
tan x

− 3− F1(x) near 0 is

(−a1 − b1 − c1) +
1
2

x2(b1 + 4c1) +
1

120
x4(−5b1 − 80c1 + 2) + O

(
x6
)

.

In order to increase the speed of the function F1(x) approximating

2
x

sin x
+

x
tan x

− 3, we vanish the first coefficients as follows:


−a1 − b1 − c1 = 0
b1 + 4c1 = 0
−5b1 − 80c1 + 2 = 0

and we obtain a1 =
1

10
, b1 = − 4

30
and c1 =

1
30

.
Then, we obtain

2
x

sin x
+

x
tan x

− 3− 1
10

+
4
30

cos x− 1
30

cos 2x =
1

210
x6+

+
17

554400
x10 +

31
16511040

x12 + O
(
x14),

or, equivalently,

2
x

sin x
+

x
tan x

− 3− 1
15

(1− cos x)2 =
1

210
x6 +

17
554400

x10 +
31

16511040
x12 + O

(
x14
)

.

Using the same algorithm, we find( x
sin x

)2
+

x
tan x

− 2− 8
45

(1− cos x)2 =
1
63

x6 +
1

1400
x8 +

163
831600

x10 + O
(

x12
)

,

3
x

sin x
+ cos x− 4− 2

5
(1− cos x)2 =

3
140

x6 − 1
1680

x8 +
19

158400
x10 + O

(
x12
)

,

2
x

sinh x
+

x
tanh x

− 3− 1
15

(1− cos x)2 =
1

1260
x6 − 17

1425600
x10 +

31
16511040

x12 + O
(

x14
)

,( x
sinh x

)2
+

x
tanh x

− 2− 8
45

(1− cos x)2 = − 1
945

x6 +
1

1400
x8 − 1093

7484400
x10 + O

(
x12
)

,

3
x

sinh x
+ cosh x− 4− 2

5
(1− cos x)2 =

1
84

x6 − 1
1680

x8 − 1
133056

x10 + O
(

x12
)

,

2
x

sinh x
+

x
tanh x

− 3− 1
15

(1− cosh x)2 = − 1
210

x6− 17
554400

x10 +
31

16511040
x12 +O

(
x14
)

,( x
sinh x

)2
+

x
tanh x

− 2− 8
45

(1− cosh x)2 = − 1
63

x6 +
1

1400
x8 − 163

831600
x10 + O

(
x12
)

and

3
x

sinh x
+ cosh x− 4− 2

5
(1− cosh x)2 = − 3

140
x6 − 1

1680
x8 − 19

158400
x10 + O

(
x12
)

.
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2. Main Results

Using the Fourier trigonometric series method we can establish our main theorems,
which are refined and simple forms of the inequalities (3)–(12).

Theorem 1. (Wilker–Huygens-type inequalities)
(i) The following inequality

2
x

sin x
+

x
tan x

− 3 >
1

15
(1− cos x)2 (13)

holds for all 0 < |x| < π

2
.

(ii) The following inequality( x
sin x

)2
+

x
tan x

− 2 >
8

45
(1− cos x)2 (14)

holds for all 0 < |x| < π

2
.

(iii) The following inequality

3
x

sin x
+ cos x− 4 >

2
5
(1− cos x)2 (15)

holds for all 0 < |x| < π

2
.

Theorem 2. (Wilker–Huygens-type inequalities for hyperbolic functions)
(i) For all x 6= 0, one has

2
x

sinh x
+

x
tanh x

− 3 <
1

15
(1− cosh x)2. (16)

(ii) For all x 6= 0, one has( x
sinh x

)2
+

x
tanh x

− 2 <
8

45
(1− cosh x)2. (17)

(iii) For all x 6= 0, one has

3
x

sinh x
+ cosh x− 4 <

2
5
(1− cosh x)2. (18)

Theorem 3. (Mixed type of Wilker–Huygens inequalities)
(i) For all x 6= 0, one has

2
x

sinh x
+

x
tanh x

− 3 >
1

15
(1− cos x)2. (19)

(ii) For all x, 0 < |x| < 1.50618, one has( x
sinh x

)2
+

x
tanh x

− 2 <
8

45
(1− cos x)2. (20)

(iii) For all x 6= 0, one has

3
x

sinh x
+ cosh x− 4 >

2
5
(1− cos x)2. (21)

3. The Proofs of the Theorems

We first prove two lemmas.



Symmetry 2021, 13, 1323 5 of 13

Lemma 1. (i) For every x ≥ 0, one has

2 sinh x ≥ sin 2x.

(ii) For every x ∈
(

0,
π

2

)
, one has

11
2

sin x + 45x +
123

2
x cos x− 112 sin x cos2 x > 0.

(iii) For every |x| ∈
(

0,
π

2

)
, one has

4(1− cos x)2 > x3 sin x.

Proof. (i) We consider the function

g : [0, ∞)→ R, g(x) = 2 sinh x− sin 2x.

The derivative of the function g is

g′(x) = 2 cosh x− 2 cos 2x

= 2(cosh x− 1) + 2(1− cos 2x) ≥ 0, for all x ≥ 0.

Then g is increasing on [0, ∞). As g(0) = 0, we find that g ≥ 0 on [0, ∞).

(ii) We define the function

p :
(

0,
π

2

)
→ R, p(x) =

11
2

sin x + 45x +
123

2
x cos x− 112 sin x cos2 x.

We can rearrange p as follows

p(x) =
11
2

sin x
(

1− cos2 x
)
+

123
4

cos x(2x− sin 2x) + 45
(

x− sin x cos2 x
)

.

For x ∈
(

0,
π

2

)
, we have

sin x cos2 x =
∣∣∣sin x cos2 x

∣∣∣ ≤ |sin x| = sin x ≤ x

It follows that p > 0 on
(

0,
π

2

)
.

(iii) We introduce the function

h :
(

0,
π

2

)
→ R, h(x) = 4(1− cos x)2 − x3 sin x.

An alternate form of h is

h(x) = −2 sin
x
2

(
x3 cos

x
2
− 6 sin

x
2
+ 2 sin

3x
2

)
.

Using the formula
sin 3x = 3 sin x− 4 sin3 x,

we have
h(x) = −2 sin

x
2

(
x3 cos

x
2
− 8 sin3 x

2

)
.

The Adamović and Mitrinović inequality (see, e.g., ([8] p. 238)) asserts that

(cos x)
1
3 <

sin x
x
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holds for every
(

0,
π

2

)
.

Therefore, we obtain that h(x) > 0 for every
(

0,
π

2

)
.

Lemma 2. For every x 6= 0, one has

4(1− cos x)2 < x3 sinh x.

Proof. We define the even function

r(x) = x3 sinh x− 2 cos 2x + 8 cos x− 6, x > 0.

We have
r′(x) = x3 cosh x− 8 sin x + 4 sin 2x + 3x2 sinh x,

r(2)(x) = −8 cos x + 8 cos 2x + 6x2 cosh x + (6x + x3) sinh x,

r(3)(x) = x(18 + x2) cosh x + 8(sin x− 2 sin 2x) + (6 + 9x2) sinh x,

r(4)(x) = 8(cos x− 4 cos 2x) + 12(2 + x2) cosh x + x(36 + x2) sinh x,

r(5)(x) = x(60 + x2) cosh x− 8(sin x− 8 sin 2x) + 15(4 + x2) sinh x

and

r(6)(x) = −8(cos x− 16 cos 2x) + 6
(

20 + 3x2
)

cosh x + x
(

90 + x2
)

sinh x.

From Lemma 1, (i), we deduce that cosh x ≥ 5−cos 2x
4 for all x ∈ R.

Then,

r(6)(x) ≥ −8(cos x− 16 cos 2x) + 120 · 5− cos 2x
4

+ 18x2 cosh x + x(90 + x2) sinh x,

or, equivalently,

r(6)(x) >
(

14 cos x− 2
7

)2
+

2544
49

+ 18x2 cosh x + x(90 + x2) sinh x > 0 for all x > 0.

Therefore, r(5) is strictly increasing on (0, ∞). Since r(5)(0) = 0, it follows that
r(5)(x) > 0 for all x > 0. Continuing the algorithm, we finally find that r > 0 on (0, ∞).

Proof of Theorem 1. (i) Due to the form of the inequality (13), if the inequality (13)

holds for 0 < x <
π

2
, then it holds for −π

2
< x < 0.

Therefore, we can consider x > 0.
The inequality (13) takes the following equivalent form:

30x + 15x cos x− 45 sin x− sin x(1− cos x)2 > 0, 0 < x <
π

2
.

We introduce the function

f1 :
(

0,
π

2

)
→ R, f1(x) = 30x + 15x cos x− 45 sin x− sin x(1− cos x)2.
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The derivative of the function f1 is

f ′1(x) = 30 + 15(cos x− x sin x)− 45 cos x−

−
(

cos x(1− cos x)2 + 2 sin x(1− cos x) sin x
)

= 2 sin
x
2

(
30 sin

x
2
− 15x cos

x
2
− sin

x
2

(
cos x− cos2 x + 2 sin2 x

))
= 2 sin

x
2

(
sin

x
2

(
3 cos2 x− cos x + 28

)
− 15x cos

x
2

)
.

The function

f2 :
(

0,
π

2

)
→ R, f2(x) = sin

x
2

(
3 cos2 x− cos x + 28

)
− 15x cos

x
2

has the derivative

f ′2(x) = cos
x
2

(
3
2

cos2 x− 1
2

cos x− 1
)
+ sin

x
2

(
−6 sin x cos x + sin x +

15
2

x
)

= − cos
x
2

sin2 x
2
(3 cos x + 2) + sin

x
2

(
−6 sin x cos x + sin x +

15
2

x
)

=
15
2

sin
x
2
(x− sin x cos x)

=
15
2

sin
x
2
(x− sin x + sin x(1− cos x)).

Since f ′2 > 0 on
(

0,
π

2

)
, it follows that f2 is strictly increasing on

(
0,

π

2

)
. As f2(0) = 0

we obtain that f2 > 0 on
(

0,
π

2

)
.

Then, f ′1 > 0 on
(

0,
π

2

)
. Using the same arguments, we finally find that f1 > 0

on
(

0,
π

2

)
.

(ii) The functions involved in the inequality (14) are even functions, so it is sufficient to

prove for x ∈
(

0,
π

2

)
.

We write the inequality (14) as follows:

45x2 + 45x sin x cos x− 90 sin2 x− 8 sin2 x(1− cos x)2 > 0, 0 < x <
π

2
.

We define the function

f3 :
(

0,
π

2

)
→ R, f3(x) = 45x2 + 45x sin x cos x− 90 sin2 x− 8 sin2 x(1− cos x)2.

Elementary calculations reveal that

f ′3(x) = 45x(2 + cos 2x)− 135
2

sin 2x− 8(2 sin x− sin 2x)(cos x− cos 2x),

f (2)3 (x) = 8 sin
x
2

(
45 cos

x
2
(sin x− x cos x)− 8 sin3 x

2
cos x(8 cos x + 7)

)
.

The function

f4 :
(

0,
π

2

)
→ R, f4(x) = 45 cos

x
2
(sin x− x cos x)− 8 sin3 x

2
cos x(8 cos x + 7)



Symmetry 2021, 13, 1323 8 of 13

has the derivative

f ′4(x) = sin
x
2

[
45
2

(
− sin x + x cos x + 4x cos2 x

2

)
−

−8 sin
x
2

(
3
2

cos
x
2

(
8 cos2 x + 7 cos x

)
− sin

x
2
(16 sin x cos x + 7 sin x)

)]
= sin

x
2

(
11
2

sin x + 45x +
123

2
x cos x− 112 sin x cos2 x + 6 cos x(x− sin x)

)
.

According to the second part of the Lemma 1, we have

11
2

sin x + 45x +
123

2
x cos x− 112 sin x cos2 x > 0

on
(

0,
π

2

)
. We also have

6 cos x(x− sin x) > 0

on
(

0,
π

2

)
.

We obtain that f ′4 > 0 on
(

0,
π

2

)
, then f4 is strictly increasing on

(
0,

π

2

)
.

As f4(0) = 0, we prove that f4 > 0 on
(

0,
π

2

)
.

Therefore, f (2)3 > 0 on
(

0,
π

2

)
. Using the same arguments, we finally find that f3 > 0

on
(

0,
π

2

)
.

(iii) We can assume that x ∈
(

0,
π

2

)
.

We rewrite the inequality (15) as follows:

15(x− sin x)− sin x(1− cos x)(7− 2 cos x) > 0, 0 < x <
π

2
.

The function

f5 :
(

0,
π

2

)
→ R, f5(x) = 15(x− sin x)− sin x(1− cos x)(7− 2 cos x)

has the derivative

f ′5(x) = 15(1− cos x)−

−
(

cos x(1− cos x)(7− 2 cos x) + sin2 x(7− 2 cos x) + 2 sin2 x(1− cos x)
)

= 15(1− cos x)−
−(cos x(1− cos x)(7− 2 cos x) + (1− cos x)(1 + cos x)(9− 4 cos x))

= (1− cos x)
(

6− 12 cos x + 6 cos2 x
)

= 6(1− cos x)3.

The function f ′5 is > 0 on
(

0,
π

2

)
, hence f5 is strictly increasing on

(
0,

π

2

)
. Since

f5(0) = 0, we find that f5 > 0 on
(

0,
π

2

)
.

This completes the proof of the Theorem 1.

Proof of Theorem 2. (i) We assume that x > 0. We have to prove the following in-
equality:

30(x− sinh x) + 15(x cosh x− sinh x)− sinh x(1− cosh x)2 < 0

for all x > 0.
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We introduce the function f6 : (0, ∞)→ R,

f6(x) = 30(x− sinh x) + 15(x cosh x− sinh x)− sinh x(1− cosh x)2.

The derivative of the function f6 is

f ′6(x) = 2 sinh
x
2

(
15x cosh

x
2
+ sinh

x
2

(
−28− 3 cosh2 x + cosh x

))
.

The function f7 : (0, ∞)→ R,

f7(x) = 15x cosh
x
2
+ sinh

x
2

(
−28− 3 cosh2 x + cosh x

)
has the derivative

f ′7(x) = −15
4

sinh
x
2
(sinh 2x− 2x).

Since f ′7(x) < 0 on (0, ∞), it follows that f7 is strictly decreasing on (0, ∞). Since
f7(0) = 0, we have f7 < 0 on (0, ∞), then f ′6 < 0 on (0, ∞).

Hence, f6 is strictly decreasing on (0, ∞).
As f6(0) = 0, we finally obtain that f6 < 0 on (0, ∞).

(ii) We have to prove that

45x2 + 45x sinh x cosh x− 90 sinh2 x− 8 sinh2 x(1− cosh x)2 < 0

for all x > 0.
The function f8 : (0, ∞)→ R,

f8(x) = 45x2 + 45x sinh x cosh x− 90 sinh2 x− 8 sinh2 x(1− cosh x)2

has the derivatives:

f ′8(x) =
135

2
(2x− sinh 2x) + 45x(cosh 2x− 1)− 16 sinh x(1− cosh x)2(2 cosh x + 1)

and

f (2)8 (x) = 90(1− cosh 2x) + 90x sinh 2x− 16(1− cosh x)2
(

7 cosh x + 8 cosh2 x
)

.

To find critical points of the function f (3)8 , first, we calculate the derivative f (3)8 :

f (3)8 (x) = −2(2 sinh x + 61 sinh 2x− 54 sinh 3x + 32 sinh 4x− 90x cosh 2x).

Solving the equation f (3)8 (x) = 0 yields x = 0.

Therefore, the only critical point of the function f (2)8 is x = 0. Then, we evaluate f (2)8
at the critical point and at the endpoint of the domain:

f (2)8 (0) = 0, lim
x→∞

f (2)8 (x) = −∞.

Hence, the function f (2)8 has a global maximum at x = 0: f (2)8 (0) = 0.
Then, f ′8 is strictly decreasing on (0, ∞). As f ′8(0) = 0, we obtain f ′8 < 0 on (0, ∞).
It follows that f8 is strictly decreasing on (0, ∞). As f8(0) = 0, we find f8 < 0

on (0, ∞).

(iii) We have to prove that

15(x− sinh x) + 5 sinh x(cosh x− 1)− 2 sinh x(1− cosh x)2 < 0
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for x > 0.
We consider the function

f9 : (0, ∞)→ R, f9(x) = 15(x− sinh x) + 5 sinh x(cosh x− 1)− 2 sinh x(1− cosh x)2.

The derivative of the function f9 is

f ′9(x) = −48 sinh6 x
2

.

Then f ′9 < 0 on (0, ∞), hence f9 is strictly decreasing on (0, ∞).
As f9(0) = 0, we find that f9 < 0 on (0, ∞).
The proof of the Theorem 2 is complete.

Proof of Theorem 3. (i) Since the functions involved in the inequality (19) are even
functions, we can assume that x > 0.

The inequality (19) takes the equivalent form:

30x + 15x cosh x− 45 sinh x− sinh x(1− cos x)2 > 0 for all x > 0.

We consider the function

f10 : (0, ∞)→ R, f10(x) = 30x + 15x cosh x− 45 sinh x− sinh x(1− cos x)2.

The derivatives of the function f10 is

f ′10(x) = 30− 30 cosh x + 15x sinh x− (1− cos x)(cosh x− cosh x cos x + 2 sinh x sin x),

f (2)10 (x) = −15 sinh x + 15x cosh x−

−
(

sin x cosh x− sin x cosh x cos x + 2 sinh x sin2 x+

+(1− cos x)(sinh x + sinh x cos x + 3 cosh x sin x)),

f (3)10 (x) = cosh x
(
−6 sin2 x + 5 cos2 x− 4 cos x− 1

)
+ sinh x(15x− 2 sin x cos x− 4 sin x),

f (4)10 (x) = sinh x
(
−4 sin2 x + 3 cos2 x− 8 cos x + 14

)
+ 3 cosh x(5x− 8 sin x cos x),

f (5)10 (x) = cosh x(1− cos x)(49 + 41 cos x) + (15x + 8 sin x− 38 sin x cos x) sinh x,

The function
s : (0, ∞)→ R, s(x) = 15x + 8 sin x− 38 sin x cos x

has the positive roots x = 0, x ≈ 0.85321. Then, s < 0 on (0, 0.85321) and s > 0 on
(0.85321, ∞). It follows that f (5)10 (x) > 0 on (0.85321, ∞).

If x ∈ (0, 0.85321) ⊂
(

0,
π

2

)
, then f (5)10 (x) can be rewritten as

f (5)10 (x) = cosh x(1− cos x)(49 + 41 cos x)−
−15x sinh x + (15(2x− sin 2x) + 8 sin x(1− cos x)) sinh x.

The function

t : (0, ∞)→ R, t(x) = cosh x(1− cos x)(49 + 41 cos x)− 15x sinh x

has the positive roots x = 0, x ≈ 2.34534 and t > 0 on (0, 2.34534).
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Hence, f (5)10 (x) > 0 on (0, ∞). It follows that f (4)10 is strictly increasing on (0, ∞).

As f (4)10 (0) = 0, we find f (4)10 > 0 on (0, ∞). Continuing the algorithm we finally obtain that
f10 > 0 on (0, ∞).

(ii) We also can assume x > 0.

We write the inequality (20) as follows:

45x2 + 45x sinh x cosh x− 90 sinh2 x− 8 sinh2 x(cos x− 1)2 < 0, for 0 < x < 1.50618.

The function

f11 : (0, ∞)→ R, f7(x) = 45x2 + 45x sinh x cosh x− 90 sinh2 x− 8 sinh2 x(cos x− 1)2.

has the derivative

f ′11(x) = 90x− 135
2

sinh 2x + 45x cosh 2x− 8(cos x− 1)2 sinh 2x + 8 sin x(cos x− 1)(cosh 2x− 1).

The equation f ′11(x) = 0 has the positive roots x = 0, x ≈ 1.35234. Moreover,
f ′11(x) < 0 for x ∈ (0, 1.35234). Then, f11 is strictly decreasing on (0, 1.35234) and it is
strictly increasing on (1.35234, 1.50618). Since f11(0) = 0 and f11(1.50618) = 0, it follows
that f11 < 0 on (0, 1.50618).

(iii) As in the above theorems, we can assume x > 0.

We rearrange the inequality (21) as follows:

15x + 5 sinh x cosh x− 20 sinh x− 2 sinh x(1− cos x)2 > 0, for all x > 0.

We introduce the function

f12 : (0, ∞)→ R, f8(x) = 15x + 5 sinh x cosh x− 20 sinh x− 2 sinh x(1− cos x)2.

Easy computation yields

f ′12(x) = 5 sinh2 x + 5 cosh2 x− 2
(

cos2 x− 2 cos x + 11
)

cosh x + 4 sin x(cos x− 1) sinh x + 15,

f (2)12 (x) = 2 sinh x
(
−2 sin2 x + cos2 x− 11

)
+ 4 cosh x(5 sinh x + 2 sin x(cos x− 1)),

f (3)12 (x) = 20 sinh2 x + 20 cosh2 x− 20 cosh x− 2(cos x− 1)2 cosh x +

+12 sin x(cos x− 1) sinh x− 2 sinh x(2 sin x(cos x− 1) + 6 sin x cos x)−

−6 cosh x
(

2 sin2 x− 2(cos x− 1) cos x
)

and

f (4)12 (x) = 2 sinh x
(
−4 sin2 x + 3 cos2 x− 8 cos x− 11

)
+ cosh x(80 sinh x− 48 sin x cos x).

According to the first part of the Lemma 1 we have 2 sinh x ≥ sin 2x for all x ≥ 0.
Then,

cosh x(80 sinh x− 48 sin x cos x) = cosh x(32 sinh x + 48 sinh x− 24 sin 2x)
≥ 32 cosh x sinh x.

Therefore, we find that

f (4)12 (x) ≥ 2 sinh x
(
−4 sin2 x + 3 cos2 x− 8 cos x− 11 + 16 cosh x

)
.
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In the following, we will prove that the function

h : (0, ∞)→ R, h(x) = −4 sin2 x + 3 cos2 x− 8 cos x− 11 + 16 cosh x

is positive on (0, ∞).
The derivatives of the function h are

h′(x) = 8 sin x− 7 sin 2x + 16 sinh x

and

h(2)(x) = 8 cos x− 14 cos 2x + 16 cosh x

= 2
(

4 cos x(1− cos x) + 7 sin2 x + 8(cosh x− 1) + 8
(

1− sin2 x
)
+ 5 sin2 x

)
.

Since the function h(2) > 0 on (0, ∞) it follows that h′ is strictly increasing on (0, ∞).
As h′(0) = 0, we get h′ > 0 on (0, ∞). Continuing the algorithm, we finally obtain that
h > 0 on (0, ∞).

Hence, we deduce that f (4)12 > 0 on (0, ∞). Using the same arguments as above, we
finally find that f12 > 0 on (0, ∞).

The proof of the Theorem 3 is complete.

Remark 1. (1) From the Lemma 1, (iii), it follows that

1
15

(1− cos x)2 >
1

60
x3 sin x, for 0 < |x| < π

2
,

8
45

(1− cos x)2 >
2

45
x3 sin x, for 0 < |x| < π

2
,

2
5
(1− cos x)2 >

1
10

x3 sin x, for 0 < |x| < π

2
.

Therefore, we also improved the inequalities (5), (6) and ( 8).
(2) From the Lemma 2 and Theorem 3, we find that( x

sinh x

)2
+

x
tanh x

− 2 <
8
45

(1− cos x)2 <
2

45
x3 sinh x

for all x, 0 < |x| < 1.50618, hence we improved the inequality (11).

4. Conclusions

The function
sinc(x) =

sin x
x

occurs in Fourier analysis and its applications in signal processing. The Fourier transform
of the sinc function is a rectangle, and the Fourier transform of a rectangular pulse is a sinc
function. The sinc function also appears in analysis of digital-to-analogue conversion.

In our work, Taylor expansion of the error function between the truncated sum of
the first terms of the cosine series of the functions involved in Wilker–Huygens-type
inequalities and the functions themselves is carried out. Then the best approximation of
the functions which improve Wilker–Huygens-type inequalities is obtained.

These new approximations give sharp bounds to the functions sinc(x) and

tanc(x) =
tan x

x
.
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For example, the inequalities

sin x
x

<
3

4− cos x + 2
5 (1− cos x)2 , 0 < |x| < π

2

and
x

tan x
> 3− 2

x
sin x

+
1

15
(1− cos x)2, 0 < |x| < π

2
are very sharp and interesting for further studies.
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